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Abstract We prove that every transcendental meromorphic map f with dis-
connected Julia set has a weakly repelling fixed point. This implies that the
Julia set of Newton’s method for finding zeroes of an entire map is connected.
Moreover, extending a result of Cowen for holomorphic self-maps of the disc,
we show the existence of absorbing domains for holomorphic self-maps of
hyperbolic regions, whose iterates tend to a boundary point. In particular, the
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results imply that periodic Baker domains of Newton’s method for entire maps
are simply connected, which solves a well-known open question.

Mathematics Subject Classification (2000) Primary 30D05 · 37F10 ·
30D20

1 Introduction

Let f : C → ̂C be a non-constant and non-Möbius holomorphic map from
the complex plane C to the Riemann sphere ̂C. If the point at infinity is an
essential singularity of f , then we call f a transcendental meromorphic map;
otherwise f extends to the sphere as a rational map. We consider the dynamical
system given by the iterates of f , which induces a dynamical partition of the
complex sphere into two completely invariant sets: the Fatou set F( f ), which
is the set of points z ∈ ̂C, where the family of iterates { f n}n≥0 is defined
and normal in some neighborhood of z, and its complement, the Julia set
J ( f ) = ̂C\F( f ). The Fatou set is open and consists of points with, in some
sense, stable dynamics, while the Julia set is closed and its points exhibit
chaotic behavior. Moreover, J ( f ) is the closure of the set of repelling periodic
points of f (see [4]). If f is transcendental meromorphic, then the Julia set
always contains the point at infinity and (unless f has a unique omitted pole), it
is the closure of the set of all prepoles of f , while the Fatou set is unbounded or
empty. For general background on the dynamics of rational and meromorphic
maps we refer to [7,13,31].

Connected components of the Fatou set, known as Fatou components, are
mapped by f among themselves. A Fatou component U is periodic of period
p, or p-periodic, if f p(U ) ⊂ U ; a component which is not eventually periodic
is called wandering. Unlike the rational case [41], transcendental meromorphic
maps may have wandering components. There is a complete classification of
periodic Fatou components: such a component can either be a rotation domain
(Siegel disc or Herman ring), the basin of attraction of an attracting or parabolic
periodic point or a Baker domain (the latter possibility can occur only for
transcendental maps). Recall that a p-periodic Fatou component U ⊂ C is a
Baker domain, if f pn on U tend to a point ζ in the boundary of U as n → ∞,
and f j (ζ ) is not defined for some j ∈ {0, . . . p−1}. This implies the existence
of an unbounded Fatou component U ′ in the same cycle, such that f pn → ∞
on U ′. The first example of a Baker domain was given by Fatou [21], who
considered the function f (z) = z + 1 + e−z and showed that the right half-
plane is contained in an invariant Baker domain. If f is an entire function,
then all its Baker domains (and other periodic Fatou components) must be
simply connected [2]. In the case of meromorphic maps, Baker domains are,
in general, multiply connected, as shown in examples by Dominguez [15] and
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König [25]. There are a number of papers studying dynamical properties of
Baker domains, see e.g. [6,17,18] for the entire case and [9,34,35] for the
meromorphic one.

In this paper we study the relation of the connectivity of the Julia set and the
existence of weakly repelling fixed points for meromorphic maps. We say that
a fixed point z0 of a holomorphic map f is weakly repelling, if | f ′(z0)| > 1 or
f ′(z0) = 1 (with the standard extension to z0 = ∞ in the rational case). It was
proved by Julia [24, pp. 84, 243] and Fatou [21, Ch. 1, p. 168] that a rational
map of degree greater than one has at least one weakly repelling fixed point in
̂C. In 1990, Shishikura [40] proved a remarkable result, showing that if f is
rational and its Julia is disconnected, then f has at least two weakly repelling
fixed points in ̂C. For transcendental meromorphic maps the situation is more
complicated, since they need not have fixed points at all. However, the point
at infinity can be treated as an additional “fixed point”.

In this paper we prove the following result.
Main Theorem Let f be a transcendental meromorphic function with dis-

connected Julia set. Then f has at least one weakly repelling fixed point.
An important motivation for this theorem is the question of the connectivity

of Julia sets of the celebrated Newton’s method

Ng(z) = z − g(z)

g′(z)

for finding zeroes of an entire map g : C → C. The dynamical properties
of Newton’s method, especially for polynomials g, were studied in a num-
ber of papers, see e.g. [23,26,28–30,33,37,42]. Notice that the map Ng is
meromorphic, its fixed points in C are, precisely, zeroes of g, and all of them
are attracting. For a polynomial g, the map Ng is rational and the point at
infinity is a repelling fixed point, while for transcendental entire g, its New-
ton’s method is transcendental meromorphic (except the case g = peq for
polynomials p, q, when Ng is rational and the point at infinity is a parabolic
fixed point of multiplier 1, see [22, Proposition 1] or [37, Proposition 2.11]).
Hence, Shishikura’s result shows that for polynomials g, the Julia set of Ng is
connected. Our theorem immediately implies the following corollary, which
solves a well-known open problem, formulated e.g. in [38, Question 8.6].

Corollary If g is an entire map and Ng is its Newton’s method, then J (Ng)

is connected.

Since the Julia set is closed, it is connected if and only if all the Fatou com-
ponents are simply connected. Therefore, the proof of the Main Theorem splits
into several cases—for each type of the Fatou component one should show that
if it is multiply connected, then the map has a weakly repelling fixed point.
However, Shishikura’s proofs in the rational case cannot be directly extended
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to the transcendental one, because of the appearance of new phenomena such
as lack of compactness, presence of asymptotic values and new types of Fatou
components.

For transcendental meromorphic maps, the case of wandering domains was
solved by Bergweiler and Terglane in [10], while the cases of attracting or par-
abolic cycles and preperiodic components were dealt with by Fagella, Jarque
and Taixés in [19,20]. Therefore, the remaining cases were Baker domains
and Herman rings, which are the subject of the present work.

The known proofs for a p-periodic Fatou component U , such that f pn → ζ

on U as n → ∞ (i.e. when U is the basin of attraction of an attracting
or parabolic periodic point), are based on the existence of a simply connected
domain W ⊂ U , which is absorbing for F = f p and tends to ζ under iterations
of F .

Definition (Absorbing domain) Let U be a domain in C and let F : U → U be
a holomorphic map. A domain W ⊂ U is absorbing in U for F , if F(W ) ⊂ W
and for every compact set K ⊂ U there exists n = n(K ) ≥ 0, such that
Fn(K ) ⊂ W .

The problem of existence of suitable absorbing domains has a long history.
For attracting and parabolic basins it is a part of the classical problem of
studying the local behavior of an analytic map near a fixed point. In particular,
if U is the basin of a (super)attracting p-periodic point ζ , then F = f p is
conformally conjugate to z �→ F ′(ζ )z (if F ′(ζ ) 	= 0) or z �→ zk for some
integer k ≥ 2 (if F ′(ζ ) = 0) near z = 0. In this case, if we take W to be the
preimage of a small disc centered at z = 0 under the conjugating map, then
W is a simply connected absorbing domain for F and

⋂

n≥0 Fn(W ) = {ζ }.
Likewise, if U is a basin of a parabolic p-periodic point, an attracting petal in
U would provide a similar example.

The existence of such absorbing regions in Baker domains was an open
question, and one of the main obstacles for the completion of the proof of the
Main Theorem. In this paper we prove that we can always construct suitable
absorbing regions in Baker domains, if we drop the condition of simple con-
nectedness. This is a corollary of the following more general theorem, which
we prove in Sect. 3. We consider here holomorphic maps F : U → U on a
hyperbolic domain U ⊂ C, such that Fn → ζ as n → ∞ for some ζ in the
boundary of U in ̂C. Changing coordinates by a Möbius transformation, we
can assume ζ = ∞. We denote by DU (z, r) the disc of radius r centered at
z ∈ U , with respect to the hyperbolic metric in U .

Theorem A (Existence of absorbing regions for holomorphic self-maps of
hyperbolic domains) Let U be a hyperbolic domain in C and let F : U → U be
a holomorphic map, such that Fn → ∞as n → ∞. Then for every point z ∈ U
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and every sequence of positive numbers rn, n ≥ 0 with limn→∞ rn = ∞, there
exists a domain W ⊂ U, such that:

(a) W ⊂ ⋃∞
n=0 DU (Fn(z), rn),

(b) W ⊂ U,
(c) Fn(W ) = Fn(W ) ⊂ Fn−1(W ) for every n ≥ 1,
(d)

⋂∞
n=0 Fn(W ) = ∅,

(e) W is absorbing in U for F.

Moreover, F is locally univalent on W .

This theorem is an extension of the well-known Cowen’s result [14] (see
also Pommerenke [32] and Baker-Pommerenke [5]) on absorbing regions for
holomorphic self-maps of simply connected domains. Recall that if G is a
holomorphic self-map of the right half-plane H without fixed points, then
Denjoy–Wolff’s Theorem ensures that (after a possible change of coordi-
nates) Gn → ∞ uniformly on compact sets in H. Cowen’s result implies
the existence of a simply connected absorbing domain V ⊂ H, such that
V ⊂ H,Gn(V ) = Gn(V ) ⊂ Gn−1(V ) for n ≥ 1 and

⋂

n≥0 Gn(V ) = ∅.
Moreover, there exists a univalent map ϕ : V → C conjugating G to a map T
of the form T (ω) = ω+1, T (ω) = ω±i or T (ω) = aω, a > 1 on� ∈ {C,H}
and ϕ extends to a holomorphic map from H to �, which semi-conjugates G
to T (see Theorem 2.6 for details). Using the Riemann Mapping Theorem, one
can apply this result to a holomorphic self-map F of any simply connected
region U , without fixed points.

Applied to the case of Baker domains, Theorem A has the following form.

Corollary A’ (Existence of absorbing regions in Baker domains) Let f : C →
̂C be a meromorphic map and let U be a periodic Baker domain of period p
such that f pn → ∞ as n → ∞. Then there exists a domain W ⊂ U with the
properties listed in Theorem A for the map F = f p.

Note that if U is a simply connected Baker domain (which is always the
case for entire maps), Cowen’s Theorem immediately provides the existence
of a suitable simply connected absorbing region in U . In the case of a multiply
connected p-periodic Baker domain U of a meromorphic map f , one can
consider a universal covering map π : H → U and lift F = f p by π to a
holomorphic map G : H → H without fixed points. König [25] showed that
if f has finitely many poles, then the absorbing region V ⊂ H projects under
π to a suitable simply connected absorbing region W ⊂ U (see Theorem 2.7
for a precise statement). However, [25] contains examples showing that there
are Baker domains which do not admit simply connected absorbing regions.

Hence, Corollary A′ can be treated as a generalization of König’s result,
which weakens the assumptions on the map f and provides some estimates

123
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on the size of the absorbing region, but does not ensure simple connectivity of
W .

Using Corollary A′, we are able to prove:

Theorem B Let f be a transcendental meromorphic map with a multiply
connected periodic Baker domain. Then f has at least one weakly repelling
fixed point.

In particular, Theorem B implies:

Corollary B’ Periodic Baker domains of a Newton’s method Ng for an entire
map g are simply connected.

This solves a well-known open question, raised e.g. by Bergweiler, Buff,
Rückert, Mayer and Schleicher [8,12,28,37]. In particular, Corollary B’
implies that so-called virtual immediate basins for Newton maps (i.e. invari-
ant simply connected unbounded domains in C, where the iterates of the map
converge locally uniformly to ∞), defined by Mayer and Schleicher [28], are
equal to the entire invariant Baker domains.

Apart from Corollary A′, the proof of Theorem B uses several general results
on the existence of weakly repelling fixed points of meromorphic maps on
some domains in the complex plane, under certain combinatorial assumptions.
These tools, which are developed in Sect. 4, have some interest in themselves,
since they generalize the results used by Shishikura, Bergweiler and Terglane
[10,40] and can be applied in a wider setup. In particular, we use them to prove
the following result, which completes the proof of the Main Theorem.

Theorem C Let f be a transcendental meromorphic map with a cycle of
Herman rings. Then f has at least one weakly repelling fixed point.

The proof of Theorem C applies also to the rational setting and is an alter-
native to Shishikura’s arguments for Herman rings of rational maps.

The paper is organized as follows. In Sect. 2 we state and reference some
results we use in this paper. They include estimates of the hyperbolic metric,
the theorems of Cowen and König on the existence of absorbing domains and
the results of Buff and Shishikura on the existence of weakly repelling fixed
points for holomorphic maps. Section 3 contains the proof of Theorem A. The
proofs of Theorems B and C are contained, respectively, in Sects. 5 and 6,
with an initial Sect. 4 which contains preliminary results on the existence of
weakly repelling fixed points in various configurations of domains.

2 Background and tools

In this section we introduce notation and review the necessary background to
prove the main results of the paper.
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First, we present basic notation. The symbol dist(·, ·) denotes the Euclidean
distance on the complex plane C. For a set A ⊂ C, the symbols A, ∂A denote,
respectively, the closure and boundary in C. The Euclidean disc of radius r
centered at z ∈ C and the right half-plane are denoted, respectively, by D(z, r)
and H. The unit disc D(0, 1) is simply written as D.

For clarity of exposition we divide this section into three parts. The first one
contains standard estimates of hyperbolic metric. In the second and third one
we present, respectively, some known results on the existence of absorbing
domains and weakly repelling fixed points for holomorphic maps.

2.1 Hyperbolic metric and Schwarz–Pick’s Lemma

Let U be a domain in the Riemann sphere ̂C. We call U hyperbolic, if its
boundary in ̂C contain at least three points. By the Uniformization Theorem,
in this case there exists a universal holomorphic coveringπ from D (or H) onto
U . Every holomorphic map F : U → U can be lifted by π to a holomorphic
map G : H → H, such that the diagram

H
G−−−→ H

⏐

⏐

�
π

⏐

⏐

�
π

U
F−−−→ U

commutes. By �U (·) and �U (·, ·) we denote, respectively, the density of the
hyperbolic metric and the hyperbolic distance in U . In particular, we will
extensively use the hyperbolic metric in D and H of density

�D(z) = 2

1 − |z|2 and �H(z) = 1

Re(z)
,

respectively. In particular, we have

�D(z, 0) = ln
1 + |z|
1 − |z| (1)

for z ∈ D.
By DU (z, r) we denote the hyperbolic disc of radius r , centered at z ∈ U

(with respect to the hyperbolic metric in U ). The following lemma contains
well-known inequalities related to the hyperbolic metric.
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Lemma 2.1 (Hyperbolic estimates I [13, Theorem 4.3]) Let U ⊂ C be a
hyperbolic domain. Then

�U (z) ≤ 2

dist(z, ∂U )
for z ∈ U

and

�U (z) ≥ 1 + o(1)

dist(z, ∂U ) log(1/dist(z, ∂U ))
as z → ∂U.

Moreover, if U is simply connected, then

�U (z) ≥ 1

2 dist(z, ∂U )
for z ∈ U.

Every holomorphic map between hyperbolic domains does not increase
the hyperbolic metric. This very useful result is known as the Schwarz–Pick
Lemma.

Lemma 2.2 (Schwarz–Pick’s Lemma [13, Theorem 4.1]) Let U, V ⊂ C be
hyperbolic domains and let f : U → V be a holomorphic map. Then

�V ( f (z1), f (z2)) ≤ �U (z1, z2)

for every z1, z2 ∈ U. In particular, if U ⊂ V , then

�V (z1, z2) ≤ �U (z1, z2),

with strict inequality unless z1 = z2 or f lifts to a Möbius transformation
from H onto H.

Using this lemma and properties of the hyperbolic metric in C\{0, 1} we
can easily deduce the following estimate, which will be useful in further parts
of the paper. We sketch its proof for completeness.

Lemma 2.3 (Hyperbolic estimates II) Let U ⊂ C be an unbounded hyperbolic
domain. Then there exists c > 0 such that

�U (z) >
c

|z| log |z|
if z ∈ U and |z| is sufficiently large.
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Proof Since U is hyperbolic, there exist two distinct points z0, z1 ∈ C\U ,
so U is a subset of U ′ = C\{z0, z1}. By Schwarz–Pick’s Lemma 2.2, we
have �U (z) ≥ �U ′(z) for z ∈ U . At the same time, �U ′(z) = c�U ′′(w) for
U ′′ = C\{0, 1}, wherew = (z1 − z0)z + z0 is the affine map transforming U ′′
onto U ′ and c = 1/|z0 − z1|. The standard estimates of the hyperbolic metric
in U ′′ (see e.g. [1,13]) give

�U ′′(w) = O(1)
|w| log(1/|w|)

as |w| → 0. Transforming the metric under 1/w, which leaves U ′′ invariant,
we obtain

�U ′′(w) = O(1)
|w| log |w|

as |w| → ∞, so

�U (z) ≥ c�U ′′(w) = O(1)
|w| log |w| = O(1)

|z| log |z|
as |z| → ∞, from which the estimate follows. �

The next result follows easily from the algebraic properties of universal
coverings (see e.g. [27, Theorem 2] or [25, Lemma 4]). We include its proof
for completeness.

Lemma 2.4 Let U be a hyperbolic domain in C and let F : U → U be a
holomorphic map, such that for some ζ in the boundary of U in ̂C we have
Fn(z) → ζ as n → ∞ for z ∈ U. Letπ : H → U be a holomorphic universal
covering and let G : H → H be a lift of F by π , i.e. F ◦ π = π ◦ G. Suppose
that G is univalent. Then the induced endomorphism F∗ of the fundamental
group of U is an isomorphism. Moreover, if additionally, for every closed
curve γ ⊂ U there exists n ≥ 0 such that Fn(γ ) is contractible in U, then U
is simply connected and π is a Riemann map.

Proof The domain U is isomorphic (as a Riemann surface) to the quotient
H/
, where 
 is the group of cover transformations acting on H. The group 

is isomorphic to the fundamental group of U , denoted by π1(U ). For n ≥ 0 let
θn : 
 → 
 be an endomorphism induced by Gn (i.e. Gn ◦ g = θn(g)◦ Gn for
g ∈ 
). The endomorphism θn corresponds to an endomorphism θ̃n = (Fn)∗ :
π1(U ) → π1(U ) induced by Fn (see [27]). Set N = ⋃∞

n=0 ker θn, Ñ =
⋃∞

n=0 ker θ̃n . Since G is univalent, we have N = {id} = Ñ , so (Fn)∗ is an
isomorphism.
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Suppose that for every closed curve γ ⊂ U there exists n ≥ 0 such that
Fn(γ ) is contractible in U . Thenπ1(U ) = Ñ = {id}, so U is simply connected
and π is a Riemann map. �

2.2 Lifts of maps and absorbing domains

Let U be a hyperbolic domain in C and let F : U → U be a holomorphic
map. Recall that a domain W ⊂ U is absorbing in U for F , if F(W ) ⊂ W
and for every compact set K ⊂ U there exists n > 0, such that Fn(K ) ⊂ W .
The main goal of this subsection is to present results due to Cowen and König
on the existence of absorbing domains.

Recall first the classical Denjoy–Wolff Theorem, which describes the
dynamics of a holomorphic map G in H.

Theorem 2.5 (Denjoy–Wolff’s Theorem [13, Theorem 3.1]). Let G : H → H

be a non-constant holomorphic map, which is not an automorphism of H. Then
there exists a point z0 ∈ H ∪ {∞}(called the Denjoy–Wolff point of G), such
that Gn tends to z0 uniformly on compact subsets of H as n → ∞.

The following result, due to Cowen, gives the main tool for constructing
absorbing domains.

Theorem 2.6 (Cowen’s Theorem [14, Theorem 3.2]), see also [25, Lemma
1]) Let G : H → H be a holomorphic map such that Gn → ∞ as n → ∞.
Then there exists a simply connected domain V ⊂ H, a domain � equal to
H or C, a holomorphic map ϕ : H → �, and a Möbius transformation T
mapping � onto itself, such that:

(a) V is absorbing in H for G,
(b) ϕ(V ) is absorbing in � for T ,
(c) ϕ ◦ G = T ◦ ϕ on H,
(d) ϕ is univalent on V .

Moreover, ϕ, T depend only on G. In fact (up to a conjugation of T by a
Möbius transformation preserving �), one of the following cases holds:

• � = C, T (ω) = ω + 1,
• � = H, T (ω) = ω ± i ,
• � = H, T (ω) = aω for some a > 1.

Using Cowen’s result, König proved the following theorem which provides
the existence of simply connected absorbing domains in U for F under certain
assumptions. In particular, these assumptions are trivially satisfied if U is
simply connected.
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Theorem 2.7 (König’s Theorem [25]) Let U be a hyperbolic domain in C

and let F : U → U be a holomorphic map, such that Fn → ∞ as n → ∞.
Suppose that for every closed curve γ ⊂ U there exists n > 0 such that
Fn(γ ) is contractible in U. Then there exists a simply connected domain
W ⊂ U, a domain� and a transformation T as in Cowen’s Theorem 2.6, and
a holomorphic map ψ : U → �, such that:

(a) W is absorbing in U for F,
(b) ψ(W ) is absorbing in � for T ,
(c) ψ ◦ F = T ◦ ψ on U,
(d) ψ is univalent on W .

In fact, if we take V and ϕ from Cowen’s Theorem 2.6 for G being a lift of F
by a universal covering π : H → U, then π is univalent in V and one can
take W = π(V ) and ψ = ϕ ◦ π−1, which is well defined in U.

Moreover, if f : C → ̂C is a meromorphic map with finitely many poles,
and U is a periodic Baker domain of period p, then the above assumptions
are satisfied for F = f p, and consequently, there exists W ⊂ U with the
properties (a)–(d) for F = f p.

2.3 Existence of weakly repelling fixed points

We shall use several tools to establish the existence of weakly repelling fixed
points in certain subsets of the plane. The results in this section will not be
used until Sect. 5.

The first classical result in this direction is due to Julia and Fatou.

Theorem 2.8 ([21, Ch. 1, p. 168], [24, pp. 84, 243]) Every rational map f :
̂C → ̂C with deg f ≥ 2 has at least one weakly repelling fixed point.

In view of this, a map which locally behaves as a rational map should also
have points of the same character. This is formalized in the following two
propositions. By a proper map f : D′ → D we mean a map from D′ onto D,
such that for every compact set X ⊂ D, the set f −1(X) is compact. Proper
maps always have well defined finite degree.

Theorem 2.9 (Polynomial-like maps [16]) Let D and D′ be simply connected
domains in C such that D′ ⊂ D and let f : D′ → D be a proper holomorphic
map. Then f has a weakly repelling fixed point in D′.

Indeed, if deg f |D′ = 1, then f is invertible and, by Schwarz–Pick’s Lemma
2.2 applied to f −1, the map f has a repelling fixed point. Otherwise, ( f, D′, D)
form a polynomial-like map. By the Straightening Theorem (see [16]), f |D′
is conjugate to a polynomial and therefore has a weakly repelling fixed point.
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Theorem 2.10 (Rational-like maps [11]) Let D and D′ be domains in C with
finite Euler characteristic, such that D′ ⊂ D and let f : D′ → D be a proper
holomorphic map. Then f has a weakly repelling fixed point in D′.

Maps with this property are called rational-like (see [36]). The proof of the
result above is due to Buff and can be found in [11], where he actually shows
the existence of virtually repelling fixed points, which is a stronger statement.
(Note that in [11] rational-like maps are assumed to have degree larger than
one. However, the proof is valid also in the case of degree one.)

In the following result, also proved in [11], the hypothesis of compact con-
tainment is relaxed. In return, the image is assumed to be a disc.

Theorem 2.11 (Rational-like maps with boundary contact [11]) Let D be an
open Euclidean disc in C and D′ ⊂ D be a domain with finite Euler charac-
teristic. Let f : D′ → D be a proper map of degree greater than one, such
that | f (z)− z| is bounded away from zero as z → ∂D′. Then f has a weakly
repelling fixed point in D′.

By a meromorphic map on a domain D ⊂ ̂C we mean an analytic map from
D to ̂C. The result above implies the following corollary.

Corollary 2.12 (Rational-like maps with boundary contact) Let D be a simply
connected domain in ̂C with locally connected boundary and D′ ⊂ D a
domain in ̂C with finite Euler characteristic. Let f be a continuous map on
the closure of D′ in ̂C, meromorphic in D′, such that f : D′ → D is proper. If
deg f > 1 and f has no fixed points in ∂D ∩ ∂D′, or deg f = 1 and D 	= D′,
then f has a weakly repelling fixed point in D′.

Proof Suppose deg f > 1. Changing the coordinates in ̂C by a Möbius trans-
formation, we can assume D ⊂ C. Let ϕ be a Riemann map from the unit disc
D onto D. Since the boundary of D is locally connected, the map ϕ extends
continuously to D. Let g = ϕ−1 ◦ f ◦ ϕ on ϕ−1(D′). Then g : ϕ−1(D′) → D

satisfies the assumptions of Theorem 2.11. Indeed, one should only check
that |g(z) − z| is bounded away from zero as z → ∂(ϕ−1(D′)). If it was
not the case, then there would exist a sequence zn ∈ ϕ−1(D′) with zn →
∂(ϕ−1(D′)) and |zn − g(zn)| → 0. We can assume zn → z ∈ ∂(ϕ−1(D′)).
Then g(zn) → z, ϕ(zn) → ϕ(z) and ϕ(z) is in the boundary of D′, so
f (ϕ(zn)) = ϕ(g(zn)) → ϕ(z) and f (ϕ(z)) = ϕ(z). Since f : D′ → D
is proper, ϕ(z) is in the boundary of D, so ϕ(z) is a fixed point of f in the
intersection of the boundaries of D and D′, which contradicts the assumptions
of the corollary.

If deg f = 1, then by the Riemann–Hurwitz Formula, D′ is simply con-
nected and f is invertible, so the existence of a repelling fixed point of f
follows from Schwarz–Pick’s Lemma 2.2 applied to f −1. �
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Fig. 1 Setup of
Theorem 2.14

To apply this corollary we have to ensure the local connectedness of the
boundary of the domain. We shall often use the following result due to Torhorst.

Theorem 2.13 (Torhorst’s Theorem [43, p. 106, Theorem 2.2]) If X is a locally
connected continuum in ̂C, then the boundary of every component of ̂C\X is
a locally connected continuum.

We conclude this section stating a surgery result due to Shishikura, which
will be generalized in Sect. 4 (see Proposition 4.7).

Theorem 2.14 (Shishikura [40, Theorem 2.1]) Let V0, V1 be simply connected
domains in ̂C with V0 	= ̂C and let f be a meromorphic map in a neighbour-
hood N of ̂C\V0, such that f (∂V0) = ∂V1 and f (V0 ∩ N ) ⊂ V1. Suppose that
for some k ≥ 1, the map f k is defined on V1, such that

f j (V1) ∩ V0 = ∅ for j = 0, . . . , k − 1 and f k(V1) ⊂ V0.

Then f has a weakly repelling fixed point in ̂C\V0.

See Fig. 1.

3 Proof of Theorem A

The general setup for this section is the following. Let U be a hyperbolic
domain in C. Then there exists a holomorphic universal covering π from H

onto U . Take a holomorphic map F : U → U as in Theorem A. Then F can
be lifted to a holomorphic map G : H → H, such that

F ◦ π = π ◦ G.

Since F has no fixed points, the map G has no fixed points either, so by the
Denjoy–Wolff’s Theorem 2.5, conjugating G by a suitable Möbius transfor-
mation preserving H, we can assume that Gn → ∞ as n → ∞. Hence,

123
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by Cowen’s Theorem 2.6, G is semi-conjugated to a Möbius transformation
T : � → �, where � ∈ {C,H}, by a holomorphic map ϕ, which is univalent
on a simply connected absorbing domain V ⊂ H. In other words, we have the
following commutative diagram.

ϕ(V ) ⊂ �
T−−−→ �

⏐

⏐

�ϕ−1

�

⏐

⏐
ϕ

�

⏐

⏐
ϕ

V ⊂ H
G−−−→ H

⏐

⏐

�
π

⏐

⏐

�
π

U
F−−−→ U

We use the above notation throughout the proof.
Since the proof of Theorem A is rather technical, we first briefly discuss

its geometric ideas. We will define the absorbing set W as the projection
W = π(ϕ−1(A)) of a suitable domain A ⊂ ϕ(V ), which is absorbing for T .
Then one can easily show that W is absorbing for F . However, we should be
careful to define A sufficiently “thin”, so that W ⊂ U and

⋂∞
n=1 Fn(W ) = ∅

(a priori, we could have e.g. W = U ).
Notice that the map T is an isometry with respect to the hyperbolic metric

in H (in the case � = H) or the Euclidean metric in C (in the case � = C).
Hence, the idea is to define A (in the case � = H) in the form

A =
⋃

n≥m

DH(T
n(ω), cn)

for a pointω ∈ � and a suitable sequence cn which increases to ∞ sufficiently
slowly (in the case� = C we take Euclidean discs instead of hyperbolic ones).
Then we show that A ⊂ ϕ−1(V ), A is absorbing for T and (by Schwarz–Pick’s
Lemma), T (A) ⊂ A. Moreover, taking a suitable sequence cn , we can achieve

A ⊂
⋃

n≥m

Dϕ(V )(T
n(ω), bn)

for any given sequence bn with bn → ∞. (Notice that since V ⊂ H is simply
connected and ϕ is univalent, the set ϕ(V ) is simply connected and ϕ(V ) � C,
so ϕ(V ) is hyperbolic.) The precise construction of the suitable domain A will
be done in Proposition 3.1.
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Then, using Schwarz–Pick’s Lemma, for any z0 ∈ U and any sequence rn
with rn → ∞ we will choose ω and bn such that

W = π(ϕ−1(A)) ⊂
⋃

n≥0

DU (F
n(z0), rn).

Taking rn converging to ∞ slowly enough, depending on the speed of escaping
of Fn(z0) to ∞, we will show that W is sufficiently “thin” to satisfy the
assertions of Theorem A. Notice that although we construct A to be simply
connected, the set W will not be in general simply connected, unless U is
simply connected.

The construction of the absorbing domain A is done in the following propo-
sition.

Proposition 3.1 (Absorbing domains in �) Under the notation of Cowen’s
Theorem 2.6, for everyω ∈ � and every sequence of positive numbers bn, n ≥
0 with limn→∞ bn = ∞, there exist m ∈ N and a simply connected domain
A ⊂ � with the following properties:

(a) A ⊂ ⋃∞
n=m Dϕ(V )(T n(ω), bn) ⊂ ϕ(V ),

(b) T (A) ⊂ A,
(c) A is absorbing for T in �.

Moreover, if � = C, T (ω) = ω + 1, then for every ω ∈ � and b > 0 there
exist a sequence bn, n ≥ 0 with bn < b and limn→∞ bn = 0, a number m ∈ N

and a simply connected domain A ⊂ �, such that the conditions (a)–(c) are
satisfied.

Proof The proof splits in two cases, according to� = H or� = C in Cowen’s
Theorem 2.6.
Case 1� = H Then T (ω) = aω, a > 1 or T (ω) = ω± i . Notice that in this
case T is an isometry with respect to the hyperbolic metric in H. Take ω ∈ H

and a sequence bn, n ≥ 0 of positive numbers with bn → ∞ as n → ∞.
To define the domain A, first we show that there is m ∈ N and a sequence

of positive numbers dn, n ≥ 0 with dn → ∞ as n → ∞, such that

DH(T n(ω), dn) ⊂ ϕ(V ) for every n ≥ m. (2)

To see the claim, suppose it is not true. Then there exists d > 0 such that
DH(T n(ω), d) 	⊂ ϕ(V ) for infinitely many n, which contradicts the asser-
tion (b) of Cowen’s Theorem for the compact set K = DH(ω, d). Hence, we
can take a sequence dn satisfying (2).
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Now we define the absorbing set A as

A =
∞
⋃

n=m

DH(T
n(ω), cn),

where

cn = 1

2
min

(

inf
k≥n

ln
1 + Bk Dk

1 − Bk Dk
, �H(T

n(ω), ω)

)

for

Bn = ebn − 1

ebn + 1
, Dn = edn − 1

edn + 1
.

Since, by definition, bn, dn > 0 and bn → ∞, dn → ∞ as n → ∞, it follows
that 0 < Bn < 1, 0 < Dn < 1 and Bn → 1, Dn → 1 as n → ∞. In fact, we
have

bn = �D(Bn, 0), dn = �D(Dn, 0) (3)

(see (1)). The definition of cn implies (notice that �H(T n(ω), ω) ↗ ∞ as
n → ∞) that the sequence cn, n ≥ 0 is positive, increasing, tends to infinity
and satisfies

cn < ln
1 + Bn Dn

1 − Bn Dn
= �D(Bn Dn, 0).

To ensure that A is a domain we enlarge m if necessary, so that cn >

�H(ω, T (ω)) = �H(T n+1(ω), T n(ω)) for all n ≥ m. Hyperbolic discs in H

are Euclidean discs, so they are convex. Consequently, A is simply connected,
because it is a union of convex sets, all of them intersecting the straight line
containing the trajectory of T n(ω) under T . Notice also that defining

Cn = ecn − 1

ecn + 1
,

we have Cn > 0 and cn = ln((1 + Cn)/(1 − Cn)) = �D(Cn, 0), so

Cn < Bn Dn < Dn and cn < dn. (4)

The main ingredient to end the proof of the proposition is to show that the
closure of A equals the union of the closures of the respective discs, i.e.
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A =
∞
⋃

n=m

DH(T n(ω), cn). (5)

Before proving (5) we show how it implies the particular statements of the
proposition. To prove the statement (b), it is enough to use (5) and notice that

T (DH(T n(ω), cn)) = DH(T n+1(ω), cn) ⊂ DH(T
n+1(ω), cn+1),

because cn+1 > cn . To show the assertion (c), take a compact set K ⊂ H.
Then K ⊂ DH(ω, r) for some r > 0, so

T n(K ) ⊂ T n(DH(ω, r)) = DH(T
n(ω), r) ⊂ DH(T

n(ω), cn) ⊂ A

for sufficiently large n, because cn → ∞.
Now we prove the statement (a) of the proposition. By (5), it suffices to

show that

DH(T n(ω), cn) ⊂ Dϕ(V )(T
n(ω), bn). (6)

Note that by (2) and Schwarz–Pick’s Lemma 2.2 for the inclusion map, we
have

DDH(T n(ω),dn)(T
n(ω), bn) ⊂ Dϕ(V )(T

n(ω), bn),

and so, to show (6) it is enough to prove

DH(T
n(ω), cn) ⊂ DDH(T n(ω),dn)(T

n(ω), bn). (7)

To show (7), let h1 be a Möbius transformation of ̂C mapping H onto D with
h1(T n(ω)) = 0. Then

h1(DH(T n(ω), cn)) = DD(0, cn),

h1(DDH(T n(ω),dn)(T
n(ω), bn)) = DDD(0,dn)(0, bn) = DD(0,Dn)(0, bn),

where the latter equality follows from (3). Hence, to prove (7), it suffices to
check that

DD(0, cn) ⊂ DD(0,Dn)(0, bn). (8)
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K. Barański et al.

Let h2(v) = v/Dn be the Möbius transformation which maps univalently
D(0, Dn) onto D. Similarly as before, we have

h2(DD(0, cn)) = h2(D(0,Cn)) = D

(

0, Cn
Dn

)

,

h2(DD(0,Dn)(0, bn)) = DD(0, bn) = D(0, Bn).

Therefore, to prove (8) (and consequently (6) and the statement (a)), it is
enough to show

D

(

0,
Cn

Dn

)

⊂ D(0, Bn),

which holds by (4).
To end the proof of the proposition, it remains to prove (5). Obviously, it

suffices to show the inclusion A ⊂ ⋃∞
n=m DH(T n(ω), cn). Take v ∈ A and a

sequence vk ∈ A such that vk → v as k → ∞. By the definition of A, there
exists a sequence nk ≥ m, such that

vk ∈ DH(T
nk (ω), cnk ).

Since, by definition, cnk ≤ �H(T nk (ω), ω)/2, we have

�H(T nk (ω), ω)

2
≥ cnk > �H(T

nk (ω), vk) ≥ �H(T
nk (ω), ω)− �H(vk, ω),

so

�H(vk, ω) >
�H(T nk (ω), ω)

2
.

On the other hand, the sequence �H(vk, ω) is bounded, because vk → v.
Hence, the sequence�H(T nk (ω), ω)must be bounded, so nk is bounded. There-
fore, taking a subsequence, we can assume that there exists n ≥ m such that
nk = n for every k, so

vk ∈ DH(T
n(ω), cn).

This implies

v ∈ DH(T n(ω), cn),

which finishes the proof of (5).
Case 2 � = C
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In this case T (ω) = ω+1, so T is an isometry with respect to the Euclidean
metric in C. Since most of the arguments here are similar to the previous case
(with the Euclidean metric instead of the hyperbolic one), we skip some details.

Similarly as before, we claim that the absorbing region ϕ(V ) must contain
a union of appropriate discs of increasing radii. More precisely, for a given
ω ∈ C there exists m ∈ N and a sequence dn, n ≥ 0 of positive numbers with
dn → ∞ as n → ∞ such that

D(T n(ω), dn) ⊂ ϕ(V ) for every n ≥ m. (9)

(If the claim was not true, then for the compact set K = D(ω, d) we would
have a contradiction with the assertion (b) of Cowen’s Theorem.) Hence, in
what follows we will assume that the sequence dn satisfies (9).

Take b > 0 and let bn = 1/
√

dn → 0. Enlarging m if necessary, we may
assume bn < b for all n ≥ m. We define the absorbing set A as

A =
∞
⋃

n=m

D(T n(ω), cn)

for

cn = 1

2
min

(

inf
k≥n

ebk − 1

ebk + 1
dk, n

)

.

Clearly, cn, n ≥ 0 is an increasing sequence of positive numbers. Moreover,
we have

cn <
ebn − 1

ebn + 1
dn < dn and

ebn − 1

ebn + 1
dn = e1/

√
dn − 1

e1/
√

dn + 1
dn → ∞ (10)

as n → ∞. Hence, cn → ∞.
As in the previous case, enlarging m if necessary, we can assume A is a

domain. Moreover, A is simply connected, since it is a union of Euclidean
discs intersecting the straight line containing the T -trajectory of ω.

The main ingredient of the proof is to prove

A =
∞
⋃

n=m

D(T n(ω), cn). (11)

As in Case 1, first we show how (11) implies the particular statements of the
proposition. To show the statement (b), we use (11) and notice that

T (D(T n(ω), cn)) = D(T n+1(ω), cn) ⊂ D(T n+1(ω), cn+1),
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because cn+1 > cn . To prove the assertion (c), take a compact set K ⊂ C.
Then K ⊂ D(ω, r) for some r > 0, so

T n(K ) ⊂ T n(D(ω, r)) = D(T n(ω), r) ⊂ D(T n(ω), cn) ⊂ A

for sufficiently large n, because cn → ∞.
To prove the statement (a), in view of (11), it suffices to show

D(T n(ω), cn) ⊂ Dϕ(V )(T
n(ω), bn). (12)

Note that by (9) and Schwarz–Pick’s Lemma 2.2 we have

DD(T n(ω),dn)(T
n(ω), bn) ⊂ Dϕ(V )(T

n(ω), bn),

so, to show (12), it is enough to prove

D(T n(ω), cn) ⊂ DD(T n(ω),dn)(T
n(ω), bn). (13)

To see this is true we apply the univalent function h(v) = (v − T n(ω)) /dn ,
which maps D(T n(ω), dn) onto D. We have

h(D(T n(ω), cn)) = D

(

0, cn
dn

)

,

h(DD(T n(ω),dn)(T
n(ω), bn)) = DD(0, bn) = D

(

0, ebn −1
ebn +1

)

.

Therefore, to prove (13) (and consequently the statement (a)), it is sufficient
to check

D

(

0,
cn

dn

)

⊂ D

(

0,
ebn − 1

ebn + 1

)

,

which follows from (10).
Finally, we prove (11). As in Case 1, it suffices to show A ⊂ ⋃∞

n=m
D(T n(ω), cn). Take v ∈ A and a sequence vk ∈ A such that vk → v as
k → ∞. Then there exists a sequence nk ≥ m, such that

vk ∈ D(T nk (ω), cnk ).

Since, by definition, cnk ≤ nk/2, we have

nk

2
≥ cnk > |T nk (ω)− vk | = |nk + ω − vk | ≥ nk − |ω| − |vk |,
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so

|vk | > nk

2
− |ω|.

On the other hand, the sequence vk is bounded, because vk → v. Hence, the
sequence nk must be bounded, so taking a subsequence, we can assume that
nk = n for every k and some n ≥ m, so

vk ∈ D(T n(ω), cn)for every k > 0 and v ∈ D(T n(ω), cn).

Hence, (11) follows. �

With Proposition 3.1 in hand, we are ready to prove Theorem A. We con-
struct the absorbing region W by projecting A into the domain U .

Proof of Theorem A Note that by Lemma 2.3, there exist c > 0 and a large
r > 0 such that

�U (u) >
c

|u| log |u| for u ∈ U, |u| ≥ r. (14)

Fix some v0 ∈ ϕ(V ) and let z0 = π(ϕ−1(v0)). Since Fn(z0) → ∞, replacing
v0 by T j (v0) for sufficiently large j , we can assume

|Fn(z0)| > r log r > r for every n ≥ 0. (15)

Take z ∈ U and a sequence of positive numbers {rn}n≥0 with rn → ∞. Fix
a number n0 ∈ N such that

rn > 2�U (z, z0) for every n ≥ n0. (16)

We define the sequence

an = 1

2
min

(

rn,
c

2
inf
k≥n

log log |Fk(z0)|
)

. (17)

Clearly, an → ∞ as n → ∞. Let A ⊂ � be the domain from Proposition 3.1
defined for ω = T n0(v0) and bn = an+n0 . Finally, let

W = π(ϕ−1(A)).

123
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By construction, we have the following commutative diagram.

A ⊂ ϕ(V ) ⊂ �
T−−−→ �

⏐

⏐

�ϕ−1

⏐

⏐

�ϕ−1

�

⏐

⏐
ϕ

�

⏐

⏐
ϕ

ϕ−1(A) ⊂ V ⊂ H
G−−−→ H

⏐

⏐

�
π

⏐

⏐

�
π

⏐

⏐

�
π

⏐

⏐

�
π

W ⊂ π(V ) ⊂ U
F−−−→ U

In the remaining part of the proof we show that W satisfies the conditions
listed in Theorem A.

First, we prove the statement (a). By Proposition 3.1 we know that, for some
m ∈ N,

A ⊂
∞
⋃

n=m

Dϕ(V )(T
n(ω), bn) =

∞
⋃

n=m+n0

Dϕ(V )(T
n(v0), an)

⊂
∞
⋃

n=n0

Dϕ(V )(T
n(v0), an). (18)

Hence, by Schwarz–Pick’s Lemma 2.2 for ϕ−1 and the inclusion map, we
obtain

ϕ−1(A) ⊂
∞
⋃

n=n0

DV (ϕ
−1(T n(v0)), an)

=
∞
⋃

n=n0

DV (G
n(ϕ−1(v0)), an) ⊂

∞
⋃

n=n0

DH(G
n(ϕ−1(v0)), an)

and

W ⊂
∞
⋃

n=n0

DU (π(G
n(ϕ−1(v0))), an) =

∞
⋃

n=n0

DU (F
n(z0), an).

Using this together with (16), (17) and Schwarz–Pick’s Lemma 2.2, we get

W ⊂
∞
⋃

n=n0

DU (F
n(z), an + �U (F

n(z), Fn(z0)))

⊂
∞
⋃

n=n0

DU (F
n(z), an + �U (z, z0)) ⊂

∞
⋃

n=n0

DU (F
n(z), rn),
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which ends the proof of the statement (a).
Now we prove the assertions (b)–(d). Fix j ≥ 0 and consider an arbitrary

u ∈ F j (W ). Let wk, k ≥ 1 be a sequence of points in W , such that for
uk = F j (wk) we have uk → u as k → ∞. Since W = π(ϕ−1(A)), there
exists a sequence of points vk ∈ A with wk = π(ϕ−1(vk)). By (18), for every
k there exists nk ≥ n0, such that

vk ∈ Dϕ(V )(T
nk (v0), ank ). (19)

Thus, by Schwarz–Pick’s Lemma 2.2, we have

wk ∈ DU (F
nk (z0), ank ), uk ∈ DU (F

nk+ j (z0), ank ). (20)

The key ingredient in the proof of the assertions (b)–(d) is to show

|uk | > e
√

log |Fnk+ j (z0)|. (21)

To prove (21), take γk : [0, 1] → U to be a curve in U such that γk(0) =
Fnk+ j (z0), γk(1) = uk ,

∫

γk

�U (ξ)|dξ | < 2�U (F
nk+ j (z0), uk) (22)

and let

tk = sup{t ∈ [0, 1] : |γk(t
′)| ≥ r for all 0 < t ′ < t}.

By (15), |γk(0)| > r , so the supremum is well defined. Moreover, we have
|γk(t)| ≥ r for t ∈ [0, tk] and |γk(tk)| ∈ {r, |γk(1)|}. Notice that if |γk(0)| <
|γk(1)|, then (21) follows from (15). Hence, we may assume |γk(0)| ≥ |γk(1)|,
which implies |γk(0)| ≥ |γk(tk)|. Using this together with (14), (17), (20) and
(22), we obtain

c

4
log log |Fnk+ j (z0)| ≥ ank > �U (F

nk+ j (z0), uk)

>
1

2

∫

γk

�U (ξ)|dξ | ≥ 1

2

∫

γk |[0,tk ]

�U (ξ)|dξ | ≥ c

2

∫

γk |[0,tk ]

|dξ |
|ξ | log |ξ |

≥ c

2

|γk(0)|
∫

|γk(tk)|

ds

s log s
= c

2
(log log |Fnk+ j (z0)| − log log |γk(tk)|),
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where the latter inequality follows from the definition of the Riemann integral.
We conclude that log log |γk(tk)| > (log log |Fnk+ j (z0)|)/2, which means

|γk(tk)| > e
√

log |Fnk+ j (z0)|. (23)

In particular, this implies that |γk(tk)| 	= r , because otherwise we have a
contradiction with (15). Hence, |γk(tk)| = |γk(1)| = |uk |, so (23) shows (21).

Having (21), we now prove the assertions (b)–(d) of Theorem A. First, notice
that since uk → u as k → ∞ and Fn(z0) → ∞ as n → ∞, (21) implies
that the sequence nk is bounded. Hence, (19) shows that the sequence vk is
bounded, so taking a subsequence, we can assume that

vk → v ∈ A,

and, by Proposition 3.1, v ∈ ϕ(V ). Therefore, by continuity,

wk → w = π(ϕ−1(v)) ∈ W ∩ U and F j (w) = u. (24)

Recall that u was taken as an arbitrary point in F j (W ). Hence, for j = 0,
(24) implies u = w ∈ U , which proves the statement (b) and shows that
F j (W ) is well defined for j ≥ 1. To prove the assertion (c), notice that (24)
gives u = F j (w) ∈ F j (W ), which shows F j (W ) ⊂ F j (W ). On the other
hand, the inclusion F j (W ) ⊂ F j (W ) is obvious by the continuity of F j ,
so F j (W ) = F j (W ) for j ≥ 1. To end the proof of the assertion (c), it
is sufficient to show F j (W ) ⊂ F j−1(W ) for j ≥ 1. To do it, notice that
Proposition 3.1 implies T (v) ∈ T (A) ⊂ A, so for j = 1 (24) gives u =
F(w) = F(π(ϕ−1(v))) = π(ϕ−1(T (v))) ∈ W . Hence,

F(W ) = F(W ) ⊂ W.

This and induction on j proves F j (W ) ⊂ F j−1(W ) for j ≥ 1, which ends
the proof of the assertion (c).

To show the statement (d), notice that (21) implies |u| ≥ infn≥ j+n0

e
√

log |Fn(z0)|, so

F j (W ) = F j (W ) ⊂ C\D

(

0, inf
n≥ j+n0

e
√

log |Fn(z0)|
)

.

This proves (d), because |Fn(z0)| → ∞ as n → ∞.
Now we show the statement (e). Take a compact set K ⊂ U and a point

u ∈ K . Letw ∈ H be such that π(w) = u and take N (w) to be an open neigh-
bourhood of w, such that N (w) ⊂ H. Then π(N (w)) is an open neighbour-
hood of u, so by the compactness of K , we can choose a finite number of points
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u1, . . . , uk ∈ K , such that K ⊂ ⋃k
j=1 π(N (w j )). Since L = ⋃k

j=1 ϕ(N (w j ))

is a compact set in�, by Proposition 3.1, there exists n such that T n(L) ⊂ A.
This implies

k
⋃

j=1

Gn(N (w j )) ⊂ ϕ−1

⎛

⎝

k
⋃

j=1

T n(ϕ(N (w j )))

⎞

⎠

= ϕ−1

⎛

⎝

k
⋃

j=1

ϕ(Gn(N (w j )))

⎞

⎠ ⊂ ϕ−1(A),

so

Fn(K ) ⊂
k

⋃

j=1

Fn(π(N (w j ))) =
k

⋃

j=1

π(Gn(N (w j ))) ⊂ W,

which ends the proof of the statement (e).
To show that F is locally univalent on W , take z ∈ W . Then z = π(ϕ−1(ω))

for some ω ∈ A, so F near z can be expressed as F = π ◦ ϕ−1 ◦ T ◦ ϕ ◦ π−1,
where π−1 is the inverse branch of π mapping z onto ϕ−1(ω). Since ϕ|V and
T are univalent, F is locally univalent. This ends the proof of Theorem A. �

4 Configurations of domains and their images

In this section we present preliminary lemmas which we use repeatedly
throughout the proofs of Theorems B and C. They provide the existence of
weakly repelling fixed points for meromorphic maps in some domains under
certain combinatorial conditions related to the configuration of the domain and
its subsequent images. These lemmas are formulated in a general setup and
may have further applications apart from the ones used in this paper.

The first lemma shows that a meromorphic map is proper on bounded com-
ponents of the preimage of a domain with finite Euler characteristic.

Lemma 4.1 (Proper restrictions of meromorphic maps) Let D ⊂ ̂C be a
domain with finite Euler characteristic and let f be a map, which is non-
constant and meromorphic on a neighbourhood of D′, where D′ is a bounded
component of f −1(D). Then D′ has finite Euler characteristic and the restric-
tion f : D′ → D is proper.

Proof Clearly, we have f (D′) = D. Since D has finite Euler characteristic, its
boundary has a finite number of connected components, and each component
of ∂D′ is mapped by f onto a component of ∂D. Hence, the boundary of
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D′ has finitely many components, because otherwise we could find w0 in the
boundary of D, such that f takes the value w0 on a set with an accumulation
point in D′, so f ≡ w0. This implies that D′ has finite Euler characteristic
and f : D′ → D is proper. �
Definition (Exterior of a compact set) For a compact set X ⊂ C we denote
by ext(X) the connected component of ̂C\X containing infinity. We set
K (X) = ̂C\ext(X). For a Jordan curve γ ⊂ C we denote by int(γ ) the
bounded component of C\γ .

The following facts are immediate consequences of some standard topolog-
ical facts and the maximum principle. We will use them repeatedly without
explicit quotation.

Lemma 4.2 (Properties of K (X) and ext(X)) Let X ⊂ C be a compact set.
Then:

(a) if X is connected, then ext(X) is a simply connected subset of ̂C and K (X)
is a connected subset of C,

(b) if X has a finite number of components, then ext(X) has finite Euler char-
acteristic,

(c) K (X) is a compact set in C and C\K (X) is connected,
(d) if Y ⊂ X is a compact set, then ext(Y ) ⊃ ext(X) and K (Y ) ⊂ K (X),
(e) if f is meromorphic map in a neighbourhood of K (X) and K (X) does

not contain poles of f , then f (K (X)) ⊂ K ( f (X)).

The next lemma shows that the multiple connectivity of a Fatou component
U implies the existence of a pole of f in a bounded component of the com-
plement of some image of U . This will be an important property used in the
proofs of the main theorems.

Lemma 4.3 (Poles in loops) Let f : C → ̂C be a transcendental non-entire
meromorphic map and let γ ⊂ C be a closed curve in a Fatou component U of
f , such that K (γ ) ∩ J ( f ) 	= ∅. Then there exists n ≥ 0, such that K ( f n(γ ))

contains a pole of f . Consequently, if U is multiply connected then there exists
a bounded component of ̂C\ f n(U ), which contains a pole.

Proof If f has exactly one pole which is an omitted value, then f is a self-map
of a punctured plane and the claim follows easily from [3, Theorem 1]. Hence,
we can assume that f has at least two poles or exactly one pole, which is
not an omitted value. Then prepoles are dense in J ( f ), so there is a prepole
in K (γ ). Suppose K ( f n(γ )) does not contain poles of f for every n ≥ 0.
Then f n is holomorphic in a neighbourhood of K (γ ), so by Lemma 4.2,
f n(K (γ )) ⊂ K ( f n(γ )) for every n ≥ 0. Hence, K (γ ) cannot contain any
prepoles of f , which gives a contradiction. �
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Fig. 2 Setup of Lemma 4.4 with the assumption (a) (left) and (a′) (right)

The next lemma is a consequence of Buff’s results on the existence of
weakly repelling fixed points for rational-like maps (Theorem 2.10 and Corol-
lary 2.12).

Lemma 4.4 (boundary maps out) Let� ⊂ C be a bounded domain with finite
Euler characteristic and let f be a meromorphic map in a neighbourhood of
�. Assume that there exists a component D of ̂C\ f (∂�), such that:

(a) � ⊂ D,
(b) there exists z0 ∈ � such that f (z0) ∈ D.

Then f has a weakly repelling fixed point in�. Moreover, if additionally�
is simply connected with locally connected boundary, then the assumption (a)
can be replaced by:

(a′) � � D and f has no fixed points in ∂� ∩ f (∂�).

Remark Observe that if� is simply connected with locally connected bound-
ary, then f (∂�) is allowed to have common points with ∂� (see Fig. 2). A
version of this lemma requiring f (∂�) to be disjoint from ∂� and f (z0) = ∞
appeared in [10, Lemma 1].

Proof of Lemma 4.4 By the assumption (b), there exists a component D′ of
f −1(D) containing z0. Observe that

D′ ⊂ �.

Fig. 3 Setup of
Corollary 4.5
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Fig. 4 Two possible setups of Corollary 4.6

To see this, suppose that D′ is not contained in �. Then there exists z ∈
D′ ∩ ∂�. Consequently, f (z) ∈ D ∩ f (∂�). This is a contradiction since, by
definition, D ∩ f (∂�) = ∅.

As a consequence, D′ is bounded. Moreover, since � has finite Euler char-
acteristic, ∂� (and hence f (∂�) and ∂D) has a finite number of components,
so D has finite Euler characteristic. Therefore, by Lemma 4.1, D′ has finite
Euler characteristic and the restriction f : D′ → D is proper. Moreover, the
assumption (a) implies D′ ⊂ D. Hence (possibly after a change of coordinates
in ̂C by a Möbius transformation), f : D′ → D is a rational-like map, so by
Theorem 2.10, the map f has a weakly repelling fixed point in D′ ⊂ �.

Finally, assume that� is simply connected with locally connected boundary,
and the assumption (a) is replaced by (a′). Then ∂� (and hence f (∂�)) is a
locally connected continuum in ̂C, so D is simply connected and, by the
Torhorst Theorem 2.13, has locally connected boundary. Moreover, since D′ ⊂
� ⊂ D and the boundary of D is contained in f (∂�), the intersection of the
boundaries of D and D′ is either empty or is contained in ∂� ∩ f (∂�). This
together with the condition (a′) implies that the restriction f : D′ → D
satisfies the assumptions of Corollary 2.12, which ends the proof. �

In particular, Lemma 4.4 implies the following two corollaries (see Figs. 3,
4).

Corollary 4.5 (Continuum surrounds a pole and maps out) Let X ⊂ C be a
continuum and let f be a meromorphic map in a neighbourhood of K (X).
Suppose that:

(a) f has no poles in X,
(b) K (X) contains a pole of f ,
(c) K (X) ⊂ ext( f (X)).

Then f has a weakly repelling fixed point in the interior of K (X).
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Proof Let p ∈ K (X) be a pole of f . Observe that by the assumption (a), the
set f (X) (and hence K ( f (X))) is a continuum in C. Moreover, (a) implies

p ∈ � ⊂ � ⊂ K (X)

for a bounded simply connected component � of ̂C\X . We have ∂� ⊂ X ,
which gives f (∂�) ⊂ f (X), so by the assumption (c),

K (X) ⊂ ext( f (∂�)),

which implies � ⊂ ext( f (∂�)).
Let D = ext( f (∂�)). We have � ⊂ D, p ∈ � and f (p) = ∞ ∈ D.

Hence, the assumptions of Lemma 4.4 are satisfied for �, D, p, so f has a
weakly repelling fixed point in�, which is a subset of the interior of K (X). �
Corollary 4.6 (Continuum maps out twice) Let X ⊂ C be a continuum and
let f be a meromorphic map in a neighbourhood of X ∪ K ( f (X)). Suppose
that:

(a) f has no poles in X,
(b) X ⊂ K ( f (X)),
(c) f 2(X) ⊂ ext( f (X)).

Then f has a weakly repelling fixed point in the interior of K ( f (X)).

Proof By the assumption (a), the set f (X) (and hence K ( f (X))) is a contin-
uum in C and f 2(X) is a continuum in ̂C. Moreover, X ∩ f (X) = ∅ (otherwise
f (X) ∩ f 2(X) 	= ∅, which contradicts the assumption (c)). Hence, by (b),

X ⊂ � ⊂ � ⊂ K ( f (X))

for some bounded simply connected component� of ̂C\ f (X). We have ∂� ⊂
f (X), so f (∂�) ⊂ f 2(X) and by the assumption (c),

K ( f (X)) ⊂ ̂C\ f 2(X) ⊂ ̂C\ f (∂�),

which gives K ( f (X)) ⊂ D for some component D of ̂C\ f (∂�). Conse-
quently, � ⊂ K ( f (X)) ⊂ D. Moreover, for any z0 ∈ X we have z0 ∈ � and
f (z0) ∈ f (X) ⊂ D. Hence, the assumptions of Lemma 4.4 are satisfied for
�, D, z0, so f has a weakly repelling fixed point in �, which is contained in
the interior of K ( f (X)). �

The previous results give some conditions for the existence of a weakly
repelling fixed point in the case when a closed curve is mapped by f into
its exterior. The following proposition, which is a considerable generalization
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Fig. 5 Possible setup for
Proposition 4.7

of Shishikura’s Theorem 2.14, gives conditions for the existence of a weakly
repelling fixed point in the case when a closed curve before mapping out is
mapped by f several times into its interior (see Fig. 5).

Proposition 4.7 (Boundary maps in) Let � ⊂ C be a bounded simply con-
nected domain and let f be a meromorphic map in a neighbourhood of �.
Suppose that:

(a) there exists m ≥ 2, such that f m is defined on ∂�,
(b) f j (∂�) ⊂ � for j = 1, . . . ,m − 1,
(c) f m(∂�) ∩� = ∅.

Then f has a weakly repelling fixed point in �.

Proof We proceed by contradiction, i.e. we assume that f has no weakly
repelling fixed points in �. The proof is split into a number of steps.
Step 1 First, note that the simple connectedness of � implies that ∂� (and
hence f j (∂�) for j = 1, . . . ,m) is connected. Moreover, the following con-
ditions are satisfied:

∂�, f (∂�), . . . , f m(∂�) are pairwise disjoint, (25)

K ( f j (∂�)) ⊂ � for j = 1, . . . ,m − 1. (26)

To see (25), notice that if z ∈ f j ′(∂�)∩ f j ′′(∂�) for some 0 ≤ j ′ < j ′′ ≤ m,
then f m− j ′′(z) ∈ f m+ j ′− j ′′(∂�)∩ f m(∂�) and 0 ≤ m + j ′ − j ′′ < m, which
contradicts the assumptions (b)–(c). Hence, (25) follows. Now (25) together
with (b) implies (26).
Step 2 We show that we can reduce the proof to the case

f j+1(∂�) ⊂ ext( f j (∂�)) for j = 1, . . . ,m − 1. (27)

To see this, suppose that there exists j0 ∈ {1, . . . ,m − 1} such that
f j0+1(∂�) ⊂ K ( f j0(∂�)) and take the maximal number j0 with this property.
Then by the assumption (c) and (26), j0 	= m − 1 and f j0+1(∂�) ⊂ �0 ⊂ �
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for some bounded simply connected component �0 of ̂C\ f j0(∂�). We have
f k(∂�0) ⊂ f k+ j0(∂�) for k ≥ 0. Hence, it follows from (26) and (c) that
there exists m0 ≥ 2 such that f j (∂�0) ⊂ �0 for j = 1, . . . ,m0 − 1 and
f m0(∂�0) ∩�0 = ∅. Thus, the assumptions (a)–(c) are satisfied for �0,m0.
Since j0 was maximal, this implies that replacing, respectively, � and m by
�0 and m0, we can assume f j+1(∂�) 	⊂ K ( f j (∂�)) for j = 1, . . . ,m − 1.
Since by (25), there is no intersection between the images of ∂�, we have
proven that we can reduce the proof to the case (27).
Step 3 We claim that there exists a Jordan curve σ1 ⊂ C close to f (∂�) such
that:

int(σ1) ⊃ K ( f (∂�)),

σ1contains no images of critical points of f in�, (28)

σ1, f (σ1), . . . , f m−2(σ1)are pairwise disjoint subsets of � and

f m−1(σ1) ∩� = ∅, (29)

f j+1(σ1) ⊂ ext( f j (σ1)) for j = 0, . . . ,m − 2. (30)

The existence of a curve satisfying these four conditions follows easily from
(25), (26), (27), the assumption (c) and the fact that the set of critical points in
� is finite.

We then consider the set

D = ext(σ1).

By the assumption (c) and (29), we have f m(∂�) ⊂ D. Hence, there exists a
component D′ of f −1(D) containing f m−1(∂�). By definition, D′ intersects
� and contains a pole of f . Consequently,

D′ ⊂ �,

because otherwise D′ ∩ ∂� 	= ∅, so D ∩ f (∂�) 	= ∅, which is impossible by
(28). Therefore, D′ is bounded and by Lemma 4.1, it has finite Euler charac-
teristic and the restriction f : D′ → D is proper. In fact, since ∂D contains
no values of critical points of f in ∂D′, the boundary of D′ consists of finitely
many disjoint Jordan curves, f is a finite degree covering in a neighbourhood
of every component of ∂D′ and maps this component onto σ1.

We now define σ0 to be the Jordan curve, which is the boundary of the
unbounded component of ̂C\D′. Notice that D′ ⊂ int(σ0) ⊂ �, moreover
int(σ0) contains a pole of f and f (σ0) = σ1. We will use the notation

σ j = f j (σ0).

123
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Fig. 6 Possible relative distribution of the curve σ j for some j = 1, . . .m and the curve σ0

By (29), we have σ0 ∩ σ j = ∅ for j = 1, . . . ,m, which means that

K (σ j ) ⊂ int(σ0) or σ j ⊂ ext(σ0). (31)

(see Fig. 6). Finally, we note that σ0 and σ1 are, by construction, Jordan curves,
while σ j for j = 2, . . .m are closed curves, which are not necessarily Jordan.
Step 4 We show that the following conditions hold:

K (σ1) ⊂ int(σ0), (32)

K (σ j ) ⊂ ext(σ j+1) for j = 1, . . . ,m − 2, (33)

f has no poles in K (σ j ) for j = 1, . . . ,m − 2. (34)

To prove it, note first that if σ j ⊂ K (σ j+1) for some j ∈ {0, . . . ,m − 2}, then
for X1 = σ j we have X1 ⊂ K ( f (X1)), f has no poles in X1 and, by (30),
f 2(X1) ⊂ ext( f (X1)), so the assumptions of Corollary 4.6 are satisfied for
X1. Hence, f has a weakly repelling fixed point in K ( f (X1)) = K ( f j+1(σ0)),
which is contained in � by (29). This makes a contradiction. Hence, we have
σ j 	⊂ K (σ j+1) for j = 0, . . . ,m −2, which together with (30) and (31) shows
K (σ1) ∩ σ0 = ∅ and (33).

To end the proof of (32), it remains to exclude the case K (σ0) ⊂ ext(σ1).
If it holds, then (since int(σ0) contains a pole of f ), the assumptions of Corol-
lary 4.5 are satisfied for X = σ0. Hence, f has a weakly repelling fixed point
in K (σ0) ⊂ �, which is a contradiction. In this way we have proved (32).

Finally, to show (34), suppose that f has a pole in K ( f j (σ0)) for some
j ∈ {1, . . . ,m − 2} and take X2 = f j (σ0). Then by (33), we have K (X2) ⊂
ext( f (X2)), moreover f has no poles in X2 and K (X2) contains a pole of f ,
so by Corollary 4.5 for X2, the map f has a weakly repelling fixed point in
K (X2) = K ( f j (σ0)), which is contained in� by (29). This is a contradiction.
Hence, the assertion (34) is proved.
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Fig. 7 Two possible relative positions of σk = f k(σ0) and σ0 under the condition (35). In both
cases, σk+1 ⊂ ext(σ0)

Fig. 8 Sketch of Step 5

Notice that by (29), (31) and (32), there exists 1 ≤ k ≤ m − 1, such that

K (σ j ) ⊂ int(σ0) for j = 1, . . . , k and σk+1 ⊂ ext(σ0) (35)

(see Fig. 7).
Step 5 We show

f (K (σk)) ⊂ ext(σ0). (36)

To see it, suppose otherwise, i.e. f (K (σk)) 	⊂ ext(σ0) (see Fig. 8).
Then there exists z0 ∈ K (σk) such that f (z0) ∈ K (σ0). By (35), we have

z0 ∈ �1 ⊂ �1 ⊂ K (σk)

for some bounded simply connected component �1 of ̂C\σk . We have
∂�1 ⊂ σk , so f (∂�1) ⊂ σk+1, which together with (35) implies �1 ⊂
K (σ0) ⊂ D1 for some component D1 of ̂C\ f (∂�1). Moreover, z0 ∈ �1 and
f (z0) ∈ K (σ0) ⊂ D1. Hence, the assumptions of Lemma 4.4 are satisfied for
�1, D1, z0, so f has a weakly repelling fixed point in �1, which is contained
in � by (29). This makes a contradiction. Therefore, (36) is satisfied.
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Fig. 9 Sketch of Step 6

Step 6 We check that we are under the assumptions of Shishikura’s Theo-
rem 2.14. Let

V0 = ext(σ0), V1 = int(σ1),

and let us check that V0, V1 satisfy the required assumptions. By definition,
V0, V1 are simply connected and f (∂V0) = ∂V1. Since f is a covering in some
neighbourhood N of σ0 = ∂V0, we have

f (V0 ∩ N ) = f (N\D′) ⊂ C\D = V1.

By (35), K ( f j (∂V1)) ⊂ C\V0 for j = 0, . . . , k − 1 and f k(∂V1) ⊂ V0.
Moreover, by (34) and (36), the map f k is defined on V1 and

f j (V1) ⊂ K ( f j (∂V1)) ⊂ C\V0 for j = 0, . . . , k − 1 and f k(V1) ⊂ V0.

See Fig. 9.
Hence, Shishikura’s Theorem 2.14 concludes that f has a weakly repelling

point in ̂C\V0 = int(σ0) ⊂ �, which finishes the proof. �

5 Proof of Theorem B

Let f : C → ̂C be a transcendental meromorphic map and let U0, . . . ,Up−1
be a periodic cycle of Baker domains of f of (minimal) period p ≥ 1. Recall
that for j = 0, . . . , p − 1 we have f pn → ζ j locally uniformly on U j as
n → ∞ for some ζ j ∈ ̂C such that ζ j = ∞ for at least one j . Renumbering
the Baker domains, we may assume ζ0 = ∞, i.e. the domain U0 is unbounded
and

f pn(z) → ∞ for z ∈ U0 as n → ∞.
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As the first step in the proof of Theorem B we show a technical lemma
which allows us to discard some of the possible configurations of the U j ’s.
More precisely, we show that under certain relative positions of the U j ’s the
existence of a weakly repelling fixed point follows directly from the results in
Sect. 4.

Lemma 5.1 (Configurations of Baker domains) Suppose there exist a simply
connected bounded domain � ⊂ C and a pole p0 of f , such that

p0 ∈ � and ∂� ⊂ U j

for some j = 0, . . . , p − 1. Then f has a weakly repelling fixed point or there
exist n ≥ 0 and a bounded simply connected domain �0 ⊂ C, such that

p0 ∈ �0 and ∂�0 ⊂ f n(∂�) ⊂ U0.

Proof If p = 1 then we can take n = 0 and �0 = �. Hence, in what follows
we assume p > 1.

Since p > 1, it is clear that ∂�, f (∂�), . . . , f p−1(∂�) are pairwise disjoint
and we cannot have

K (∂�) ⊂ K ( f (∂�)) ⊂ · · · ⊂ K ( f p(∂�)),

because it would contradict the connectedness of U j . Thus, there is a minimal
n ≥ 0 such that

K ( f n(∂�)) 	⊂ K ( f n+1(∂�)). (37)

Note that we have p0 ∈ K ( f n(∂�))\ f n(∂�). Hence, there exists a bounded
component�0 of ̂C\ f n(∂�), such that p0 ∈ �0. Since� is simply connected,
�0 is also simply connected.

As ∂�0 ∩ f (∂�0) = ∅, one of the three possibilities holds: �0 ⊂
K ( f (∂�0)),�0 ⊂ ext( f (∂�0)) or f (∂�0) ⊂ �0. Since ∂�0 ⊂ f n(∂�)

and f (∂�0)∩ f n(∂�) = ∅, the first possibility does not occur by (37). If the
second possibility holds, then the assumptions of Corollary 4.5 are satisfied
for X = ∂�0, so f has a weakly repelling fixed point. Hence, we are left with
the third possibility, i.e. f (∂�0) ⊂ �0.

Note that ∂�0, f (∂�0), . . . , f p−1(∂�0) are pairwise disjoint. Therefore,
if there exists a (minimal) number 2 ≤ m ≤ p − 1 such that f m(∂�0) 	⊂ �0,
then f (∂�0), . . . , f m−1(∂�0) ⊂ �0 and f m(∂�0) ∩ �0 = ∅, so the
assumptions of Proposition 4.7 are fulfilled for �0 and we conclude that
f has a weakly repelling fixed point in that case. Thus, we can assume
f (∂�0), . . . , f p−1(∂�0) ⊂ �0. This implies ∂�0 ⊂ U0, because otherwise
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∂�0 ∩ U0 = ∅ and one of the sets f (∂�0), . . . , f p−1(∂�0) is contained in
U0, which contradicts the fact that U0 is connected and unbounded. Hence,
�0 satisfies the assertion of the lemma. �

Let W ⊂ U0 be an absorbing domain which exists according to Corollary A′
(for the map F = f p). Note that W is unbounded and does not contain poles
of f . The proof of Theorem B splits into two cases depending on the simple
connectivity of W .
Case 1 W is not simply connected.

Under this assumption we can take a closed curve

γ ⊂ W,

such that K (γ )∩J ( f ) 	= ∅. Notice that, because of Corollary A′, f p�(γ ) ⊂ W
for all � ≥ 0.

By Lemma 4.3, there exists n0 ≥ 0 and a pole p0 of f , such that
p0 ∈ K ( f n0(γ )). Then p0 is in a bounded simply connected component
� of ̂C\ f n0(γ ), such that ∂� ⊂ f n0(W ). By Lemma 5.1, we may reduce the
proof to the case when there exists a bounded simply connected domain �0
with

∂�0 ⊂ f n1(∂�) ⊂ f n1(γ ) ⊂ U0 ∩ f n0+n1(W )

for some n1 ≥ 0, such that p0 ∈ �0. In particular, this implies that n0+n1 = �p
for some � ≥ 0, so by Corollary A′ we have f n0+n1(W ) ⊂ W , which implies
∂�0 ⊂ W . We conclude that there exists a bounded component �1 of C\W ,
such that p0 ∈ �1. Since W is connected we know that�1 is simply connected.
We claim that

∂�1, f (∂�1), . . . , f p(∂�1) are pairwise disjoint. (38)

To see the claim it is enough to notice that ∂�1, f (∂�1), . . . , f p−1(∂�1) are
in different Fatou components. Moreover, ∂�1 ⊂ W ⊂ U0, so by Corollary A′
we get

f p(∂�1) ⊂ f p(W ) ⊂ f p(W ) ⊂ C\�1. (39)

Now we proceed like in the proof of Lemma 5.1. By (38), we have f (∂�1) ⊂
�1, �1 ⊂ ext( f (∂�1)) or�1 ⊂ K ( f (∂�1)). In the first case, by (39) we have
p > 1 and there exists m ∈ {2, . . . , p} such that f (∂�1), . . . , f m−1(∂�1) ⊂
�1 and f m(∂�1) ∩ �1 = ∅. Hence, f has a weakly repelling fixed point by
Proposition 4.7 applied to �1. In the second case we use Corollary 4.5 for
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X = ∂�1. Thus, we can assume that the third possibility takes place, i.e.

�1 ⊂ K ( f (∂�1))

Note that this implies

p = 1,

because if p > 1, then�1 ⊂ U0 and f (∂�1)∩U0 = ∅, which contradicts the
fact that U0 is connected and unbounded.

Let

N = {n ≥ 0 : p0 is contained in a bounded component of C\ f n(W )}.

Note that 0 ∈ N , so sup N is well defined. We consider two further subcases.
Case (i): sup N = N < ∞
Then p0 is contained in a bounded component �2 of C\ f N (W ) but is not

contained in any bounded component of C\ f N+1(W ). Moreover, by Corol-
lary A′ we have

f (∂�2) ⊂ f ( f N (W )) = f N+1(W ) ⊂ f N (W ) ⊂ C\�2.

This implies �2 ⊂ ext( f (∂�2)). Consequently, the assumptions of Corol-
lary 4.5 are satisfied for X = ∂�2, and so f has a weakly repelling fixed
point.

Case (ii): sup N = ∞
Fix some point z0 ∈ C, which is not a pole of f . By assumption and

Corollary A′, for sufficiently large n there exists a bounded component �3 of
C\ f n(W ) containing p0, z0, f (z0), such that

f (∂�3) ⊂ f ( f n(W )) = f n+1(W ) ⊂ f n(W ) ⊂ C\�3.

Hence,

�3 ⊂ D,

where D is a component of ̂C\ f (∂�3). We have z0, f (z0) ∈ �3 ⊂ D.
Hence, �3, D, z0 satisfy the assumptions of Lemma 4.4, so f has a weakly
repelling fixed point. This ends the proof of Theorem B in Case 1 (W is multiply
connected).
Case 2 W is simply connected.
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By assumption, one of the domain U j is multiply connected, so like in the
proof in Case 1, using Lemmas 4.3 and 5.1 we can assume that there exists a
curve

γ ⊂ U0

and a pole p0 of f , such that p0 ∈ K (γ ) (the difference with respect to the
previous case is that the curve γ was taken in W ). Let


 =
∞
⋃

n=0

f n(γ ).

Note that p0 /∈ 
 and f (
) ⊂ ⋃∞
n=1 f n(γ ) ⊂ 
. Moreover, 
 is the union of

p disjoint sets


 j =
∞
⋃

n=0

f pn+ j (γ ) ⊂ U j ,

for j ∈ {0, . . . p−1}, such that f (
 j ) ⊂ 
 j+1 mod p and f p� → ζ j uniformly
on 
 j as � → ∞. In particular, this implies that 
0 is a closed subset of C.

Define

N = {n ≥ 0 : p0 is contained in a bounded simply connected domain

with boundary in f n(
0)}.

Since p0 ∈ K (γ )\γ and γ ⊂ 
0, we have 0 ∈ N , so sup N is well defined.
By Lemma 5.1, we can reduce the proof to the case, when the following holds:

for every n ∈ N there exists N ∈ N such that N ≥ n and f N (
0) ⊂ U0.

(40)

Suppose sup N = ∞. Then (40) implies that there are arbitrarily large N
such that p0 is contained in a bounded simply connected domain with boundary
in f N (
0) ∩ U0. By Corollary A′, this boundary is contained in W for large
enough values of N . This is a contradiction since W is simply connected by
assumption.

Hence, sup N = N0 < ∞ and, again by (40), there exists a bounded simply
connected domain V with

∂V ⊂ f N0(
0) ⊂ 
0 ⊂ U0, (41)
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such that p0 ∈ V and p0 is not contained in any bounded simply connected
domain with boundary in f N0+1(
0). Define E to be the bounded component
of C\ f N0(
0), such that p0 ∈ E . Note that by (41), the set f N0(
0) is closed
in C and so

∂E ⊂ f N0(
0).

Let

� =
⋃

{K (σ ) : σ is a closed curve in E}.

By definition, � is a bounded simply connected domain in C, such that E ⊂
�, p0 ∈ � and

∂� ⊂ ∂E ⊂ f N0(
0) ⊂ U0.

We claim that for any given n > 0, one of the following must be satisfied:

f n(∂�) ∩� = ∅ or f n(∂�) ⊂ �. (42)

To see this observe that if n 	= �p for all � > 0, then f n(∂�) ∩ ∂� = ∅, so
(42) holds due to the connectedness of ∂� and f n(∂�). If n = �p for some
� > 0, then f n(∂�) ⊂ f N0(
0), so f n(∂�) is disjoint from E . Hence, if
f n(∂�) intersects�, then f n(∂�)∩ K (σ ) 	= ∅ for a closed curve σ ⊂ E , so
in fact f n(∂�) ⊂ K (σ ) ⊂ �. This shows (42).

Using (42), we conclude that one of the following three cases holds: � ⊂
K ( f (∂�)),� ⊂ ext( f (∂�)) or f (∂�) ⊂ �. The first case is not possible
since it would imply that p0 is in a bounded simply connected domain with
boundary in f N0+1(
0), which contradicts the definition of N0. The second
case implies that the assumptions of Corollary 4.5 are satisfied for X = ∂� (by
Torhorst’s Theorem 2.13, ∂� is locally connected; moreover, f has no fixed
points in ∂�), so f has a weakly repelling fixed point. Hence, the remaining
case is

f (∂�) ⊂ �.

By (42) and the fact that f pn → ∞ as n → ∞ uniformly on ∂�, there
exists a (minimal) number m ≥ 2 such that

f (∂�), . . . , f m−1(∂�) ⊂ � and f m(∂�) ∩� = ∅. (43)

If f m(∂�) ∩ � = ∅, the domain � satisfies the assumptions of Proposi-
tion 4.7, so f has a weakly repelling fixed point. Hence, we are left with the
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case f m(∂�) ∩ ∂� 	= ∅, which implies m = �p for a certain � > 0 and,
consequently, f m(∂�) ⊂ U0.

In this case we will see that we can slightly modify the domain � to a new
domain �′, so that �′ satisfies the condition (43) and f m(∂�′) ∩ �′ = ∅.
Then Proposition 4.7 applies to �′ and f has a weakly repelling fixed point.

To define the set �′ with the desired conditions, let

Dε = {z ∈ U0 : �U0(z, ∂�) ≤ ε}
for a small ε > 0. Then Dε is a compact subset of U0. It is immediate by (43),
that if ε is small enough, then all sets f (∂�), . . . , f m−1(∂�) are contained
in the same bounded component �′ of �\Dε, such that �′ ⊂ �. Since ∂�
is connected, the set Dε is also connected and, consequently, �′ is simply
connected. Moreover,

∂�′ ⊂ {z ∈ U0 : �U0(z, ∂�) = ε} (44)

and, since �′ ⊂ � and f m(∂�) ∩� = ∅, we have

�U0(z, w) ≥ ε for every z ∈ �′ ∩ U0 and w ∈ f m(∂�) (45)

(otherwise, connecting z to w in U0 by a curve κ of hyperbolic length smaller
than ε, we would find z′ ∈ ∂�′ ∩κ andw′ ∈ ∂�∩κ such that �U0(z

′, w′) < ε,
which contradicts (44)).

As f m maps U0 into itself, Schwarz–Pick’s Lemma 2.2 implies that for
z ∈ ∂�′ and w ∈ ∂� we have

�U0( f m(z), f m(w)) ≤ �U0(z, w), (46)

with strict inequality unless a lift of f m to a universal cover of U0 is a Möbius
transformation. Suppose the inequality in (46) is not strict. Then the first
assumption of Lemma 2.4 is satisfied for U = U0 and F = f m , while the
additional assumption of this lemma is also fulfilled since W is simply con-
nected. Hence, by Lemma 2.4 we conclude that U0 is simply connected, a
contradiction with p0 ∈ � and ∂� ⊂ U0.

Therefore, the inequality in (46) is strict, and by the compactness of ∂� we
have

�U0( f m(z), f m(∂�)) < �U0(z, ∂�) = ε for every z ∈ ∂�′. (47)

This together with (45) implies

f m(∂�′) ∩�′ = ∅.
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Note also that if ε is sufficiently small, then by (43),

f (∂�′), . . . , f m−1(∂�′) ⊂ �′.

Hence, the assumptions of Proposition 4.7 are satisfied for �′, and f has a
weakly repelling fixed point. This concludes the proof in Case 2 (W is simply
connected) and, in fact, the proof of Theorem B.

6 Proof of Theorem C

In what follows we assume that f : C → ̂C is a meromorphic map with a
cycle of Herman rings U0, . . . ,Up−1 for some p > 0. Then there exists a
biholomorphic map

ψ : U0 → {z : 1/r < |z| < r}

for some r > 1, such that ψ ◦ f p ◦ ψ−1 = Rα , where Rα(z) = e2π iαz and
α ∈ R\Q.

Herman rings are multiply connected by definition. The goal is to show that
in this setup, f must have a weakly repelling fixed point. Let

γ = ψ−1({z : |z| = 1}).

Then γ is a Jordan curve in U0. If p = 1, then Lemma 4.4 applies to � =
int(γ ), and f has a weakly repelling fixed point. Hence, in what follows
we assume p > 1 and, consequently, γ is a Jordan curve in U0 such that
γ, f (γ ), . . . , f p−1(γ ) are pairwise disjoint, f p(γ ) = γ and int(γ )∩ J ( f ) 	=
∅. By Lemma 4.3, the map f has a pole p0 in int( f j (γ )) for some 0 ≤ j ≤
p − 1. Without loss of generality we assume that j = 0, i.e. p0 ∈ int(γ ).

Next we discuss different relative positions of the above curves to see that
the results in Sect. 4 imply that f has a weakly repelling fixed point unless
one situation occurs. In this case, to show the existence of a weakly repelling
fixed point we will use a surgery argument, like in Shishikura’s Theorem 2.14.

Observe that for all j ≥ 0, we have f j (γ ) ⊂ int( f j+1(γ )) or f j (γ ) ⊂
ext( f j+1(γ )). Since f p(γ ) = γ , we cannot have f j (γ ) ⊂ int( f j+1(γ )) for
all j = 0, . . . , p−1. Hence, there exists a minimal number j0 ∈ {0, . . . , p−1}
such that f j0(γ ) ⊂ ext( f j0+1(γ )). Set

σ0 = f j0(γ ) and σ j = f j (σ0), j ≥ 1

By definition, σ0, σ1, . . . , σp−1 are pairwise disjoint and σp = σ0. More-
over, σ0 ⊂ ext(σ1) and p0 ∈ int(σ0), by the minimality of j0.
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Suppose first that σ1 ⊂ ext(σ0). Then int(σ0) ⊂ ext(σ1), so by Corollary 4.5
for X = σ0, the map f has a weakly repelling fixed point. Hence, we can
assume

σ1 ⊂ int(σ0). (48)

If there exists j ∈ {2, . . . , p−1} such that σ j ⊂ ext(σ0), then the assumptions
of Proposition 4.7 are satisfied for � = int(σ0), so f has a weakly repelling
fixed point. Therefore, from now on we suppose that

σ j ⊂ int(σ0) for j = 1, . . . , p − 1. (49)

Suppose now that there exists j ∈ {1, . . . , p −1} such that σ j+1 ⊂ int(σ j ).
Then the assumptions of Proposition 4.7 are satisfied for � = int(σ j ), so f
has a weakly repelling fixed point. Thus, we can assume that

σ j+1 ⊂ ext(σ j ) for j = 1, . . . , p − 1. (50)

If there exists j ∈ {1, . . . , p − 2} such that σ j ⊂ int(σ j+1) then, by (50),
the assumptions of Corollary 4.6 are satisfied for X = σ j , so f has a weakly
repelling fixed point. Hence, we may also suppose that σ j 	⊂ int(σ j+1), so

int(σ j ) ⊂ ext(σ j+1) for j = 1, . . . , p − 2. (51)

By Corollary 4.5 for X = σ j , and using (51) we may assume that f has no
poles in int(σ j ) for j = 1, . . . , p − 2. Consequently,

f (int(σ j )) = int(σ j+1) for j = 1, . . . , p − 2. (52)

We claim that we can also reduce the proof to the case where

int(σ1), . . . , int(σp−1) are pairwise disjoint subsets of int(σ0). (53)

To see this suppose otherwise, i.e. there exist k > 0 and m > 1 with k + m ≤
p − 1, such that σk+m ⊂ int(σk) or σk ⊂ int(σk+m). Observe that m = 1 is
not possible by (51).

In the first case, observe that by (52), f p−k−m(int(σk)) = int(σp−m) �

int(σ0). Since σk+m ⊂ int(σk), we have σ0 = f p−k−m(σk+m) ⊂ int(σp−m),
which again is not possible.

In the second case, again by (52), f p−k−m−1(int(σk+m)) = int(σp−1).
Since σk ⊂ int(σk+m) we have σp−m−1 = f p−k−m−1(σk) ⊂ int(σp−1).
Hence, there exists z0 ∈ int(σp−1) such that f (z0) ∈ int(σ0). Then, Lemma 4.4
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Fig. 10 The final setup in
the proof of Theorem C

with � = int(σp−1) and D = int(σ0) provides the existence of a weakly
repelling fixed point of f .

Hence, we may assume (53). By Lemma 4.4 applied exactly as above we
may also suppose that

f (int(σp−1)) = ext(σ0). (54)

Finally, suppose that f (int(σ0)) ⊃ int(σ1), which together with (52) implies
that f (int(σ0)) = ̂C. By considering a preimage of D = int(σ0) compactly
contained inside D, and applying Lemma 4.4, it follows again that f has a
weakly repelling fixed point. Hence, from now on we also suppose that

int(σ1) 	⊂ f (int(σ0)), (55)

which implies that there exists a neighborhood N of int(σ0) such that f (N ∩
ext(σ0)) ⊂ int(σ1).

At this point we work under the assumptions (48)–(55), as shown in Fig. 10.
Observe that the situation is reminiscent of the setup of Shishikura’s The-

orem 2.14 for V0 = ext(σ0), V1 = int(σ1) and k = p − 1, except for one
hypothesis, namely f k(V 1) ⊂ V0, which instead reads as f k(V1) = V0.

We shall conclude the proof with an alternative surgery argument, which
is a particular case of Shishikura’s surgery in [39, Theorem 6]. The idea is to
convert the p-cycle of Herman rings into a p-cycle of Siegel discs, by gluing
a rigid rotation in ext(σ0) (for the p-th iterate). This will provide the existence
of a weakly repelling fixed point in int(σ0)\ ⋃p−1

j=1 int(σ j ).
We sketch the details for completeness. Redefine the cycle of Herman rings

so that σ0 ⊂ U0. Then σ0 = ψ−1({z : |z| = 1}). Since ψ |σ0 is real analytic,
there exists a quasiconformal homeomorphism

� : ext(σ0) → ̂C\D
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such that � = ψ on σ0. We now define h : ext(σ0) → ext(σ0) as

h = �−1 ◦ Rα ◦�.

Note that hn = �−1 ◦ Rn
α ◦� and therefore hn is uniformly quasiregular for

all n > 0.
Since f p is conjugate to Rα on σ0, it follows that f has degree one on σ j

for all j = 1, . . . , p. Together with (52) and (54), this implies that for all
j = 1, . . . , p − 1, the map f |int(σ j ) is univalent and hence it has a univalent
inverse. We now define a new map on the Riemann sphere as follows:

F =
{

f on int(σ0)
(

f |int(σ1)

)−1 ◦ · · · ◦ (

f |int(σp−1)

)−1 ◦ h on ext(σ0).

Note that F p|ext(σ0) = h and sF is holomorphic everywhere except on ext(σ0),
where it is quasiconformal. Now we define a conformal structureμ on̂C setting

μ =

⎧

⎪

⎨

⎪

⎩

(�−1)∗μ0 on ext(σ0)
(

(

f |int(σ j )

)−s1 ◦ · · · ◦ (

f |int(σp−1)

)−1
)∗
μ on sint(σ j ) for j = 1, . . . , p − 1

μ0 elsewhereas,

where μ0 is the standard structure. Then μ is bounded and F-invariant, so by
the Measurable Riemann Mapping Theorem, F is quasiconformally conjugate
to a rational map g, under a quasiconformal homeomorphism φ : ̂C → ̂C.

One can check that on some neighborhood of φ(ext(σ0)) the map � ◦ φ−1

is conformal and conjugates g p to Rα . Hence, g has a p-cycle of Siegel discs
containing φ(ext(σ0))∪φ(int(σ1))∪· · ·∪φ(int(σp−1)). Since g is rational, it
has a weakly repelling fixed point, which cannot lie in the Siegel cycle. But g is
conformally conjugate to f everywhere else. Hence, f has a weakly repelling
fixed point. This concludes the proof of Theorem C.
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