Univalent Baker domains

Krzysztof Barański¹ and Núria Fagella²

- ¹ Institute of Mathematics, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland
- ² Dep. de Mat. Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain

E-mail: baranski@mimuw.edu.pl and fagella@maia.ub.es

Received 17 January 2000 Recommended by V Baladi

Abstract

We classify Baker domains U for entire maps with $f|_U$ univalent into three different types, giving several criteria which characterize them. Some new examples of such domains are presented, including a domain with disconnected boundary in $\mathbb C$ and a domain which spirals towards infinity.

AMS classification scheme numbers: 30D05, 58F08

1. Introduction

Let $f:\mathbb{C}\to\mathbb{C}$ be an entire transcendental map. Then f induces a partition of the complex plane into two completely invariant sets: the *Fatou set* and the *Julia set*. The first one, F(f), is defined as the set of points $z\in\mathbb{C}$ for which the sequence of iterates $\{f^n\}_{n\geqslant 0}$ forms a normal family in some neighbourhood of z. Its complement is the Julia set, J(f). Clearly, the Fatou set is an open set of $\mathbb C$ while the Julia set is closed. It is a special property of entire transcendental maps that both sets are unbounded. Refer, for example, to [Ber2, BR] for the general description of the dynamics of these maps.

Since F(f) is completely invariant, its connected components must map among themselves. We say that a connected component U of F(f) is *periodic* of period $p \ge 1$, if $f^p(U) \subset U$. Note that unlike the case of rational maps, it is possible to have $f^p(U) \ne U$ (see, e.g., [Ber2]).

If *U* is a periodic component of F(f) of period $p \ge 1$, there are only four possible cases:

- (a) U is a component of the *attracting basin* of an attracting periodic point $z_0 \in U$ and $f^{np}(z) \underset{n \to \infty}{\longrightarrow} z_0$ for all $z \in U$,
- (b) U is a component of the *parabolic basin* of a parabolic point $z_0 \in \partial U$ and $f^{np}(z) \underset{n \to \infty}{\longrightarrow} z_0$ for all $z \in U$,
- (c) U is a Siegel disc, i.e. U is conformally equivalent to a disc and $f^p|_U$ is analytically conjugate to a rigid rotation,
- (d) $f^{np}(z) \xrightarrow[n \to \infty]{} \infty$ for all $z \in U$. In this case, U is called a *Baker domain*.