Quadratic systems with a polynomial first integral: A complete classification in the coefficient space \mathbb{R}^{12}

Joan C. Artés ${ }^{\mathrm{a}, 1}$, Jaume Llibre ${ }^{\mathrm{a}, *, 1}$, Nicolae Vulpe ${ }^{\mathrm{b}, 2}$
${ }^{\text {a }}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
${ }^{\mathrm{b}}$ Institute of Mathematics and Computer Science, Academy of Science of Moldova, 5 Academiei str., Chişinău, MD-2028, Republic of Moldova

A R T I C L E I N F O

Article history:

Received 23 June 2008
Revised 17 December 2008
Available online 20 January 2009

MSC:

34C05
34C08

Keywords:
Quadratic vector fields
Integrability
Polynomial first integral
Affine invariant polynomial

Abstract

In this paper we are going to apply the invariant theory to give invariant conditions on the coefficients of any non-degenerate quadratic system in order to determine if it has or not a polynomial first integral without using any normal form. We obtain that the existence of polynomial first integral is directly related with the fact that all the roots of a convenient cubic polynomial are rational and negative. The coefficients of this cubic polynomial are invariants related with some geometric properties of the system.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction and the statement of the main result

Let $\mathbb{R}[x, y]$ be the ring of all polynomials in the variables x and y with coefficients in \mathbb{R}. In this paper we deal with quadratic polynomial differential systems in \mathbb{R}^{2} of the form

$$
\begin{equation*}
\frac{d x}{d t}=x^{\prime}=P(x, y), \quad \frac{d y}{d t}=y^{\prime}=Q(x, y), \tag{1}
\end{equation*}
$$

where $P, Q \in \mathbb{R}[x, y]$ and $\max \{\operatorname{deg} P, \operatorname{deg} Q\}=2$. In what follows such differential systems will be called simply quadratic systems.

[^0]
[^0]: * Corresponding author.

 E-mail addresses: artes@mat.uab.cat (J.C. Artés), jllibre@mat.uab.cat (J. Llibre), nvulpe@mail.md (N. Vulpe).
 ${ }^{1}$ Partially supported by a MEC/FEDER grant number MTM2008-03437 and by a CIRCYT grant number 2005SGR00550.
 2 Partially supported by CRDF-MRDA CERIM-1006-06.

