QUADRATIC SYSTEMS

 WITH A RATIONAL FIRST INTEGRAL OF DEGREE 2:

 WITH A RATIONAL FIRST INTEGRAL OF DEGREE 2: A COMPLETE CLASSIFICATION IN THE COEFFICIENT SPACE \mathbb{R}^{12}

JOAN C. ARTÉS* - JAUME LLIBRE* - NICOLAE VULPE**

Abstract

A quadratic polynomial differential system can be identified with a single point of \mathbb{R}^{12} through the coefficients. Using the algebraic invariant theory we classify all the quadratic polynomial differential systems of \mathbb{R}^{12} having a rational first integral of degree 2 . We show that there are only 24 topologically different phase portraits in the Poincare disc associated to this family of quadratic systems up to a reversal of the sense of their orbits, and we provide a unique representative of every class modulo an affine change of variables and a rescalling of the time variable. Moreover, each one of these 24 representatives is determined by a set of invariant conditions and each respective first integral is given in invariant form directly in \mathbb{R}^{12}.

1. Introduction.

Let P and Q be two real polynomials in the variables x and y, then we say that

$$
\dot{x}=\frac{d x}{d t}=P(x, y), \quad \dot{y}=\frac{d y}{d t}=Q(x, y)
$$

is a quadratic polynomial differential system or simply a quadratic system if the maximum of the degrees of the polynomials P and Q is two. Associated to this quadratic system we have its corresponding quadratic polynomial vector field $X=(P, Q): \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$, or simply a quadratic vector field.

[^0]
[^0]: * The authors are partially supported by a MEC/FEDER grant MTM2005-06098-C02-01, and a CONACIT grant number 2005SGR-00550.
 ** Partially supported by CRDF-MRDA CERIM-1006-06

