Journal of Difference Equations and Applications, 2003 Vol. 9 (3/4), pp. 289–304

On ω -limit Sets of Triangular Maps on the Unit Cube

F. BALIBREA GALLEGO^{a,*}, J.L. GARCÍA GUIRAO^{b,†} and J.I. MUÑOZ CASADO^{c,‡}

^aDepartamento de Matemáticas, Universidad de Murcia, 30100-Murcia, Spain; ^bDepartamento de Fundamentos del Análisis Económico, Universidad de Alicante, 03071-Alicante, Spain; ^cDepartamento de Matemáticas, I.E.S. J. Ibáñez Martín, 30800-Lorca (Murcia), Spain

(Received 29 March 2002; In final form 21 August 2002)

Dedicated to Professor Alexander N. Sharkovsky on the occasion of his 65th Birthday.

In this paper, we construct a triangular map F on I^3 (I = [0, 1]) holding the following uniform property: All points $(a, b, c) \in I^3$ except those of the face $I_0^2 = \{0\} \times I^2$, which are fixed by F, have as ω -limit set the face I_0^2 . So, we are able to describe the family $\mathscr{W}(F) = \{\omega_F(a, b, c) : (a, b, c) \in I^3\}$ for a continuous endomorphism defined in a compact metric space of dimension higher than two, establishing that $\mathscr{W}(F) = I_0^2 \cup \{(0, b, c)\}_{(b, c) \in I^2}$.

Keywords: Discrete dynamical system; Triangular map; ω-Limit set; Unit cube

2002 Mathematics Subject Classification: 37E99; 37B99

INTRODUCTION AND NOTATION

Given a discrete dynamical system (X, ϕ) where X is a compact metric space and ϕ is a continuous map from X into itself ($\phi \in C(X, X)$), to understand the dynamics of the system is to know the asymptotic behavior of the *orbits* of all points in X ($\operatorname{Orb}_{\phi}(x) = \{\phi^n(x)\}_{n=0}^{\infty}$ where $\phi^n(x) = \phi(\phi^{n-1}(x))$ for $n \ge 1$ and ϕ^0 is the identity on X) given by the study of their ω -limit sets. Recall that a point y belongs to the ω -limit set of x by ϕ , denoted by $\omega_{\phi}(x)$, if there exists an increasing sequence of positive integers $\{n_k\}_{k=0}^{\infty}$ such that $\phi^{n_k}(x) \to y$ where $k \to \infty$.

In this general setting some problems can be stated:

(P1) Obtain the topological characterization of the ω -limit sets of all points for some class $\mathscr{F} \subset C(X, X)$. This family of sets can be denoted by $W_{\mathscr{F}}$.

(P2) Given $A \in \mathscr{W}_{\mathscr{F}}$ construct a continuous map $\psi \in \mathscr{F}$ with a point $x \in X$ such that $\omega_{\psi}(x) = A$.

^{*}Corresponding author. E-mail: balibrea@um.es

[†]E-mail: jlgg@merlin.fae.ua.es

^{*}E-mail: cardanio@eresmas.com

ISSN 1023-6198 print/ISSN 1563-5120 online @ 2003 Taylor & Francis Ltd DOI: 10.1080/1023619021000047734