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Abstract. The existence of a new class of inclined periodic orbits of the collision restricted three-body problem
is shown. The symmetric periodic solutions found are perturbations of elliptic Kepler orbits, and
they exist only for special values of the inclination and are related to the motion of a satellite around
an oblate planet.
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1. Introduction. The launch of Sputnik in October 1957 opened the space age. The use of
circular, elliptic, and synchronous orbits, combined with dynamical effects due to the Earth’s
equatorial bulge, gives rise to an array of orbits with specific properties to support various
mission constraints. One example is the Molniya orbit, a highly elliptic 12-hour-period orbit
the former USSR originally designed to observe the northern hemisphere. The orbital plane
makes an angle of about 63 degrees with the equatorial plane of the Earth, and this is the
only value that prevents the orbit itself from rotating slowly within its plane and around the
focus.

In what follows we will introduce briefly a few common notions of orbital dynamics,
together with the current terminology (sometimes a few centuries old), and state the aim of
the paper.

The position of a body on a Keplerian elliptic orbit can be completely characterized by
six parameters. One such set of parameters are the classical orbital elements. As the orbital
plane is fixed in any inertial frame and passes through the origin, one should first give the
position of this plane. In a Cartesian frame with axes xyz, this is given by the inclination
i with respect to the xy-plane and the angle Ω from the positive x-axis to the intersection
of the orbital plane with the xy-plane. In the classical terminology of astronomy this line is
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2 E. BARRABÉS, J. M. CORS, C. PINYOL, AND J. SOLER

known as the line of nodes (the nodes of the orbit being the two points of intersection with
the xy-plane, and the ascending node that in which the body crosses from z < 0 to z > 0),
and Ω is called the longitude of the ascending node.

Then we need the position of the ellipse on its plane. One focus is at the origin, and the
line joining the pericenter and the apocenter (classically the line of apsides) forms an angle
ω with the line of nodes which gives the position of the ellipse. Usually the half-line from the
origin to the pericenter and the half-line from the origin to the ascending node are taken, and
then we say that ω is the longitude of the pericenter.

The size and shape of the ellipse are given by the semimajor axis a (directly related to
the energy) and the eccentricity e (related to the energy and the angular momentum).

Finally, the position of the body along the orbit is given either by the angle f (true anom-
aly) pericenter–origin–body, or by some other related angles such as E (eccentric anomaly)
or M (mean anomaly). The three anomalies (a name already used in Greek astronomy) are
related among themselves by the geometry and the dynamics of Keplerian motion. The posi-
tion is actually a function of time, and the origin of time is called the epoch (see, for example,
[2]).

Of course, Ω, ω, and f are not well defined for circular or zero-inclination orbits, a problem
that can be solved in a variety of ways which go back to Laplace in the case of the classical
elements and to Poincaré for the Hamiltonian formulation.

Thus the position and velocity of a point in space are completely characterized by the six
orbital elements, which are constant (except f , or whichever anomaly is used) for a Keplerian
orbit. This rather strange system of coordinates in phase space is useful because in most cases
the non-Keplerian motion of a body subject to perturbations can be seen as a fast motion
along a Keplerian orbit with slowly varying elements.

A set of variables closely related to the orbital elements are the Delaunay elements, which
could be considered as the canonical (in the sense of Hamiltonian) version of the classical
elements and will be defined in section 2.

Any small perturbation of the Keplerian motion has two kinds of effects on the motion:
periodic and secular. An element subject to periodic perturbations simply oscillates around
its central unperturbed value, while a secular perturbation is a steady, linear increase or
decrease of its value. Of course, this is true only in a first order approximation, and it is a
qualitative description, because a first order approximation is valid only on a finite interval
of time, and the very concept of periodicity does not make sense. As for the secular effects
we must remember that one of the major problems of the classical dynamical astronomy of
the nineteenth century was the distinction between true secular effects and linearization of
periodic effects of very long period, and that the whole matter has been settled only by the
KAM theory.

In this sense, it is a result of classical astronomy that a, e, and i are subject to only
periodic effects, while Ω, ω, and M display periodic and secular effects. In short, a perturbed
Keplerian conic can be thought of, roughly speaking, as a conic which rotates slowly on its
plane while the plane itself rotates around the z-axis.

The most common perturbations of the potential in celestial mechanics are due either to
the presence of a third body or to lack of sphericity of the bodies. The latter can be dealt with
by expanding the potential in spherical harmonics, so that if the body has axial symmetry,
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COLLISION RESTRICTED THREE-BODY PROBLEM 3

the potential can be seen as that of an inverse square distance central force plus other terms:

V (r, φ) = −Gm
req
r

(
1 −

∞∑
k=2

Jk

(req
r

)k
Pk(cosφ)

)
,

where G is the gravitational constant, m is the mass of the body, req is its equatorial radius,
(r, θ, φ) are spherical coordinates (θ does not appear because of the axial symmetry), Pk is the
kth Legendre polynomial, and Jk are the coefficients defining the expansion (see, for example,
[10]).

The third body perturbation is quite a different matter because the equations of motion
must be supplemented with those of the new body. In the restricted three-body problem, it
is assumed that one of the bodies is so small that it does not affect the motion of the other
two (the primaries), and then we usually have a Keplerian motion plus a nonautonomous
perturbation. If, however, we consider the potential in a region far away from the primaries and
normalize this distance to unity, the velocities of the primaries are very high and heuristically
we can somehow average their mass along their whole orbits, so that dynamically we are again
in the case of a nonspherical potential.

For Earth-orbit design, the main perturbation is that of the J2 term in the expansion of
the potential of an oblate ellipsoid. This term perturbs the orbit in the sense explained above,
resulting in a precession both of the line of nodes and of the pericenter. It is apparent (see,
for example, pages 503–504 of [2]) that there exists a critical inclination angle, i � 63◦, such
that the perigee is fixed in the first approximation because its secular terms are of opposite
sign for inclinations above or under the critical value, irrespective of the eccentricity. The
case of a prolate ellipsoid, though apparently not frequent in astronomy, could be treated in
the same way, the only difference being that the J2 term has the opposite sign, so that all the
precessions are in the opposite direction.

The existence of a class of inclined periodic solutions of the circular three-body problem
was shown by Jefferys in [5]. He showed the existence of families of elliptic orbits with
inclination close to critical for any value of the eccentricity. His proof rests on a mirror
theorem: in the rotating coordinate system of the restricted three-body problem any trajectory
that hits twice perpendicularly a certain plane is a periodic solution. For an elliptic orbit,
perpendicular crossing means that the body is at either the pericenter or the apocenter and
the line of apsides lies on the mirror plane; for this situation to happen twice in time it is
sufficient that the line of apsides does not have a secular motion, so the inclination must be
near critical. Of course a precession of the line of nodes does exist, but it is hidden, as it
were, in the rotating frame. It must be borne in mind that in celestial mechanics periodic
usually means periodic in some rotating frame, and thus periodic or quasi-periodic in the
inertial frame depending on whether the angle advanced by the rotating frame in a period is
a rational multiple of π or not. The method used is the continuation method developed by
Poincaré (see [8]), which is one of the most frequently used methods for proving the existence
of periodic orbits.

The case dealt with in this paper is different from Jefferys’s because the primaries move on
an elliptic collision orbit along the z-axis. Heuristically speaking, however, it can be expected
that far away from the primaries the potential will be similar to that of a very eccentric prolate
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4 E. BARRABÉS, J. M. CORS, C. PINYOL, AND J. SOLER

ellipsoid, so that a J2 effect, with its critical inclination, will exist. We show the existence
of periodic solutions of Jefferys type: large semiaxis compared to the that of the primaries,
arbitrary eccentricity, and inclination close to critical.

The problem can be seen as a perturbed Kepler problem, where the small parameter is the
semimajor axis of the primaries’ orbit after rescaling. The perturbed problem is degenerate
due to the fast motion of the primaries, and the equations are no longer analytic when the
parameter equals zero, which precludes the use of a standard implicit function theorem. We
overcome the difficulty by using Arenstorf’s theorem, where weaker assumptions of differen-
tiability are needed (see [1]). A planar configuration of this problem is studied in [6].

In our case, the problem has a rotational symmetry around the z-axis (which contains
the colliding primaries). This symmetry would be lost if we considered elliptic noncollision
orbits for the primaries. See [3] and [4], where the elliptic restricted three-body problem is
considered. In those papers, the periodic orbits are perturbations of the circular solutions
of the Kepler problem having large radii on a plane perpendicular to that of the primaries.
Periodic orbits in the spatial elliptic restricted three-body problem are also studied using
double averaging in [7].

The paper is organized as follows. Section 2 describes the general setting of the collision
restricted three-body problem. Section 3 shows how its solutions can be approximated through
successive corrections to Keplerian motion. Section 4 deals with the continuation problem.
The main result is the existence of quasi-elliptic orbits for discrete values of the semimajor
axis of the primaries, with arbitrary eccentricity and inclination close to critical. A number
of technical computations are presented in section 5.

Figure 1 shows one of the orbits predicted by the main theorem, numerically computed
with initial values r0 = 0.621114405, φ0 = 1.116457610, θ0 = 0, pr = 0, pφ = 0, pθ =
0.4098780306, and μ = 30−2/3. The equations of motion and the first variational equations
were numerically integrated with a Runge–Kutta 7-8 routine, and the equations defining the
initial conditions were solved with a Newton method starting with the Keplerian orbit with
a = 1, e = 0.4, and cos i = 1/

√
5 (critical inclination).
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Figure 1. Example of a quasi-periodic orbit in a Cartesian frame. The orbit is followed during 6 (plot on
the left) and 150 (plot on the right) times the period of the primaries. The Keplerian orbit for μ = 0 is plotted
(black line). The primaries move along the vertical line passing through the origin.

2. The collision restricted three-body problem. The collision restricted three-body prob-
lem describes the motion of a massless particle under the attraction of two primaries with equal
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COLLISION RESTRICTED THREE-BODY PROBLEM 5

masses, m1 = m2 = 1/2, moving on a collision elliptic orbit. In order to avoid a triple collision,
we consider that the third body is far from the primaries compared to the distance between
them. This fact can be introduced in the equations of motion by making the primaries very
close to each other and looking for solutions of the massless particle at distance of order unity
to the primaries.

Let μ be a small parameter. The distance between both primaries is given by

(2.1) ρ = μ(1 − cosEp(t)),

where Ep = Ep(t) is the eccentric anomaly of m1 and it is related to its mean anomaly �p
through Kepler’s equation

(2.2) Ep − sinEp = �p,

where �p = μ−3/2t. The period of the motion of the primaries is Tp = 2πμ3/2, so that Ep = kπ
when t = πkμ3/2.

Equation (2.2) is a particular case (for e = 1) of Kepler’s equation � = E − e sinE, where
e is the eccentricity, � is the mean anomaly (real time measured in such units that the period
is 2π), and E is the eccentric anomaly, which is related to the angular position f of the
body on the orbit (from the pericenter) through tan f/2 =

√
(1 + e)/(1 − e) tanE/2. The

latter equation results from the geometry of elliptic orbits, and Kepler’s equation is just the
mathematical expression of the law of areas, i.e., the conservation of the angular momentum
(see [10]).

We consider a fixed coordinate system (q1, q2, q3) (see Figure 2) with origin at the center
of mass of m1 and m2 in such a way that the primaries move along the q3-axis. Their
positions are given by r1 = (0, 0, μ2 (1 − cosEp)) and r2 = −r1. Let q = (q1, q2, q3) and
p = (p1, p2, p3) = (q̇1, q̇2, q̇3) be the position and momentum of the infinitesimal body m3.
The problem of describing its motion is known as the three-dimensional collision restricted
three-body problem.

The equations of motion for the infinitesimal body can be written as a nonautonomous
Hamiltonian system depending on the parameter μ as

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

, i = 1, 2, 3,

where

(2.3) H =
1

2
(p2

1 + p2
2 + p3

3)
2 − 1

2

(
1

R1
+

1

R2

)
,

and R1 and R2 are given by

R2
1 = q2

1 + q2
2 +

(
q3 − μ

2 (1 − cosEp)
)2

,

R2
2 = q2

1 + q2
2 +

(
q3 + μ

2 (1 − cosEp)
)2

.

Let us introduce spherical coordinates (r, φ, θ), and (pr, pφ, pθ) by means of the canonical
change

q1 = r cosφ cos θ, p1 = pr cosφ cos θ − pφ
r sinφ cos θ − pθ

r cosφ sin θ,

q2 = r cosφ sin θ, p2 = pr cosφ sin θ − pφ
r sinφ sin θ + pθ

r cosφ cos θ,

q3 = r sinφ, p3 = pr sinφ +
pφ
r cosφ.
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Figure 2. Collision restricted three-body problem.

In the new variables, the Hamiltonian (2.3) becomes

(2.4) H =
1

2

(
p2
r +

p2
φ

r2
+

p2
θ

r2 cos2 φ

)
− 1

2

(
1

R1
+

1

R2

)
,

with R1 and R2 given by

(2.5)
R2

1 = r2 +
(μ

2

)2
(1 − cosEp)

2 − rμ(1 − cosEp) sinφ,

R2
2 = r2 +

(μ
2

)2
(1 − cosEp)

2 + rμ(1 − cosEp) sinφ.

Notice that Ep as given by (2.2) is a function of time t and μ, which is not defined for μ = 0.
So, neither the Hamiltonian (2.3) nor (2.4) is defined.

The equations of motion for the infinitesimal mass in spherical coordinates are

(2.6)

ṙ = pr, ṗr = −∂H
∂r ,

θ̇ = pθ
r2 cos2 φ

, ṗθ = 0,

φ̇ =
pφ
r2
, ṗφ = −∂H

∂φ .

Since R1 and R2 do not depend on θ, ṗθ = 0 and the angular momentum pθ = Θ is constant.
Thus, it can be calculated from the initial conditions, and the equation for θ can be decoupled
from the other equations. In this way, we can consider the system of equations

(2.7)

ṙ = pr, ṗr = −∂H
∂r ,

φ̇ =
pφ
r2
, ṗφ = −∂H

∂φ .

Once r and φ are obtained, we will get θ from its equation in (2.6).
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COLLISION RESTRICTED THREE-BODY PROBLEM 7

From now on, reduced problem means the problem given by (2.7), and complete problem
means the whole set of equations (2.6). Our aim is to find periodic solutions of the reduced
problem that will be periodic or quasi-periodic solutions of the complete problem.

It is easy to see that the equations of the reduced problem are invariant by the symmetry

S : (t, r, φ, pr, pφ, Ep) −→ (−t, r, φ,−pr,−pφ,−Ep),

so that, if

γ(t) = (r(t), φ(t), pr(t), pφ(t), Ep(t))

is a particular solution of (2.7), then so is

(r(−t), φ(−t),−pr(−t),−pφ(−t),−Ep(−t)),

and we have the following well-known result.

Proposition 2.1. Let γ(t) = (r(t), φ(t), pr(t), pφ(t), Ep(t)) be a solution of the reduced prob-
lem given by (2.7). If γ(t) satisfies (pr(0), pφ(0)) = (0, 0), (pr(T/2), pφ(T/2)) = (0, 0), and
Ep(T/2) = kπ, then γ(t) is a periodic solution of period T .

In order to find elliptic orbits we will introduce Delaunay variables (l, g, h) and (L,G,H),
where

L =
√
a, H = G cos i, G =

√
a(1 − e2),

a is the semimajor axis of the infinitesimal mass, G its angular momentum, i the inclination of
its orbital plane with respect to the q1q2 reference plane, l the mean anomaly, g the argument
of the pericenter measured from the ascending node, and h the longitude of the ascending
node (see, for example, [9]).

We will use the symmetry conditions stated in Proposition 2.1 to obtain periodic solutions
of the reduced problem. These conditions can be expressed in Delaunay variables as

(2.8) l(t) = 0 mod π, g(t) = π/2 mod π

for epochs t = 0 and t = T/2, where T = 2kπμ3/2 in order to satisfy Ep(T/2) = kπ.

3. Approximate solutions. In this section we will show how those solutions of the three-
dimensional collision elliptic restricted three-body problem in which the infinitesimal body
keeps moving far away from the primaries can be approximated through successive corrections
to the Keplerian motion. In section 4, we will use these approximations to continue some
elliptic solutions of the Kepler problem to the case μ �= 0.

As the Hamiltonian (2.3) is not defined when μ = 0, instead of expansions in power series
(which are no longer available) we use asymptotic series. Using expressions (2.5) and (2.1),
we can write

R1 = r

√
1 +

ρ2

4r2
− ρ

r
cosS,

where S = π
2 − φ is the angle between the position vectors of m1 and m3 (see Figure 2).

We assume that the distance from the origin to the primaries (μ/2) is small compared to the
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distance from the origin to the infinitesimal body, so that ρ � r and we can expand R−1
1 as

a power series in ρ
2r by using Legendre polynomials. Then

1

R1
=

1

r

∞∑
j=0

Pj(cosS)
( ρ

2r

)j
=

1

r

[
1 +

∞∑
j=1

μjPj(cosS)

(
1 − cosEp

2r

)j
]
,

where Pj(cosS) is the jth Legendre polynomial. Expanding R−1
2 in a similar way, the Hamil-

tonian (2.4) becomes

(3.1) H(q,p, t, μ) = H0(q,p) + μ2H1(q,p, t, μ) + μ4HR(q,p, t, μ),

where

H0(q,p) =
1

2

(
p2
r +

p2
φ

r2
+

p2
θ

r2 cos2 φ

)
− 1

r
,

H1(q,p, t, μ) =
−1

r
P2(cosS)

(
1 − cosEp

2r

)2

=
(1 − cosEp)

2

8r3

(
1 − 3 cos2 S

)
,

and

HR(q,p, t, μ) =
−1

r

∞∑
k=2

μ2(k−2)P2k(cosS)

(
1 − cosEp

2r

)2k

.

The dependence on (t, μ) comes from the eccentric anomaly Ep = Ep(t, μ) given by (2.2).
Notice that if r ≥ δ for some fixed δ > 0, then H1(q,p, t, μ) and HR(q,p, t, μ) are bounded.
Thus, μ2H1 and μ4HR are continuous at μ = 0, although H1 and HR are not so. This is the
reason why expansions as power series in μ cannot be used.

Let us denote z = (l, g, h, L,G,H). Applying the corresponding symplectic change of
variables, Hamiltonian (3.1) becomes

(3.2) H(z, t, μ) = H0(z) + μ2H1(z, t, μ) + μ4HR(z, t, μ),

where

H0(z) = − 1

2L2
,(3.3)

H1(z, t, μ) =
(1 − cosEp)

2

8r3

[
1 − 3

(
1 − H2

G2

)
sin2(g + f)

]
.(3.4)

In (3.4) we have used the true anomaly f of the motion of the infinitesimal mass in order to
write q3 = r sin i sin(f + g) and

cos2(S) =
q2
3

r2
= sin2 i sin2(f + g) =

(
1 − H2

G2

)
sin2(g + f).

Observe that H0 is the Hamiltonian of the Kepler problem and that, despite that Hamil-
tonian (3.2) is not defined for μ = 0, the limit when μ → 0 exists and

lim
μ→0

H(z, t, μ) = H0(z).
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COLLISION RESTRICTED THREE-BODY PROBLEM 9

Therefore, the equations of motion can be written as

(3.5) ż = F(z, t, μ),

where F = J · ∇H, J =
(

0 I
−I 0

)
, and I is the identity matrix of dimension 3 × 3. Using (3.2),

the vector field F is given by

F(z, t, μ) = F0(z) + μ2F1(z, t, μ) + μ4FR(z, t, μ),

where

F0(z) = (L−3, 0, 0, 0, 0, 0)t,

F1(z, t, μ) = J · ∇H1,

FR(z, t, μ) = J · ∇HR,

and H1 and HR are the terms in (3.2).
The next lemma shows that the solutions of (3.5) can be written as the solutions of the

Kepler problem plus terms of order μ2, and the same is true of its partial derivatives with
respect to the initial conditions.

Lemma 3.1. Let z0 be an initial condition and z(0)(t, z0) a solution of

ż = F0(z)

with z(0)(0, z0) = z0 such that it remains bounded and bounded away from the singularities of
F(z, t, μ). Let z(t, z0, μ) be a solution of (3.5) with the same initial condition z0. Then we
can write

z(t, z0, μ) = z(0)(t, z0) + μ2z(1)(t, z0, μ) + zR(t, z0, μ),

where z(1)(t, z0, μ) is the solution of

ż = F1(z
(0)(t, z0), t, μ) + DF0(z

(0)(t, z0)) z

with initial condition z(1)(0, z0, μ) = 0, and DF is the matrix whose entries are the partial
derivatives of F with respect to the z variables. Furthermore, zR(t, z0, μ) and Dz0zR(t, z0, μ)
are O(μ4) in a finite interval of time.

These results can be obtained by using Taylor’s expansions and Gronwall’s inequality
(see [4]). They are also valid for any initial conditions in a compact neighborhood of z0

satisfying the hypothesis of the lemma.

4. Continuation of symmetric periodic solutions. In this section we use the results of
section 3 to show the existence of symmetric periodic solutions of the reduced problem.

Let us start by considering the Kepler problem given by Hamiltonian (3.3), whose solution
with initial condition z0 is

z(0)(t, z0) = (l0 + L−3
0 t, g0, h0, L0, G0, H0).

Clearly, the orbit with initial conditions z∗0 = (0, π/2, h∗0, 1, G
∗
0, H

∗
0 ) is symmetric and periodic

of period T = 2π. We want to find periodic symmetric solutions close to z(0)(t, z∗0).
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From Lemma 3.1, any solution of the reduced problem can be written as the solution of the
Kepler problem plus a perturbation, provided that z(0)(t, z∗0) remains bounded and bounded
away from the singularities. To ensure that z∗0 satisfies these conditions, it is sufficient that
G∗

0 > 0; that is, the eccentricity is less than 1. Also, notice that we are dealing with elliptic
orbits, so G∗

0 < 1.
Thus, we will look for initial conditions z0 = (0, π/2, h0, L0, G0, H0) in a neighborhood of

a fixed z∗0 with 0 < G∗
0 < 1, in such a way that the solution z(t, z0, μ) of (3.5), with μ �= 0

small enough, is a symmetric periodic orbit of the reduced problem.
For a fixed z∗0, let D be a compact neighborhood of z∗0 where the conditions of Lemma 3.1

hold and 0 < G0 < 1.
Then, given z0 ∈ D, we know that

(4.1) z(t, z0, μ) = z(0)(t, z0) + μ2z(1)(t, z0, μ) + O(μ4),

where

z(0)(t, z0) = (L−3
0 t, π/2, h0, L0, G0, H0),(4.2)

z(1)(t, z0, μ) = Z(t, z0)

∫ t

0
Z−1(s, z0)F1(z

(0)(s, z0), s, μ) ds,(4.3)

and

Z(t, z0) =
∂z(0)(t, ξ)

∂ξ

∣∣∣∣
ξ=z0

.

From (4.1),

l(t, z0, μ) = L−3
0 t + μ2l(1)(t, z0, μ) + O(μ4),

g(t, z0, μ) = π/2 + μ2g(1)(t, z0, μ) + O(μ4),

where l(1) and g(1) are the first and second coordinates of z(1), given by (4.3), respectively.
Obviously, the symmetry conditions given by (2.8) are fulfilled at t = 0. They also must

be satisfied at t = T/2 = kπμ3/2 in order to have Ep(T/2) = kπ. We consider k a natural
number and μ > 0 such that μ = k−2/3. Then, T/2 = π and we have to find initial conditions
z0 ∈ D satisfying

(4.4)
L−3

0 π − π + μ2l(1)(π, z0, μ) + O(μ4) = 0,

g(1)(π, z0, μ) + O(μ2) = 0.

A natural way to solve (4.4) is to find a solution for the case μ = 0 and then to apply
an implicit function theorem. The first handicap is that neither l(1)(π, z0, μ) nor g(1)(π, z0, μ)
is defined for μ = 0, and neither is the Hamiltonian H1. Moreover, they do not satisfy the
differentiability conditions of the standard implicit function theorem. In order to overcome
these difficulties, we will see first that both equations can be extended to the case μ = 0.
Second, we will use Arenstorf’s theorem, which requires weaker conditions (see [1]).

Let us start by extending (4.4) to the case μ = 0. Observe that, from (4.3), l(1) and g(1)

are bounded. This fact will be sufficient to define the first equation in (4.4) for μ = 0. As for
the second one, we show that g(1)(π, z0, μ) can be written in terms of L0, H0, and G0 plus a
term of order μ3/2. In order to prove this we need the following technical lemma.
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Lemma 4.1. Given z∗0, let z0 = (0, π/2, h0, L0, G0, H0) ∈ D. Let be ϕ(t, z0) be a function
bounded in D, such that dϕ

dt (t, z0) is also bounded in D. Then,∫ π

0
(1 − cosEp)

2ϕ(t, z0) dt =
5

2

∫ π

0
ϕ(t, z0) dt + R(z0, μ),

where |R(z0, μ)| ≤ Kμ3/2 for a certain constant K.
Proof. From (2.2), the function (1 − cosEp)

2 is even and 2π-periodic with respect to the
variable �p. Its Fourier series is given by

(1 − cosEp)
2 =

a0

2
+

∞∑
k=1

ak cos(k�p),

where

ak =
2

π

∫ π

0
(1 − cosEp)

2 cos(k�p) d�p.

From the fact that (1 − cosEp) dEp = d�p, the zero coefficient is

a0 =
2

π

∫ π

0
(1 − cosEp)

3 dEp = 5.

Then, using that �p = μ−3/2t,∫ π

0
(1 − cosEp)

2ϕ(t, z0) dt =
5

2

∫ π

0
ϕ(t, z0) dt

+
∞∑
k=1

ak

∫ π

0
ϕ(t, z0) cos(kμ−3/2t) dt

︸ ︷︷ ︸
R(z0, μ)

.

Integrating by parts,∫ π

0
ϕ(t, z0) cos(kμ−3/2t) dt =

μ3/2

k

(
ϕ(π, z0) sin(kμ−3/2π)

−
∫ π

0

dϕ

dt
(t, z0) sin(kμ−3/2t) dt

)
.

Since ϕ(t, z0),
dϕ
dt (t, z0) are bounded for all (t, z0) with z0 ∈ D (say, |ϕ(t, z0)| ≤ k1 and

|dϕdt (t, z0)| ≤ k2), we have that for a certain constant C∣∣∣∣
∫ π

0
ϕ(t, z0) cos(kμ−3/2t) dt

∣∣∣∣ ≤ μ3/2

k

(
k1 + 2k2

μ3/2

k

)
=

μ3/2

k
C,

and

|R(z0, μ)| ≤ μ3/2C

∞∑
k=1

|ak|
k

.
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12 E. BARRABÉS, J. M. CORS, C. PINYOL, AND J. SOLER

The series on the right-hand side converges because ak are Fourier coefficients of a regular
function, and so the lemma is proved.

Lemma 4.2. Given z∗0, let z0 = (0, π/2, h0, L0, G0, H0) ∈ D. Then, for μ > 0 and small
enough, g(1)(π, z0, μ) is of type C1 in D and there exist functions I1(L0, G0) and I2(L0, G0)
such that

g(1)(π, z0, μ) = −15

16
(I1(L0, G0) −H2

0I2(L0, G0)) + O(μ3/2).

Furthermore, if L0 = 1, then

g(1)(π, z0, μ) = − 15π

32G4
0

(
5
H2

0

G2
0

− 1

)
+ O(μ3/2).

Proof. From (4.3), we have that

g(1)(t, z0, μ) =

∫ t

0

∂H1

∂G

∣∣∣∣
z(0)(s,z0)

ds,

where z(0)(s, z0) is the function defined in (4.2). Then, using (3.4) we obtain that

g(1)(π, z0, μ) =
−3

8

∫ π

0
(1 − cosEp)

2ϕ(t, z0) dt,

where

(4.5) ϕ(t, z0) =
∂

∂G

(
1

r3

(
cos2 f − 1

3

)
− H2 cos2 f

r3G2

)∣∣∣∣
z(0)(t,z0)

.

Since z0 ∈ D, it is clear that g(1)(π, z0, μ) is of type C1 in D.
From Lemma 4.1 and (4.5), we have that

g(1)(π, z0, μ) =
−15

16

∫ π

0
ϕ(t, z0) dt + O(μ3/2)

=
−15

16

(∫ π

0

∂

∂G

(
1

r3

(
cos2 f − 1

3

))∣∣∣∣
z(0)(t,z0)

dt

−H2
0

∫ π

0

∂

∂G

(
cos2 f

G2r3

)∣∣∣∣
z(0)(t,z0)

dt

)
+ O(μ3/2)

= −15

16
(I1(L0, G0) −H2

0I2(L0, G0)) + O(μ3/2),

where

I1(L0, G0) =
G0

e0L5
0

∫ E(e0,L0)

0
(e0 − cosE)

5e2
0 − 5 − 2e0 cosE + (7 − 3e2

0) cos2 E − 2e0 cos3 E

(1 − e0 cosE)6
dE,

I2(L0, G0) =
1

G0e0L5
0

(∫ E(e0,L0)

0

−2e0

1 − e2
0

(cosE − e0)
2

(1 − e0 cosE)4
dE

+

∫ E(e0,L0)

0
(cosE − e0)

4 − 5e2
0 + 4e0 cosE + (2e2

0 − 7) cos2 E + 2e0 cos3 E

(1 − e0 cosE)6
dE

)
,
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and E(e0, L0) is the solution of the equation π = L3
0(E−e0 sinE) (see section 5 for the details).

In particular, when L0 = 1, both integrals can be calculated explicitly and

I1(1, G0) =
−π

2G4
0

, I2(1, G0) =
−5π

2G6
0

,

which ensures the last statement of the lemma.

The next lemma shows that derivatives of g(1) satisfy conditions similar to those in
Lemma 4.2; i.e., they can be written in terms of L0, H0, and G0 plus terms of order μ3/2.

Lemma 4.3. Under the same hypothesis as in Lemma 4.2,

∂g(1)

∂L0
(π, z0, μ) = −15

16

(
∂I1
∂L0

(L0, G0) −H2
0

∂I2
∂L0

(L0, G0)

)
+ O(μ3/2),

∂g(1)

∂H0
(π, z0, μ) =

15

8
H0I2(L0, G0) + O(μ3/2).

Proof. The result is straightforward using arguments similar to those of Lemma 4.2.

In order to extend the symmetry equation to μ = 0, let

Ω = {(L0, H0); z0 = (0, π/2, h0, L0, G0, H0) ∈ D}.

We define the function

Φ(ξ, μ) = (Φ1(ξ, μ),Φ2(ξ, μ))

for ξ = (L0, H0) ∈ Ω and μ ≥ 0 as

(4.6) Φ1(ξ, μ) =

{
L−3

0 π − π + μ2l(1)(π, z0, μ) + O(μ4) if μ �= 0,

L−3
0 π − π if μ = 0,

and

(4.7) Φ2(ξ, μ) =

{
g(1)(π, z0, μ) + O(μ2) if μ �= 0,
−15

16(I1(L0, G0) −H2
0I2(L0, G0)) if μ = 0,

where I1(L0, G0) and I2(L0, G0) are the functions stated in the proof of Lemma 4.2. Then,
(4.4) can be written as

Φ(ξ, μ) = (0, 0)

for μ ≥ 0, and for μ = 0, L0 = 1, satisfies

Φ1(ξ, 0) = 0, Φ2(ξ, 0) = − 15π

32G4
0

(
5
H2

0

G2
0

− 1

)
.

Thus, for each fixed value of G0, Φ(ξ0, 0) = (0, 0) if ξ0 = (1, G0/
√

5). Observe that H2
0/G

2
0 =

cos2 i, and so the solution for μ = 0 corresponds to an inclination i with cos i = 1/
√

5, which
is the critical inclination angle obtained in the case of the problem of an Earth-centered orbit
when the effects of J2 are considered.
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In order to show that there exist symmetric periodic solutions of the reduced problem for
μ �= 0, we need to show that there exist solutions of Φ(ξ, μ) = (0, 0). In this case, we will use
the next proposition, proved in [4], which is a sufficient condition for Arenstorf’s theorem.

Proposition 4.4. Let U be an open domain in Rn, I ⊂ R an open neighborhood of the
origin, f : U × I → Rn with f(0, 0) = 0, differentiable with respect to x ∈ U , and Dxf(0, 0)
nonsingular. Assume that there exist c > 0, k > 0 such that for x ∈ U , ε ∈ I,

1. ‖Dxf(x, ε) −Dxf(0, 0)‖ ≤ c(‖x‖ + ε),
2. ‖f(0, ε)‖ ≤ kε.

Then there exists a function x(ε) ∈ U , defined for ε ∈ I ′ ⊂ I, such that f(x(ε), ε) = 0 and
x(0) = 0.

In order to apply Proposition 4.4 we need to prove that the function Φ satisfies some
properties.

Proposition 4.5. Let G0 be fixed and ξ0 = (1, G0/
√

5). For μ small enough, there exists η
such that the function Φ(ξ, μ) is differentiable with respect to ξ in B = {ξ ∈ Ω; ‖ξ − ξ0‖ ≤ η}
and satisfies the three properties

(i) ‖Φ(ξ0, μ)‖ ≤ C0μ
3/2,

(ii) ‖(DξΦ)−1(ξ0, 0)‖ ≤ M ,
(iii) ‖DξΦ(ξ, μ) −DξΦ(ξ0, 0)‖ ≤ C1(‖ξ − ξ0‖ + μ3/2),

where M , C0, and C1 are constants independent of μ and DξΦ(ξ, μ) denotes the Jacobi matrix
of Φ with respect to the variables ξ.

Proof. Statement (i) is a direct consequence of the definition of Φ (see (4.6) and (4.7)),
the fact that l(1) is a bounded function, and Lemma 4.2.

Using that the derivatives of l(1) are also bounded and Lemma 4.3, we have that

(4.8)

DξΦ(ξ, μ) =

(
−3π
L4

0
+ O(μ2) O(μ2)

J (L0, G0) + O(μ3/2) 15
8 H0I2(L0, G0) + O(μ3/2)

)
,

DξΦ(ξ, 0) =

(
−3π
L4

0
0

J (L0, G0)
15
8 H0I2(L0, G0)

)
,

where J (L0, G0) = −15
16

∂(I1−H2
0 I2)

∂L0
. Then, as I2(1, G0) = −5π/(2G6

0) �= 0, DξΦ(ξ0, 0) can be
inverted, and item (ii) is proved.

Let us prove (iii). First, we have that

(4.9) ‖DξΦ(ξ, μ) −DξΦ(ξ0, 0)‖ ≤ ‖DξΦ(ξ, μ) −DξΦ(ξ, 0)‖ + ‖DξΦ(ξ, 0) −DξΦ(ξ0, 0)‖.

On one hand, as the components of Φ(ξ, 0) are of type C1 with respect to ξ, we get that

(4.10) ‖DξΦ(ξ, 0) −DξΦ(ξ0, 0)‖ ≤ c0‖ξ − ξ0‖.

On the other hand,

(4.11) ‖DξΦ(ξ, μ) −DξΦ(ξ, 0)‖ ≤
2∑

i=1

‖DξΦi(ξ, μ) −DξΦi(ξ, 0)‖ ≤ c1μ
2 + c2μ

3/2
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by expressions (4.8). Substituting (4.10) and (4.11) into (4.9), we prove item (iii).
Notice that, given h0, G0, and z∗0 = (0, π/2, h0, 1, G0, G0/

√
5), the solution z(0)(t, z∗0) is a

solution of the Kepler problem lying on a plane of the critical inclination i with cos i = 1/
√

5.
Finally, let us prove that there exist periodic symmetric solutions of the perturbed reduced
problem close to z(0)(t, z∗0).

Theorem 4.6. Consider the three-dimensional collision restricted three-body problem with
masses m1 = m2 = 1/2, and primaries’ semimajor axis μ/2. If μ = k−2/3, where k is a
positive integer large enough, there exist initial conditions such that the infinitesimal body
moves in a symmetric periodic orbit of the reduced problem, of period 2π, near a Keplerian
elliptic orbit. The inclination of the orbit is close to the “critical value” cos i = 1/

√
5.

Proof. Let us consider initial values h0, G0, and ξ0 = (1, G0/
√

5). It is clear that Φ(ξ0, 0) =
(0, 0). Given ξ ∈ Ω, we define f(x, μ) = Φ(x+ ξ0, μ), where x = ξ − ξ0. From Proposition 4.5
we can easily prove that f(x, μ) is under the hypothesis of Proposition 4.4. Then there exists
a function x(μ) such that f(x(μ), μ) = (0, 0) and x(0) = 0.

This yields a continuum of solutions of system Φ(ξ, μ) = (0, 0). These conditions must
be satisfied simultaneously with Ep(T/2) = kπ, which is equivalent to T = 2kπμ3/2. Thus,
for each μ = k−2/3, k a large positive integer, a periodic solution of the reduced problem
exists.

Remark. All the orbits found are on an integral resonance with the motion of the primaries;
i.e., the primaries undergo k complete orbits in one orbit of the infinitesimal body. If k =
p/q is an irreducible rational, then similar arguments show that in q complete orbits of the
infinitesimal the primaries undergo p complete orbits.

5. Appendix. Here we develop the calculations needed in the proof of Lemma 4.2. We
want to compute∫ π

0
ϕ(t, z0)dt =

∫ π

0

∂Δ1

∂G

∣∣∣∣
z(0)(t,z0)

dt−H2
0

∫ π

0

∂Δ2

∂G

∣∣∣∣
z(0)(t,z0)

dt

= I1(L0, G0) −H2
0I2(L0, G0),

where Δ1 = cos2 f−1/3
r3

and Δ2 = cos2 f
G2r3

.
We will introduce the change of variables given by t = L3

0(E − e0 sinE), where L2
0 and

e0 correspond to the semimajor axis and the eccentricity of the Keplerian orbit z(0)(t, z0),
respectively. As the new variable to integrate will be E, we use the rule

(5.1)
∂Δi

∂G
=

∂Δi

∂E

dE

de

de

dE

for i = 1, 2. On one hand, from Kepler’s equation t = a3/2(E − e sinE), we have that

0 = a3/2

(
dE

de
− sinE − e cosE

dE

de

)
and

dE

de
=

sinE

1 − e cos e
.

On the other hand, as G2 = a(1 − e2), we have that de
dG = −G

ae . Substituting into (5.1), we
have that

(5.2)
∂Δi

∂G
=

−G sinE

ae(1 − e cosE)

∂Δi

∂E
.
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Next, as r = a(1 − e cosE) = a(1−e2)
1+e cos f , we have that cos f = cosE−e

1−e cosE , and deriving both
expressions we obtain

(5.3)
∂r

∂E
= a

e− cosE

sinE
, − sin f

df

dE
=

sinE(e2 − 2 + e cosE)

(1 − e cosE)2
.

Thus, using the expressions (5.2) and (5.3), we have that

∂Δ1

∂G
=

G(e− cosE)(5e2 − 5 − 2 e cosE + (7 − 3 e2) cos2 E − 2 e cos3 E)

ea4(1 − e cosE)7
,

∂Δ2

∂G
=

−2(cosE − e)2

G3a3(1 − e cosE)5

+
(cosE − e)

Gea4

4 − 5e2 + 4e cosE + (2e2 − 7) cos2 E + 2e cos3 E

(1 − e cosE)7
.

Finally, evaluating both expressions on the solution z(0)(t, z0) of the Kepler problem, we
obtain the expressions for the functions I1 and I2 as∫ π

0

∂Δ1

∂G

∣∣∣∣
z(0)(t,z0)

dt =
G0

e0L5
0

∫ E(e0,L0)

0
f1(e0, E) dE = I1(L0, G0),

∫ π

0

∂Δ2

∂G

∣∣∣∣
z(0)(t,z0)

dt =
1

G0e0L5
0

∫ E(e0,L0)

0
f2(e0, E) dE = I2(L0, G0),

where E(e0, L0) is the solution of the equation π = L3
0(E − e0 sinE) and

f1(e0, E) = (e0 − cosE)
5e2

0 − 5 − 2e0 cosE + (7 − 3e2
0) cos2 E − 2e0 cos3 E

(1 − e0 cosE)6
,

f2(e0, E) =
−2e0

1 − e2
0

(cosE − e0)
2

(1 − e0 cosE)4

+ (cosE − e0)
4 − 5e2

0 + 4e0 cosE + (2e2
0 − 7) cos2 E + 2e0 cos3 E

(1 − e0 cosE)6
.

Furthermore, it is clear that for a fixed value of e0 < 1 the functions f1 and f2 are
continuous and differentiable with respect to E and e0, and so I1(L0, G0) and I2(L0, G0) are
functions of type C1 with respect to e0. In particular, when L0 = 1, E(e0, L0) = π, and both
integrals can be calculated explicitly:

I1(1, G0) =
−π

2G4
0

, I2(1, G0) =
−5π

2G6
0

.
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