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Abstract. We classify all the topologically non-equivalent phase por-
traits of the quadratic polynomial differential system

dx

dt
= y − x,

dy

dt
= 2y − y

γ − 1

(
2− γy − 5γ − 4

γ − 1
x

)
,

in the Poincaré disc for all the values of the parameter γ ∈ R \ {1}.
This differential system when the parameter γ ∈ (1, 2] models the

structure equations of an isotropic star having a linear barotropic equa-
tion of state, being x = m(r)/r where m(r) ≥ 0 is the mass inside the
sphere of radius r of the star, y = 4πr2ρ where ρ is the density of the
star, and t = ln(r/R) where R is the radius of the star. We classify the
possible limit values of m(r)/r and 4πr2ρ when r decreases.

1. Introduction and the main results

The structure equations of an isotropic star having a linear barotropic
equation of state are

(1)

ẋ = y − x = p(x, y),

ẏ = 2y − y

γ − 1

(
2− γy − 5γ − 4

γ − 1
x

)
= q(x, y),

where the parameter γ varies in the interval (1, 2], and the dot denotes
derivative with respect to the variable t = ln(r/R) being R the radius of
the star. Therefore, from the physical point of view we are interested in
the solutions defined in the interval t ∈ (−∞, 0). Here x = m(r)/r where
m(r) ≥ 0 is the mass inside the sphere of radius r of the star, y = 4πr2ρ
being ρ the density of the star. For more details on the differential system
(1) see [4, 7, 9].

We remark that from the physic point of view and since x > 0 and y > 0
we are mainly interested in the dynamics of the differential system (1) in
the positive quadrant Q = {(x, y) ∈ R2 : x > 0, y > 0} of R2.

Note that the straight line y = 0 is invariant because when y = 0 we have
that ẏ = 0. Therefore, since ẋ|x=0 = y the positive quadrant Q is positively
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invariant, i.e. orbits of system (1) can enter in the quadrant Q through the
positive y-axis but never orbits of the quadrant Q can exit from Q.

On the other hand the differential system (1) is a polynomial differential
system of degree 2 because the maximum of the degrees of the polynomials
p(x, y) and q(x, y) is 2. The polynomial differential systems of degree 2 are
called simply quadratic systems and they have been intensively studied, see
for instance the books [2, 10, 13] and the hundreds of references quoted
therein.

The domain of definition of the differential system (1) is the whole plane
R2. The decomposition of R2 as union of the orbits of system (1) is the phase
portrait of the differential system (1). In particular a phase portrait shows
where each orbit is born and where each orbit dies, if they are equilibrium
points, periodic orbits, ... In summary a phase portrait provides all the
qualitative information about the orbits of a differential system. For more
information about the phase portraits of the planar differential systems see
for instance [8].

The phase portraits of the polynomial differential systems in R2 are usu-
ally described in the so called Poincaré disc. Roughly speaking the Poincaré
disc is the unit closed disc D2 whose interior has been identified with the
plane R2 and whose boundary, the circle S1 is identified with the infinity of
R2. Note that in the plane R2 we can go to infinity in as many directions as
points has the circle S1. For more details on the Poincaré disc see Chapter
5 of [8].

As usual two phase portraits in the Poincaré disc D2 are topologically
equivalent if there is a homeomorphism of D2 which sends orbits of the first
phase portrait into orbits of the second phase portrait preserving or reversing
the sense of all the orbits.

The objective of this paper is double. First we study the phase portraits
of the quadratic systems (1) from a mathematical point of view, i.e. for all
the values of parameter γ ∈ R \ {1} where the system is defined. These
phase portraits are described in the Poincaré disc, in this way we control
the orbits which escape or come from the infinity. Second we describe the
whole dynamics of the isotropic star system (1) for 1 < γ ≤ 2 in the positive
quadrant taking into account the orbits which could escape or come from
the infinity.

Our main results are described in the next two theorems.

Theorem 1. The quadratic system (1) when γ varies in R \ {1} has 13
topologically non-equivalent phase portraits in the Poincaré disc. These are
the phase portraits γ1, γ2, γ3, γ6, γ7, γ8, γ9, γ12, γ13, γ14, γ15, γ19 and γ22
given in Figure 1.

Theorem 1 is proved in section 2.
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In Figure 1 appear other few phase portraits which are needed to complete
the bifurcation diagram as it is described in the proof of Theorem 1.

Theorem 2. The isotropic star having a linear barotropic equation of state
modelled by the differential system (1) with 1 < γ ≤ 2 verifies that

Figure 1. Phase portraits of the quadratic systems (1).
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(i) when r → 0 there is a set of initial conditions of dimension two such
that the orbits determined for these conditions satisfy that

m(r)

r
→ ∞ and 4πr2ρ → 0;

(ii) there is another set of initial conditions of dimension two such that
the orbits determined for these conditions when r tends to some finite
value r0 (which depend on the initial conditions) satisfy that

m(r)

r
→ 0 and 4πr2ρ → k ≥ 0,

where k can take any positive value when the initial conditions vary;

(iii) If

m(R)

R
= 4πR2ρ = −

2
(
γ2 − 2γ + 1

)
γ2 + 4γ − 4

,

then
m(r)

r
= 4πr2ρ = −

2
(
γ2 − 2γ + 1

)
γ2 + 4γ − 4

,

for all r ∈ (0, R]; finally

(iv) there is a set of initial conditions of dimension one such that he
orbits determinaded by these initial conditions when r → 0 satisfy
that m(r)/r and 4πr2ρ tend to

−
2
(
γ2 − 2γ + 1

)
γ2 + 4γ − 4

.

Theorem 2 is proved in section 3.

2. Proof of Theorem 1

Even the study of the bifurcation diagram of this system is very easy
since it has just one parameter, we will make use of the Theory of Invariants
developed by the Sibirskii school, and fully developed for quadratic systems
in the book [2]. The invariants (and also the comitants) allow to easily
determine all the geometric features provided by the system in a methodic
and consistent way. These geometric features may even exceed the most
simple topological features to which later we will reduce the classification.

Each one of these geometric features is characterized using some of the
following 16 invariant polynomials:

(2)
{
µ0, µ1, µ2, U, W4, T3, T4, F1, . . . ,F4, B1, B2, B3, η

}
.

The invariantsB1 toB3 can be found in page 14 of [11]. The rest of invariants
can be found in pages 121-128 of [2].

Apart from the geometric properties of the singularities, there may also
exist bifurcations due to separatrix connections. If these connections are
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invariant straight lines or polynomial curves, they may also be determined
by means of algebraic invariants. But they may also be of non-algebraic
nature in which case, only an analytical and numerical study may detect
them. Anyway, we will not meet any of them in this family.

The first important detail to be remarked of this system is that it is not
defined for γ = 1. Thus the bifurcation diagram will show a jump from
cases with γ < 1 to cases with γ > 1 and no continuity or coherence must
be expected from ones to the others.

Next we detect that invariants/comitants µ0 = µ1 are equal to zero which
proves that two finite singularities have already escaped to infinity, and they
will remain there for all the family. Moreover, for every γ the straight line
y = 0 is invariant. For some values of γ we may have more invariant straight
lines. It is a known result that quadratic systems having an invariant straight
line can have at most one limit cycle which is either stable or unstable [5],
and that quadratic system having two invariant straight lines cannot have
limit cycles [3]. Moreover in this case, the systems have double multiplicity
of the line at infinity since we may perturb the first equation by adding a
linear factor as x′ = (y − x)(1 + εx). Since it is known that a quadratic
system with two invariant lines cannot have limit cycles, the fact that there
exists an invariant line plus a double line at infinity also voids the existence
of limit cycles. The reason is that if such a system would have a limit cycle,
the mentioned perturbation would produce the second straight line while
conserving the limit cycle.

Since we already have µ0 = µ1 = 0, the next relevant comitant is

µ2 =

(
γ2 + 4γ − 4

)
y
(
5γx− 4x+ γ2y − γy

)
(γ − 1)4

which if it vanishes (for some γ), will determine if a third singularity escapes
to infinity.

We will also need the invariant η = γ2(5γ−4)2

(γ−1)6
which if equal to zero,

determines if two infinite singularities coalesce.

The comitant U =
4(γ − 2)2y2(x− y)2

(
5γx− 4x+ γ2y − γy

)2
(γ − 1)6

= 0 tells

(in this concrete system) that the two finite singularities coalesce.

And finally the invariant T4 =
(γ − 3)γ(5γ − 4)2

(
3γ2 − 4

)
(γ − 1)8

= 0 tells that

one finite singularity is weak (if T3 ̸= 0), that is, the trace of its Jacobian
matrix is zero. This may either imply that either it is a weak focus (or a
center if more invariants vanish) or it is a weak saddle. There are also invari-
ants to distinguish all these possibilities, and even invariants to determine
the level of weakness of the weak point. Anyway, since this system has just
one parameter, once T4 = 0 the system is unique and the weak singularity is
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fully determined. If T4 = T3 = 0 then either there are two finite weak singu-
larities, or there is a finite nilpotent singularity or a linearly zero singularity
also called intrincate singularity in [2], or a singularity with trace zero has
escaped to infinity (as it happens for γ8 and γ12).

Another interesting geometric feature to capture is whether the system
has or not invariant straight lines. Sometimes these lines will not imply a
separatrix connection and thus, breaking them will not produce a different
phase portrait. However, other times, on these lines we will find separatrix
connections and they must be included in the bifurcation diagram. The
invariants/comitants that will help us to find those invariant straight lines
are B1, B2 and B3. Since B1 = B2 = 0 for this family we must just
concentrate on B3 which is

B3 = −
3(5γ − 4)

(
3γ2 − 4

)
x2y2

(γ − 1)4
.

We normally add one more invariant in every study which is W4. This
invariant detects the transition from a node to a strong focus when the
invariant changes its sign. This does not produces a topological change in
the phase portrait but for the quadratic systems bounds the regions where
limit cycles may exist, because if a quadratic system has a limit cycle this
must surround a focus, see [7]. Since the fact that an antisaddle is a node
or a focus may have some physical interest, we have preferred to include it.

In summary, extracting from the different invariant/comitants the equa-
tions that must be solved for obtaining the mentioned qualitative informa-
tions are

(3)

γ2 + 4γ − 4 = 0,
γ(5γ − 4) = 0,

γ − 2 = 0,
(γ − 3)γ(5γ − 4)(3γ2 − 4) = 0,

(5γ − 4)(3γ2 − 4) = 0.

Then easy computations determine that the bifurcations points are the val-
ues

(4)
γ2 = −2(1 +

√
2), γ6 = −2

√
3/3, γ8 = 0,

γ12 = 4/5, γ14 = 2(
√
2− 1), γ18 = 1,

γ20 = 2
√
3/3, γ22 = 2, γ26 = 3.

We have numerated them with even numbers and leaving some gaps in order
to leave space for intermediate generic cases and the values where W4 = 0.
We have also assigned a place for the case γ = 1 even knowing that the
differential system is undefined there so to maintain the coherence in the
numeration between generic cases (odd) and singular (even).

The invariant

W4 = γ2(3γ − 5)2(5γ − 4)4
(
γ5 − 57γ4 + 40γ3 + 408γ2 − 624γ + 240

)
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only changes sign on the roots of the component of degree 5. We must solve
it numerically. And now we add intermediate values between each singular
values. So to obtain all the bifurcation diagram of this family.

(5)

γ1 = −5, γ2 = −2(1 +
√
2), γ3 = −4,

γ4 ≈ −2.9649 . . . , γ5 = −2, γ6 = −2
√
3/3,

γ7 = −1/2, γ8 = 0, γ9 = 2/5,
γ10 =≈ 0.76 . . . , γ11 = 78/100, γ12 = 4/5,

γ13 = 81/100, γ14 = 2(
√
2− 1), γ15 = 84/100,

γ16 ≈ 0.865822 . . . , γ17 = 9/10, γ18 = 1,

γ19 = 93/100, γ20 = 2
√
3/3, γ21 = 3/2,

γ22 = 2, γ23 = 21/10, γ24 ≈ 2.17019 . . . ,
γ25 = 5/2, γ26 = 3, γ27 = 5,
γ28 ≈ 56.1619 . . . , γ29 = 60.

Now using the program P4 (see [8]) we obtain a picture of every phase
portrait and we describe briefly the bifurcations, explaining what has hap-
pened when we move from a case to another one. In fact we additionally
have verified that all the local phase portraits of the finite and infinite equi-
librium points of the differential system (1) are the ones obtained by the
program P4. Thus the local phase portraits of the hyperbolic equilibrium
points (i.e. the ones such that the eigenvalues of the linear part of the sys-
tem evaluated on them have real part non-zero) have been computed with
Theorem 2.15 of [8]. The local phase portraits of the semi-hyperbolic or
also called semi-elemental equilibrium points (i.e. the ones such that one
and only one of the eigenvalues of the linear part of the system evaluated on
them is zero) have been computed with Theorem 2.19 of [8]. The local phase
portraits of the nilpotent equilibrium points (i.e. the ones such that both
eigenvalues of the linear part of the system evaluated on them are zero but
the linear part is not identically zero) have been computed with Theorem
3.5 of [8].

We note that when a saddle-node or a nilpotent equilibrium is at infin-
ity the Theorems 2.19 and 3.5 are not sufficient in order to determine the
position of the sectors of these points with respect to the line.

Once we now all the local phase portraits of the finite and infinite equilib-
rium points in order to determine the global phase portraits in the Poincaré
disc for the different values of the parameter γ we only need to control where
start and end the separatrices of the differential system. For the differential
systems (1) the separatrices are all the orbits of the infinity, the finite equi-
librium points and the separatrices of the hyperbolic sectors of the finite and
infinite equilibrium points, for more details see section 1.9 of [8]. The limit
cycles, when they exist, also are separatrices but the differential systems (1)
has no separatrices for the reason previously explained.
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For γ1 we see a saddle at the origin and a finite node. The infinite singu-

larity N1 = [1 : 0 : 0] is a saddle-node
(
1
1

)
SN (see notation in Section 3.7 or

Appendix A of [2]). There is another infinite singularity at N2 = [0 : 1 : 0]
which is an elemental node, and there is a third equilibrium point at infinity

(on first and third quadrant) N3 which is also a
(
1
1

)
SN . The phase portrait

is completely determined by the invariant straight line and the distribution
of singularities.

For γ2 we see that the finite node has coalesced with the infinite singularity

N3 producing a
(
2
1

)
N .

For γ3 the infinite singularity N3 ejects a node into the first quadrant and

becomes again a
(
1
1

)
SN .

At γ4 the node becomes a focus. So the phase portrait is equivalent to
the previous one and also to the case γ5.

At γ6 the focus becomes weak. But also other invariants as F1, F2,
and F3F4 become zero, and thus the singularity is a center. This forces
the existence of a separatrix connection between the saddle at the origin
and the singularity N3. This connection is required so to form the graphic
which encloses all the periodic orbits surrounding the center. Moreover the
connection takes place on an invariant straight line. This system is known
as V ulpe17 in the classification [12]. This notation (for quadratic systems
with centers) was introduced later in papers like [1].

At γ7 the center becomes again a focus. Before is was repellor and now
it is attractor.

At γ8 the infinite singularity N3 coalesces with N2 producing a nilpotent
singularity whose local phase portrait is formed by one elliptic and one
hyperbolic sectors separated by two parabolic sectors.

For γ9 the infinite singularity breaks. The singularity N3 is now in the
second-fourth quadrant. Somehow, the singularity N3 has transited over N1

and this has required a higher multiplicity singularity.

At γ10 the focus turns back into a node. So the phase portrait is equivalent
to the previous one and also to the case γ11.

At γ12 the infinite singularity N3 coalesces with N1 producing an intricate
singularity which forces the existence of two parallel invariant straight lines
and one hyperbolic sector on each side of infinity. Even this singularity may
seem topologically equivalent (locally) to a semi-elemental saddle-node, it is
not because the hyperbolic sectors would have to be in different semiplanes.
Moreover, the number of directions arriving to the singularity clearly show
their highest codimension.
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For γ13 the infinite singularity breaks. The singularity N3 is now again
in the third-first quadrant. For γ14 the finite node coalesces again with N3.
N3 is again a semi-elemental node of multiplicity 3.

For γ15 the singularity N3 ejects a node into the third quadrant.

At γ16 the node turns back into a focus again. So the phase portrait is
equivalent to the previous one and also to the case γ17.

At γ18 we have γ = 1 and the system is undefined. No continuity, no
coherence may be expected from what we had before and to what we will
meet after.

For γ19 we must start describing the phase portrait from zero. We have a
node at the origin and a saddle on the upper semiplane. The infinite singu-

larity N1 is a
(
1
1

)
SN as well as N3 which is at the second-fourth quadrant

while N2 is a node. We deploy the positive part of halfline y = 0 with dashes
to recall it is an invariant straight line, but it is not a separatrix.

For γ20 we have again a finite weak singularity, but since the origin is a
node, it cannot be a weak focus. So the saddle must be weak. Since there
is no possibility of existence of a loop formed by separatrices of this saddle,
this produces no topological interest. So, this is equivalent to the previous
case and γ21 is also equivalent to γ19.

For γ22 the two finite singularities coalesce forming a semi-elemental
saddle-node sn(2) (see notation in Section 3.7 or Appendix A of [2]). For
γ23 the origin splits, it remains as a saddle and ejects a node into the lower
halfplane.

At γ24 the node turns back into a focus. So the phase portrait is equivalent
to the previous one and also to the case γ25.

For γ26 we have again a finite weak singularity, and even both focus and
saddle have the possibility to be weak, it happens that again the saddle
is the weak singularity. Since there is no possibility of existence of a loop
formed by separatrices of this saddle, this produces no topological interest.
So, this is equivalent to the previous case and γ27 is also equivalent to γ25.

And at γ28 the focus turns back into a node again. So the phase portrait
remains topologically equivalent and also at γ29. Notice also that this phase
portrait is topologically equivalent to the case with γ1.

It must be remarked that this kind of studies must normally be done in
a family of systems whose parameter space may be compactified in a pro-
jective space. In this way, one can control also what may happen when
one parameter escapes to infinity. Somehow, we may even study the phase
portrait when one parameter is ∞. Normally there we find some kind of
bifurcation which links with both sides (positive and negative of the param-
eter). Then by confirming the coherence between the phase portrait at ∞
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and the largest (and smallest) γ of our bifurcation, one may be quiet that
one has not forgotten any other large singular value of the partition. In
general, one cannot afirm that he has found all possible phase portraits, but
one can be certain that the whole set is complete and coherent, and that
no new slice is needed to get the full picture of the diagram. If some other
bifurcation occurs, this may not be related with singular points, and what-
ever occurs, must be undone by another unfound singular slice. And this
may theoretically occur in very small part of the parameter space although
we have never found yet such a phenomena.

In the current family it seems that the case γ = ∞ is not a bifurcation
since the phase portrait we obtain for γ > γ23 is topologically equivalent
to the case γ < γ2. However we have the problem with the undefined
case γ = 1 which will produce a similar phenomena as described case when
γ → ∞. That is, we have detected the biggest singular value for γ lower
than 1 and the lowest greater than 1. But in general we cannot know for
sure if there are other phantom singular values of γ very close to 1.

Anyway, as this family has a permanent invariant straight line, and there
are so few separatrices, it is not hard to see that the phase portrait in every
one of the parts that we have divided the straight line, is the corresponding
one of Figure 1.

This completes the proof of Theorem 1.

3. Proof of Theorem 2

The phase portrait of the differential system (1) when γ ∈ (1, 2] is topo-
logically equivalent to the phase portrait γ19. So the restriction of this phase
portrait to the positive quadrant Q is shown in Figure 2.

Figure 2. Restriction of system (1) to the first quadrant.
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Since t = ln(r/R) and r varies on the interval (0, R], t varies in the
interval (−∞, 0]. Taking into account that the meaning of the variables x
and y are x = m(r)/r > 0 and y = 4πr2ρ > 0, from Figure 2 it follows that
all the orbits which are on the right hand side of the curve formed by the
separatrices s1 and s2 of the saddle point

P =

(
−
2
(
γ2 − 2γ + 1

)
γ2 + 4γ − 4

,−
2
(
γ2 − 2γ + 1

)
γ2 + 4γ − 4

)
,

when r → 0 satisfy that

m(r)

r
→ ∞ and 4πr2ρ → 0.

Hence statement (i) is proved.

While all the orbits which are on the left hand side of the curve formed
by the separatrices s1 and s2 of the saddle point P satisfy that

(6)
m(r)

r
→ 0 and 4πr2ρ → k > 0,

for some finite negative value of t, i.e. there is a positive value r = r0 < R
for which (6) holds. This completes the proof of statement (ii).

Clearly that the equilibrium point p proves statement (iii).

There are two special orbits, the separatrices s1 and s2 of the saddle P
such that when r → 0 they tend to the equilibrium point P . So statement
(iv) is proved.

This completes the proof of Theorem 2.
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[3] N.N. Bautin, On periodic solutions of a system of differential equations, Prikl. Mat.
Meh. , 18, (1954), 128.
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