# Quadratic systems with an integrable saddle: A complete classification in the coefficient space $\mathbb{R}^{12}$ 

Joan C. Artés ${ }^{\mathrm{a}, *}$, Jaume Llibre ${ }^{\mathrm{a}}$, Nicolae Vulpe ${ }^{\text {b }}$<br>a Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain<br>${ }^{\mathrm{b}}$ Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, 5 Academiei str, Chişinău, MD-2028, Republic of Moldova

## ARTICLE INFO

## Article history:

Received 21 November 2011
Accepted 21 April 2012
Communicated by S. Ahmad

## MSC:

primary 34C05
34A34

## Keywords:

Quadratic vector fields
Weak saddle
Type of singularity


#### Abstract

A quadratic polynomial differential system can be identified with a single point of $\mathbb{R}^{12}$ through the coefficients. Using the algebraic invariant theory we classify all the quadratic polynomial differential systems of $\mathbb{R}^{12}$ having an integrable saddle. We show that there are only 47 topologically different phase portraits in the Poincaré disk associated to this family of quadratic systems up to a reversal of the sense of their orbits. Moreover each one of these 47 representatives is determined by a set of affine invariant conditions.


© 2012 Elsevier Ltd. All rights reserved.

## 1. Introduction and statement of main results

Let $\mathbb{R}[x, y]$ be the ring of the polynomials in the variables $x$ and $y$ with coefficients in $\mathbb{R}$. We consider a system of polynomial differential equations or simply a polynomial differential system in $\mathbb{R}^{2}$ defined by

$$
\begin{align*}
& \dot{x}=P(x, y) \\
& \dot{y}=Q(x, y) \tag{1}
\end{align*}
$$

where $P, Q \in \mathbb{R}[x, y]$. We say that the maximum of the degrees of the polynomials $P$ and $Q$ is the degree of system (1). A quadratic polynomial differential system or simply a quadratic system $(Q S)$ is a polynomial differential system of degree 2 . We say that a quadratic system (1) is non-degenerate if the polynomials $P$ and $Q$ are relatively prime.

In [1] Poincaré defined the notion of a center for a real polynomial differential system in the plane (i.e. an isolated singularity surrounded by a continuum of periodic orbits). Now, using a linear change of coordinates and a rescaling of the independent variable, we transform any polynomial differential system having a focus at the origin with purely imaginary eigenvalues (i.e. having a weak focus) or a center into the form

$$
\begin{align*}
& \dot{x}=p(x, y)=y+p_{2}(x, y)+\cdots+p_{m}(x, y) \\
& \dot{y}=q(x, y)=-x+q_{2}(x, y)+\cdots+q_{m}(x, y) \tag{2}
\end{align*}
$$

where

$$
p_{i}(x, y)=\sum_{j=0}^{i} a_{i j} x^{i-j} y^{j}, \quad q_{i}(x, y)=\sum_{j=0}^{i} b_{i j} x^{i-j} y^{j} .
$$

[^0]
[^0]:    * Corresponding author. Tel.: +34 935811 505; fax: +34 935812790 .

    E-mail addresses: artes@mat.uab.cat (J.C. Artés), jllibre@mat.uab.cat (J. Llibre), nvulpe@gmail.com (N. Vulpe).

