RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO Serie II, Tomo LVI (2007), pp. 417-444

QUADRATIC SYSTEMS WITH A RATIONAL FIRST INTEGRAL OF DEGREE 2: A COMPLETE CLASSIFICATION IN THE COEFFICIENT SPACE \mathbb{R}^{12}

JOAN C. ARTÉS* - JAUME LLIBRE* - NICOLAE VULPE**

A quadratic polynomial differential system can be identified with a single point of \mathbb{R}^{12} through the coefficients. Using the algebraic invariant theory we classify all the quadratic polynomial differential systems of \mathbb{R}^{12} having a rational first integral of degree 2. We show that there are only 24 topologically different phase portraits in the Poincaré disc associated to this family of quadratic systems up to a reversal of the sense of their orbits, and we provide a unique representative of every class modulo an affine change of variables and a rescalling of the time variable. Moreover, each one of these 24 representatives is determined by a set of invariant conditions and each respective first integral is given in invariant form directly in \mathbb{R}^{12} .

1. Introduction.

Let P and Q be two real polynomials in the variables x and y, then we say that

$$\dot{x} = \frac{dx}{dt} = P(x, y), \qquad \dot{y} = \frac{dy}{dt} = Q(x, y),$$

is a quadratic polynomial differential system or simply a quadratic system if the maximum of the degrees of the polynomials P and Q is two. Associated to this quadratic system we have its corresponding quadratic polynomial vector field $X = (P, Q) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, or simply a quadratic vector field.

^{*} The authors are partially supported by a MEC/FEDER grant MTM2005–06098–C02–01, and a CONACIT grant number 2005SGR–00550.

^{**} Partially supported by CRDF-MRDA CERIM-1006-06