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Abstract. We provide necessary and sufficient conditions for both integrability and linearizability

of a three dimensional vector field with quadratic nonlinearities. For our investigation we consider

the case of (1 : −2 : 1)–resonance at the origin and in general non of the axes planes is invariant.

Hence, we deal with a nine parametric family of quadratic systems. Some techniques like Dar-

boux method are used to prove the sufficiency of the obtained conditions. For a particular three

parametric subfamily we provide conditions to guarantee the non existence of a polynomial first

integral.

1. Introduction and statement of the main results

The problem of integrability is one of the most difficult problems in the qualitative theory of

differential equations. For a three dimensional system, two independent first integrals are required

in order the system to be completely integrable. In this case the trajectories of the system are

completely determined by the two first integrals. To prove the existence or non existence of a first

integral in general is a very hard problem, especially when the system depends on parameters. So,

during the years many technics have been developed relating to first integrals, like Lie symmetries

[32], Darboux theory of integrability [13, 14], Painlevé analysis [8], Differential Galois Theory

[28, 35], among many others.

In this work we deal with the local integrability and linearizability problem at the origin of the

three dimensional systems

ẋ = P = λx+ axy + bxz + cyz,

ẏ = Q = µy + dxy + exz + fyz,

ż = R = νz + gxy + hxz + kyz,

(1)

with λ = 1, µ = −2 and ν = 1 and the nine parameters a, b, c, d, e, f, g, h and k are real.
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In the particular case where the axes planes x = 0, y = 0 and z = 0 are invariants of system (1)

then we obtain a three dimensional Lotka–Volterra system. Such systems have been invistigated by

several authors like Bobienski and Żo la̧dek [5], Aziz [1], Aziz and Christopher [3], Cairo and Llibre

[10, 11], Buzzi et al. [9], Murza and Teruel [31], Basov and Romanovski [4], Christodoulides and

Damianou [12], Gao and Liu, [19], Gonzalez and Peralta[20], Moulin-Ollagnier [30]) among others.

There is a big challenge to understand the mechanisms of integrability of non Lotka–Volterra

systems. Some authors have been studied some non Lotka–Volterra systems: Dukarić et al. [16]

gave necessary and sufficient conditions for integrability and linearizability for a family of three di-

mensional quadratic systems. They used mainly Darboux theory of integrability and other methods

to prove the sufficiency of their conditions. Romanovski and collaborators in [17, 18] investigated

the integrability problem with (0 : −1 : 1) resonance at the origin. Local integrability and lin-

earizability of a quadratic three dimensional family with (1 : −1 : 1) resonance is considered in

[2]. All these works aim to understand the underlying mechanism of the general problem of local

integrability. Our goal is to contribute in this direction.

The main result of the paper is the following theorem.

Theorem 1.1. Consider the three dimensional system (1) with (λ, µ, ν) = (1,−2, 1). The origin

is integrable if and only if one of the following conditions are satisfied:

1) 2b2 − 4bf − ce+ 2f2 = k = h = g = d = a = 0

2) g = f = e = d = c = b = 0

3) h = g = f = d = c = b = a+ k = 0

4) k = g = f = e = d+ h = b = a = 0

5) h = g = f = e = d = c = 0

6) g = f = e = d = c = a− k = 0

7) k = g = c = a = 0

8) bd+ 2bh+ fh = af − 2bk − fk = ad+ 2ah− dk = g = e = c = 0

9) 2d2 − 4dh− eg + 2h2 = k = f = c = b = a = 0

10) h = f = e = d = b = 0

11) k = h = e = d = c = b+ f = a = 0

Moreover, the system is linearizable if and only if conditions above holds except condition (8).

In general, for parametric families of polynomial differential systems the problem of existence or

non-existence of polynomial first integrals is a very difficult problem. In this direction there are

some works for three dimensional Lotka–Volterra systems, see for example [22, 26, 29, 23]. Some

other investigations on polynomial first integrals of general three dimensional systems can be found

in [10, 25, 27].
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We now consider the particular systems (1) where c = e = g = f = d = 0 and k = a. Then

system (1) becomes the Lotka–Volterra system

ẋ =x(1 + ay + bz),

ẏ =− 2y,

ż =z(1 + hx+ ay).

(2)

Note that system (2) corresponds to case 6) of Theorem 1.1. Our result about polynomial first

integrals is the following theorem.

Theorem 1.2. If (i) h = 0 and a 6= 0 or (ii) ha 6= 0 then the three parametric family (2) has no

polynomial first integrals.

Remark 1. (i) System (1) under the condition 6) of Theorem 1.1 has no polynomial first integrals.

The same holds for cases 2) and 5) when k = a.

(ii) If a = h = 0, then yz2 is a polynomial first integral of family (2). The same holds for cases 4)

and 6) of Theorem 1.1.

The paper is organized as follows: In Section 2, some basic definitions and known results are

given. Additionally, we explain some mechanisms to find necessary conditions for both integrability

and linearizability. The proofs of Theorems 1.1 and 1.2 are given in Section 3. At the end, in

Section 4 we present the conclusions of this work.

2. Known results

Here we present the basic definitions and theorems that we use in order to understand the proofs

and the results of the papers. Our purpose is to present a self contained paper.

2.1. Basic definitions. We say that the eigenvalue λ is a resonant eigenvalue at the origin of

system (1) if satisfies the following arithmetic condition

λn1 + µn2 + νn3 − λ = 0, |n| = n1 + n2 + n3 ≥ 2 (3)

for some non-negative integers ni ∈ N0 = {0, 1, 2, . . .}. The natural number |n| = n1 +n2 +n3 is the

order of the resonance and the monomial Xn = xn1yn2zn3e1 is a resonant monomial. The coefficient

of the monomial Xn in the system (1) is called a resonant coefficient and the corresponding term

is called a resonant term. If condition (3) does not hold then the eigenvalue λ is said to be non–

resonant.

The Poincaré domain is the convex hull of the eigenvalues that does not contain the origin inside

or on the boundary. The Siegel domain is the complement of the Poincaré domain.

We choose the eigenvalues λ, µ and ν to be in the Siegel domain and having two independent

resonances. So, without loss of generality, (maybe considering a scaling of time) we can assume

λ, µ, ν ∈ Z such that gcd(λ, µ, ν) = 1, and λ, ν > 0 and µ < 0. In this case we say that the origin

has (λ : µ : ν)-resonance.
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Now for system (1) we consider its associated vector field

X = P
∂

∂x
+Q

∂

∂y
+R

∂

∂z
.

We denote by U an open neighborhood of the origin of C3. The non-constant analytic function

H : U → C is a local first integral of system (1) if it is constant on all solutions of the system

contained in U. Hence, in all the points of U we have

X (H) = P
∂H

∂x
+Q

∂H

∂y
+R

∂H

∂z
= 0.

Consider that the two local first integrals H1 and H2 are defined in U . We say that are independent

if their gradients are linear independent in C3 except perhaps in a set of measure zero.

A function M : U → C is a Jacobi multiplier of X if it satisfies the equation

X (M) = −Mdiv(X ) in U,

where div(X ) = ∂P/∂x+∂Q/∂y+∂R/∂z. If M : U → C is a Jacobi multiplier then 1/M : U \{M =

0} → C is the inverse Jacobi multiplier.

Given a polynomial F ∈ C[x, y, z], a surface F = 0 is called an invariant algebraic surface of

system (1), if the polynomial F satisfies the partial differential equation

Ḟ = X (F ) = P
∂F

∂x
+Q

∂F

∂y
+R

∂F

∂z
= CFF, (4)

for some polynomial CF ∈ C[x, y, z]. Such a polynomial CF is called the cofactor of the invariant

algebraic surface F = 0 and for system (1) has at most degree one.

To complete the study of the first integrals of parametric families, we will need to consider

the exponential factors which appears when invariant algebraic surfaces collide. Let E(x, y, z) =

exp(f(x, y, z)/g(x, y, z)) where f, g ∈ C[x, y, z] and gcd(f, g) = 1, then E in an exponential factor if

X (E) = CEE, (5)

for some polynomial CE of degree at most one. The polynomial CE is called the cofactor of the

exponential factor E.

A Darboux function is a function of the form,∏
F λii

∏
E
µj
j ,

where the Fi are invariant algebraic surfaces of the system, and Ej = exp(fj/gj) are exponential

factors. Given a Darboux function, we can compute

X
(∏

F λii
∏

E
µj
j

)
=
(∑

λiCFi + µjCEj

)∏
F λii

∏
E
µj
j .

Clearly, the Darboux function is a non–trivial first integral of the vector field X if and only if the

cofactors CFi and CEi are linearly dependent. This is a classical result due to Darboux [13].
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Sometimes it is extremely hard to calculate explicitly the expressions of the first integrals of

system (1). Alternatively, we say that system (1) is integrable at the origin if there exists a change

of coordinates of the form

X = x(1 +O(x, y, z)), Y = y(1 +O(x, y, z)), Z = z(1 +O(x, y, z)),

transforming system (1) to

Ẋ = λXm, Ẏ = µY m, Ż = νZm, (6)

with m = m(X,Y, Z) = 1 + O(X,Y, Z), [6, 7]. Note that system (1) is orbitally equivalent to the

linear system (6). Some times we can choose m ≡ 1 and then we say the system (1) is linearizable.

It is clear that system (6) admits the analytic first integrals

φ = X−µY λ and ψ = Y νZ−µ, (7)

which pull back to the first integrals of system(1)

φ1 = x−µyλ +O(x, y, z), and φ2 = yνz−µ +O(x, y, z). (8)

Conversely, given two such first integrals, it is easy to construct a change of coordinates such that

φ and ψ expressed in these new coordinates satisfy (7), and hence the transformed system is of the

form (6) for some m.

2.2. Known theorems. In some cases it is easy to deduce the linearizability of a singularity using

the integrability.

Theorem 2.1. [3] Assume that system (1) is a Lotka–Volterra system. Consider that it is integrable

and there exists a function ξ = xαyβzγ(1 + O(x, y, z)) such that X(ξ) = kξ for some constant

k = αλ+ βµ+ γν, then the system is linearizable.

Additionally, we will use the following theorem.

Theorem 2.2. [2] Consider the system

Ẋ = λX, ẏ = y(−µ+A(X,Z)) +B(X,Z), Ż = νZ,

where λ, µ, ν ∈ Z+. The system is linearizable if there exist functions α and γ such that α̇+γ B =

−µα and γ̇ + γ A = 0, where A(X,Z) and B(X,Z) are functions of X and Z.

The following result establish the importance of the Jacobi multipliers, see [21, 24].

Theorem 2.3. [21, 24] Consider the differential system

dx

dt
= P(x), x = (x1, . . . ,xn) ∈ Rn,

with P(x) =
(
P1(x), . . . , Pn(x)

)
and Pi ∈ R[x1, . . . , xn] for i = 1, . . . , n. Assume that it admits

a Jacobi multiplier and n − 2 first integrals functionally independent. Then the system admits an

additional first integral functionally independent with the previous n− 2 first integrals.
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2.3. Mechanisms for integrability and linearizability. In this subsection, we present a com-

plete classification of integrability and linearizability conditions of the three dimensional system

(1) with (1 : −2 : 1) resonant critical point at the origin. Hence, we consider the system

ẋ = P = x+ axy + bxz + cyz,

ẏ = Q = −2y + dxy + exz + fyz,

ż = R = z + gxy + hxz + kyz.

(9)

Our main objective along this section is to find conditions on the parameters such that system (1)

possesses the two independent first integrals

φ1 = x2y +O(x, y, z) and φ2 = yz2 +O(x, y, z). (10)

In general, even thought the necessary conditions of integrability are obtained, their sufficiency is

very difficult to be proved. We have used mainly the Darboux theory of integrability and also some

properties of linearizable nodes of two dimensional systems. In the particular cases where system

(1) becomes Lotka–Volterra we apply specific results like Theorem 2.1.

Linearizable node. Sometimes, we can choose a coordinate system so that two of the variables

decouple to give a linearizable node at the origin or can be brought to normal form via an analytic

change of coordinates. In particular, a node with two analytic separatrices can have no resonant

terms in its normal form and so must be analytically linearizable. If this is so, it just remains to

find a linearizing transformation for the third variable via some simple power series arguments.

Since this new system is linearizable, we can find two first integrals which we can pull back to first

integrals of the original system.

Integrability and linearizability conditions of system (3). We will first seek necessary

conditions for integrability and linearizability at the origin of system (9). So we consider φ1 and φ2

in the form (10) and we write them as power series up to degree 15. In order to find the necessary

conditions we compute the obstructions to form first integrals which are known as resonant focus

quantity, for more details see [16]. Then, a factorized Gröbner basis was found using the Computer

Algebra system Reduce. Finally, the minAssGTZ algorithm of the Computer Algebra system Sin-

gular [15, 33] was used to check that the conditions found were irreducible. To prove the sufficiency

of the conditions, we exhibit first integrals of the form (10).

For linearizability, we proceeded similarly: In order to find necessary conditions we compute the

conditions for the existence of a linearizing change of coordinates up to order 13. Then by exhibiting

a linearizing change of coordinates we prove the sufficiency. In this case, the first integrals of system

(9) can be obtained easily by pulling back the first integrals of the linearized system (10). For more

detail, one can consult [2, 3].
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3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Case 1: System (9) becomes

ẋ = bxz + cyz + x, ẏ = −2y + exz + fyz, ż = z, (11)

and ec = 2(b− f)2.

Subcase-1 b 6= f. In this subcase system (11) has the invariant algebraic surfaces `1 = z = 0,

`2 = 2x+2(b−f)xz+cyz = 0 and `3 = 2x+cyz+4(f−b)xz+3c(f−b)yz2+(3b2−6bf+3f2)xz2 = 0

and an exponential factor `4 = exp(z) with respective cofactors 1, 1 + (2b− f)z, 1 + (2f − b)z and

z. System (11) has the two independent Darboux first integrals

H1(x, y, z) = `−1
1 `2`

f−2b
4 , H2(x, y, z) = `−1

1 `3`
b−2f
4 .

Additionally, the change of coordinates (X, Y, Z) = (`2`
f−2b
4 , `3`

b−2f
4 , `1) yields to the linear

system

Ẋ = X, Ẏ = Y, Ż = Z, (12)

and the origin of system (12) is in the Poincaré domain. Then, we can pull back the first integrals

Φ̃ = XY −1 and Ψ̃ = Y Z−1 of system (12) to the first integrals of system (11) of the desired form

φ1 = x2y(1 +O(x, y, z)) and φ2 = yz2(1 +O(x, y, z)).

Subcase-2 b = f. Then condition 2b2 − 4bf − ce+ 2f2 = 0 yields to ce = 0.

First consider c 6= 0 and e = 0. Then system (11) has the two independent Darboux first integrals

H1(x, y, z) = yz2 exp(−fz), H2(x, y, z) =
2x+ cyz

z exp(fz)
.

The change of coordinates (X, Y, Z) = ((cyz + 2x) exp(−fz), y exp(−fz), z) linearizes the

system.

Now consider c = 0 and e 6= 0. Then system (11) has the Jacobi multipliers M1 = 1/(exp(z))2f and

M2 = z2/x2. Additionally, has the first integral H1(x, y, z) =
√
M2/M1 = z exp(fz)/x.

The change of coordinates (X, Y, Z) = (x exp(−fz), (−4y + exz) exp(−fz), z) linearizes

the system.

At the end consider c = e = 0. Then system (11) is a Lotka–Volterra system and has the two

independent Darboux first integrals

H1(x, y, z) =
z exp(fz)

x
, H2(x, y, z) =

yz3

x
.

The change of coordinates (X, Y, Z) = (2x exp(−fz), y exp(−fz), z) linearizes the system.

Case 2: In this case system (9) reduces to the Lotka–Volterra system

ẋ = x(1 + ay), ẏ = −2y, ż = z(1 + hx+ ky). (13)

System (13) has the invariant surfaces x = 0 and y = 0 with cofactors K1 = ay + 1 and K2 = −2,

respectively. Additionally, system (13) admits the exponential factor exp(y) with cofactor K3 =

−2y.
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For a 6= 0 system (13) has the Darboux first integral H(x, y, z) = x2y(exp(y))a and the Darboux

Jacobi multiplier M1 = (xyz)−1. According to Theorem 2.3, system (13) admits an additional first

integral.

The transformation (X, Y ) = (x exp(a2y), y) linearizes the first two equations of system (13)

and can be written as

Ẋ = X, Ẏ = −2Y.

Now, a change of coordinates Z = z exp(−φ) with φ an analytic function of the variables X and

Y will give Ż = Z if and only if

φ̇(X,Y ) = X
∂φ

∂X
− 2Y

∂φ

∂Y
= hx(X,Y ) + ky(Y ). (14)

We have

x = X exp
(
−a

2
Y
)

=
∑
n≥1

1

(n− 1)!

(
−a

2

)n−1
XY n−1,

and note that x contains no terms of the form (X2Y )n. This guarantees that the solution of relation

(14) is analytic.

For a = 0 system (11) has the two independent Darboux first integrals

H1(x, y, z) = x2y, H2(x, y, z) = z2y exp (−2hx+ ky) .

The change of coordinates (X, Y, Z) =
(
x, y, z exp

(
−hx+ k

2y
))

linearizes the last equation.

Case 3: System (9) becomes

ẋ = x(1− ky), ẏ = −2y + exz, ż = z(1 + ky). (15)

System (15) is a divergence free system and has the Darboux first integral

H1(x, y, z) =
x2 exp(exz − 2y)

z2
.

The change of variables X = x exp(k4 (exz − 2y)), Z = z exp(−k
4 (exz − 2y)) will gives Ẋ = X,

Ż = Z. Note that the linear equation ẏ = −2y + eXZ has a particular solution

y1 =
1

4
eXZ.

The substitution y = Y + y1 gives Ẏ = −2Y . Hence, system (15) is linearizable and so has the two

independent first integrals φ = X2Y and ψ = Y Z2.

Case 4: In this case system (9) can be written

ẋ = x+ cyz, ẏ = y(−2− hx), ż = z(1 + hx). (16)
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System (16) is a divergence free system.

For h 6= 0 has the two independent first integrals

H1(x, y, z) =
yz2

x+ exp(x+ cyz)h
, H2(x, y, z) =

z

(2x+ cyz) (exp (x+ cyz))h
.

The change of coordinates

(X, Y, Z) = (x+ cyz/2, y exp(h(x+ cyz)), z exp(−h(x+ cyz))).

linearizes system (16).

For h = 0 system (16) has the two independent first integrals

H1(x, y, z) = yz2, H2(x, y, z) = exp (
√
y(2x+ cyz)) .

The change of coordinates (X,Y, Z) = (x+ cyz/2, y, z) linearizes the system.

Case 5: System (9) takes the form

ẋ = x(1 + ay + bz), ẏ = −2y, ż = z(1 + ky).

This case is dual with Case 2 under the transformations x 7→ z, a 7→ k, and b 7→ h.

Case 6: The new subsystem is a Lotka–Volterra system and takes the form

ẋ = x(1 + ky + bz), ẏ = −2y, ż = z(1 + hx+ ky), (17)

System (17) has the first integral H1(x, y, z) = y(hx − bz)2 exp(ky) and the Jacobi multiplier

M = (xyz)−1. Now Thoerem 2.3, guarantee the existence of another first integral independent of

H1.

Since ξ = y satisfy ξ̇ = −2ξ, then by Theorem 2.1, system (17) is linearizable.

Case 7: System (9) becomes

ẋ = x(1 + bz), ẏ = −2y + dxy + exz + fyz, ż = z(1 + hx). (18)

System (18) has the Darboux first integral

H1(x, y, z) =
z exp(bz − hx)

x
.

Note that the first and third equation correspond to a linearizable node. Hence, there exists a

change of coordinates of the form X = x(1 +O(x, z)) and Z = z(1 +O(x, z)) such that the system

becomes

Ẋ = X, ẏ = y(−2 + dx(X,Z) + fx(X,Z)) + ex(X,Z) z(X,Z), Ż = Z. (19)

Consider A(X,Z) = dx(X,Z) + fx(X,Z) and B(X,Z) = ex(X,Z) z(X,Z). In order to apply

Theorem 2.2 we should prove that the system α̇ + γ B = −2α and γ̇ + γ A = 0, has solutions.

Consider γ = exp(−ζ) with ζ =
∑

i+j>0 ζijX
iZj . Then from relation γ̇ + γ A = 0 we have that
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ζij = aij/(i + j) with i + j > 0 and the convergence of A guarantees the convergence of ζ. Now

consider α =
∑

i+j>0 αijX
iY j and γB =

∑
i+j>0 δijX

iZj . From relation α̇ + γ B = −2α we have

that αij = −δij/(i + j + 2). So, the convergence of γB guarantees the convergence of α. Hence,

according to Theorem 2.2 system (19) is linearizable.

Case 8: System (9) is a Lotka–Volterra system and can be written as

ẋ = x(1 + ay + bz), ẏ = y(−2 + dx+ fz), ż = z(1 + hx+ ky). (20)

If b 6= 0 and f 6= 0, then due to Theorem 1.1(8) we have that a = k(2b+f)/f and d = −(2b+f)h/b

and the exponential factor E = exp(hx + bk
f y − bz) has cofactor LE = hx − 2bk

f y − bz. So we can

construct the two independent Darboux first integrals

φ1(x, y, z) = x2yE2+ f
b and φ2(x, y, z) = yz2E

f
b .

When b 6= 0 and f = 0, then due to Theorem 1.1(8) it must be k = 0 and d = −2h. The

exponential factor E = exp(hx + 1
2ay − bz) has cofactor LE = hx − ay − bz and we obtain the

Darboux first integrals

φ1(x, y, z) = x2yE2 and φ2(x, y, z) = yz2.

If b = 0 and f 6= 0, then it must be h = 0 and k = a and the exponential factor E =

exp(ay − dx− fz) has cofactor LE = −dx− 2ay − fz. The two independent first integrals are

φ1 = x2yE and φ2 = yz2E.

If b = f = 0, then we can assume d 6= 0 since otherwise we are in Case 2 of Theorem 1.1. Then it

must be k = a(d+2h)/d and the exponential factor E = exp(ay−dx) has cofactor LE = −dx−2ay.

Then we obtain the two independent first integrals

φ1 = x2yE and φ2 = yz2E
k
a .

Case 9: System (9) becomes

ẋ = x, ẏ = −2y + dxy + exz, ż = z + gxy + hxz. (21)

Consider first that g = 0. Then by relation 2d2 − 4dh− eg + 2h2 = 0 we have d = h. In this case

system (21) becomes

ẋ = x, ẏ = −2y + exz + hxy, ż = z(1 + hx),

and has the two independent first integrals

H1(x, y, z) =
z exp(−hx)

x
, H2(x, y, z) = x2(−exz + 4y) exp(−hx).

Additionally, the algebraic surface ` = 4y − exz = 0 is invariant with cofactor K = −2 + hx. The

change of coordinates (X, Y, Z) = (x, ` exp(−hx), z exp(−hx)) linearizes the system.
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Now consider that g 6= 0. Then using relation 2d2 − 4dh− eg + 2h2 = 0, system (21) becomes

ẋ = x, ẏ = −2y + dxy +
2(d− h)2

g
xz, ż = z + gxy + hxz, (22)

and for d 6= h has the two surfaces f1 = 2(d− h)xz− gxy− 2z = 0, f2 = 2z+ gxy+ 4(d− h)xz+

3g(d − h)x2y + 3(d − h)2x2z = 0 and f3 = x = 0 invariants with cofactors K1 = 1 + (2h − d)x,

K2 = 1 + (2d − h)x and K3 = 1 respectively. Additionally, system (22) admits the exponential

factor E = exp(x) with cofactor K = x.

Moreover, system (22) is integrable with the two independent Darboux first integrals

H1(x, y, z) = f−1
1 f3E

2h−d, H2(x, y, z) = f−1
1 f2E

3(h−d).

Additionally, system (22) admits the Jacobi multiplier M = E−h−d. A linearizing change of

coordinates is given by

(X, Y, Z) = (x, f1E
d−2h, f2E

(h−2d)).

For d = h and since g 6= 0 we have that e = 0. System (22) admits the two independent first

integrals

H1(x, y, z) = yx2 exp(−hx), H2(x, y, z) =
(yx2g + 2zx) exp(−hx)

x2
.

The change of coordinates

(X,Y, Z) =
(
x, y2

(
e−3hx

)
x (gxy + 2 z) , y2x4

(
e−3hx

)
(gxy + 2 z)

)
,

linearizes the system.

Case 10: In this case system (9) becomes

ẋ = x+ axy + cyz, ẏ = −2y, ż = z + gxy + kyz, (23)

and has the surfaces f1 = y = 0 and f2 = cz2 + (a − k)xz − gx2 = 0 invariants with cofactors

K1 = −2 and K2 = ay + ky + 2, respectively. Additionally, system (23) admits the exponential

factor E = exp(y) with cofactor K = −2y.

For a 6= −k system (23) has the first integral H1 = f22 f
2
1E

a+k and the Jacobi multiplier M =

E(a+k)/2. Hence, by Theorem 2.3 admits an additional first integral.

For a = −k system (23) is a divergence free system and has the first integral H = f1f2.

For both cases the system will linearize under the transformation

(X,Y, Z) = (`1E
α1
2 , y, `2E

α2
2 ),

11



where `1 = r1x+ cz and `2 = r2x+ cz such that

r1 =
1

2

(
a− k +

√
a2 − 2ak + 4cg + k2

)
,

r2 =
1

2

(
a− k −

√
a2 − 2ak + 4cg + k2

)
,

α1 =
1

2

(
a+ k +

√
a2 − 2ak + 4cg + k2

)
,

α2 =
1

2

(
a+ k −

√
a2 − 2ak + 4cg + k2

)
.

Case 11: System (9) becomes

ẋ = x(bz + 1), ẏ = −y(bz + 2), ż = gxy + z, (24)

and is a divergence free system. System (24) has the surfaces f1 = x = 0, f2 = y = 0 and

f3 = z + g
2xy = 0 invariants with cofactors K1 = bz + 1, K2 = −bz − 2 and K3 = 1 respectively.

Additionally, admits the exponential factor E = exp(z + gxy) with cofactor K = z. System (24)

has the Darboux first integrals H1 = f1f2f3 and H2 = Ebf3/f1.

The transformation

(X,Y, Z) = (f1E
−b, f2E

b, f3)

linearizes the system. �

Proof of Theorem 1.2. We assume that H = H(x, y, z) is a polynomial first integral of system (2).

Then it must satisfy

x(1 + ay + bz)
∂H

∂x
− 2y

∂H

∂y
+ z(1 + hx+ ay)

∂H

∂z
= 0. (25)

We can write H =
∑n

i=0Hi(y, z)x
i, where for each i, Hi(y, z) is a polynomial in the variables y

and z. Note that H is of degree n ∈ N∪ {0} in the variable x. From (25) the terms in xn+1 satisfy

hz
∂Hn(y, z)

∂z
= 0. (26)

We distinguish the following two cases.

(i) h = 0 and a 6= 0. First consider the case where the polynomial first integral does not depend

on the variable x, so n = 0 and H = H0(y, z). From relation (25) we have

−2y
∂H0(y, z)

∂y
+ z(1 + ay)

∂H0(y, z)

∂z
= 0,

and the solution is

H0 (y, z) = C0

(
z
√
y exp

(ay
2

))
,

with C0 an arbitrary function in the variable z
√
y exp

(ay
2

)
. Since the first integral is a polynomial

and a 6= 0 we have that C0 must be zero and this means that H = H0(y, z) = 0, a contradiction.
12



Now we consider that the first integral is of degree n > 0 in the variable x and so Hn 6= 0. The

terms of xn in (25) satisfy

n(1 + ay + bz)Hn(y, z)− 2y
∂Hn(y, z)

∂y
+ z(1 + ay)

∂Hn(y, z)

∂z
= 0.

The solution of the last linear partial differential equation is

Hn (y, z) = Cn

(
z
√
y exp

(ay
2

))
y
n
2 exp

[
n

2

(
− exp

(ay
2

)
erf

(√
2ay

2

)√
2aπy − 2

)
bz +

nay

2

]
and Cn is an arbitrary function in the variable z

√
y exp

(ay
2

)
. Note that erf denotes the Error

function which is not an elementary function, see for example [34]. Since Hn is a polynomial and

a 6= 0, then from the last expression of Hn it must be Cn = 0 and therefore Hn = 0. This is a

contradiction.

Note that for b = 0 the solution of the partial linear differential equation is

Hn (y, z) = Cn

(
z
√
y exp

(ay
2

))
y
n
2 exp

(nay
2

)
and for a 6= 0 can never be a polynomial.

(ii) ha 6= 0. Then from (26) we have Hn(y, z) = Hn(y). First consider that the polynomial first

integral H does not depend on the variable x, so consider that n = 0. We have that H = H0(y, z) =

H0(y). Then from equation (25) we obtain that dH0(y)
dy = 0 and so the first integral H = H0 must

be a constant. This is a contradiction.

Now we consider the case where the first integral H is of degree n > 0 in the variable x and so

Hn 6= 0. Note that the terms of xn for n > 0 in relation (25) satisfy

n(1 + ay + bz)Hn(y)− 2y
dHn(y)

dy
+ hz

∂Hn−1(y, z)

∂z
= 0. (27)

It is easy to see that equation (27) has the solution

Hn−1(y, z) =
[−n(1 + ay)Hn(y) + 2y dHndy ] ln(z)

h
− nb

h
zHn(y) + Cn(y),

where Cn is an arbitrary function of y. Since Hn−1(y, z) is a polynomial and additionally the

function Cn does not depend on the variable z, it must be

−n(1 + ay)Hn(y) + 2y
d

dy
Hn(y) = 0,

and so Hn (y) = C1 exp
(any

2

)
y
n
2 , where C1 is an arbitrary constant. But Hn is a polynomial and

since n > 0 and a 6= 0 it must be C1 = 0. This mean that Hn = 0 and this is a contradiction

because the first integral H is of degree n in the variable x.

Hence system (2) for cases (i) and (ii) has no polynomial first integrals. �
13



4. Conclusion

The problems of local integrability and linearizability are considered for the quadratic polynomial

system (1) which depends on nine parameters. Complete quadratic system are not considered as the

computation of resonant focus quantities is extremely complicated. We found necessary conditions

for both integrability and linearizability at the origin via factorized Gröbner basis using Reduce

and minAssGTZ algorithm in Singular [15, 33]. We use some special transformations and some

techniques like Darboux method to prove the sufficiency of the obtained conditions. These results

appears in the main Theorem 1.1. We also proved that for some of the cases of Theorem 1.1 system

(1) has no polynomial first integrals, see Theorem 1.2.
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