DESCRIPTION OF ω -LIMIT SETS OF A TRIANGULAR MAP ON I^2 .

FRANCISCO BALIBREA¹, J.L. GARCÍA GUIRAO² AND J.I. MUÑOZ CASADO³.

April, 2001

ABSTRACT. In this paper we describe the ω -limit sets of all points in I^2 for a triangular map given by Kolyada. We prove for such a map the following uniform property:

All points of I^2 except those of the fiber $I_0 = \{0\} \times [0, 1]$, which are fixed points, have as infinity ω -limit set the fiber I_0 .

1. INTRODUCTION

Let $I^2 = [0,1] \times [0,1]$ be the bidimensional unit square. We say that a continuous map $F: I^2 \to I^2$ is a *triangular map* when it is of the form

$$F(x,y) = (f(x), g(x,y))$$

where $f: I \to I$, $g: I^2 \to I$ are continuous and I = [0, 1]. If $F: I^2 \to I^2$ is a triangular map, F^0 refers to the identity map, F^1 is F, and for each integer $n \ge 0$ the (n + 1)th iterate, F^n , is the map F composed with itself n times. A point $(a, b) \in I^2$ is a periodic point when $F^n(a, b) = (a, b)$ for some $n \in \mathbb{N}$ (the smallest of these values n is called the order or period of the periodic point). When n = 1 we say that $(a, b) \in I^2$ is a fixed point. Let $(a, b) \in I^2$, the ω -limit set of (a, b) by F, denoted by $\omega_F(a, b)$, is the set of limit points of the sequence $(F^n(a, b))_{n=0}^{\infty}$

An interesting problem is to study the topological dynamics of these maps and establish the significant differences with the dynamics of continuous interval maps. To this end, S. Kolyada has introduced a triangular map where the set of periodic points coincides with the set of fixed points and with the property that the ω -limit set of the point (1, 1) is the fiber $I_0 = \{0\} \times I$. Besides, for such a map the fiber I_0 is composed of the set of its fixed points.

In this paper we are proving that the asymptotic behavior of (1, 1) is a common property for all points in $I^2 \setminus I_0$, that is, every point in $I^2 \setminus I_0$ has the set I_0 as its ω limit set. This uniform property, on one hand, reinforces the differences in behavior between the class of triangular maps and interval maps because, in the last case a map with only fixed points can not have infinity ω -limit sets.

^{1.} Departamento de Matemáticas. Universidad de Murcia, 30100-Murcia, Spain;

^{2.} Departamento de Fundamentos del Análisis Económico. Universidad de Alicante, 03071-Alicante, Spain;

^{3.} Departamento de Matemáticas. I.E.S. J. Ibáñez Martín, 30800-Lorca(Murcia), Spain. E-mail address: balibrea@fcu.um.es, jlgg@merlin.fae.ua.es and cardanio@.eresmas.com

Key words and phrases. Triangular Map, ω -Limit Set.

Work supported by the D.G.E.S.I.C. Grant PB98-0374-C03-01.