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Abstract. We consider holomorphic maps f : U → U for a hyperbolic domain U in
the complex plane, such that the iterates of f converge to a boundary point ζ of U .
By a previous result of the authors, for such maps there exist nice absorbing domains
W ⊂ U . In this paper we show that W can be chosen to be simply connected, if f has
parabolic I type in the sense of the Baker–Pommerenke–Cowen classification of its lift
by a universal covering (and ζ is not an isolated boundary point of U). Moreover, we
provide counterexamples for other types of the map f and give an exact characterization
of parabolic I type in terms of the dynamical behaviour of f .

1. Introduction

In this paper we study iterates fn = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

of a holomorphic map

f : U → U,

where U is a hyperbolic domain in the complex plane C (i.e. a domain whose complement in
C contains at least two points) and f has no fixed points, that is f(z) 6= z for z ∈ U . In the
special case when U is the unit disc D or the right half-plane H, the dynamical behaviour
of f has been extensively studied, starting from the works of Denjoy, Wolff and Valiron in
the 1920’s and 1930’s [13, 23, 24, 25]. In particular, the celebrated Denjoy–Wolff Theorem
asserts that the iterates of f converge almost uniformly (i.e. uniformly on compact subsets
of D) as n→∞ to a point ζ in the boundary of U . Changing the coordinates by a Möbius
map, we can conveniently assume in this case U = H, ζ =∞. Some years later, Baker and
Pommerenke [2, 18] and Cowen [12] proved that f on H is semi-conjugated to a Möbius
map T : Ω → Ω by a holomorphic map ϕ : H → Ω, where the following three cases can
occur:

• Ω = C, T (ω) = ω + 1 (parabolic I type),
• Ω = H, T (ω) = ω ± i (parabolic II type),
• Ω = H, T (ω) = aω for some a > 1 (hyperbolic type)

(see Section 2 for a precise formulation).
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For an arbitrary hyperbolic domain U ⊂ C, the problem of describing the dynamics of
a holomorphic map f : U → U without fixed points is more complicated. To this aim, one
can consider a lift g : H → H of f by a universal covering π : H → U . Some results on
the dynamics of f were obtained by Marden and Pommerenke [16] and Bonfert [9], who
proved that if f has no isolated boundary fixed points (i.e. points ζ in the boundary of U
in C such that f extends holomorphically to U ∪ {ζ} as f(ζ) = ζ, see Definition 7), then
it is semi-conjugated to a Möbius map on C or on a hyperbolic domain in C. In 1999,
König [15] extended the Baker–Pommerenke–Cowen result on the semiconjugacy of f to a
Möbius map for the case, when fn →∞ as n→∞ and every closed loop in U is eventually
contractible in U under iteration of f .

One can extend the classification of f into the three types (parabolic I, parabolic II
and hyperbolic), defining its type by the type of its lift g (see Section 3). In [15], König
characterized the three types of f (under the restriction on eventual contractibility of
loops in U) in terms of the behaviour of the sequence |fn+1(z)−fn(z)|/ dist(fn(z), ∂U) for
z ∈ U (see Theorem 5), where ∂U denotes the boundary of U in C and dist(fn(z), ∂U) =
infu∈∂U |fn(z)− u|.

In this paper we present a characterization of maps f of parabolic I type in terms of their
dynamical properties in the general case, where f is an arbitrary holomorphic map without
fixed points on a hyperbolic domain U ⊂ C. More precisely, we prove the following.

Theorem A. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic
map without fixed points and without isolated boundary fixed points. Then the following
statements are equivalent:

(a) f is of parabolic I type,
(b) %U(fn+1(z), fn(z))→ 0 as n→∞ for some z ∈ U ,
(c) %U(fn+1(z), fn(z))→ 0 as n→∞ almost uniformly on U ,
(d) |fn+1(z)− fn(z)|/ dist(fn(z), ∂U)→ 0 as n→∞ for some z ∈ U ,
(e) |fn+1(z)− fn(z)|/ dist(fn(z), ∂U)→ 0 as n→∞ almost uniformly on U .

For the other two types of f we prove that if infz∈U limn→∞ %U(fn+1(z), fn(z)) > 0, then
f is of hyperbolic type (see Proposition 10 and Remark 12).

Another question we consider in this paper is the existence and properties of absorbing
domains in U for f .

Definition (Absorbing domain). Let U be a domain in C and let f : U → U be a
holomorphic map. A domain W ⊂ U is called absorbing in U for f , if f(W ) ⊂ W and for
every compact set K ⊂ U there exists n ≥ 0, such that fn(K) ⊂ W .

The problem of existence of suitable absorbing domains for holomorphic maps has a long
history and is related to the study of local behaviour of a holomorphic map near a fixed
point and properties of the Fatou components in the theory of the dynamics of rational,
entire and meromorphic maps. (For basic facts about the dynamics of holomorphic maps
we refer to [5, 11].) For instance, if U is a neighbourhood of an attracting fixed point
ζ of f (e.g. if U is the immediate basin of an attracting periodic point ζ of period p

of a meromorphic map f̃ and f = f̃p), then f is conformally conjugate by a map φ to
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w 7→ f ′(ζ)w (if 0 < |f ′(ζ)| < 1) or w 7→ wk for some integer k > 1 (if f ′(ζ) = 0) near
w = 0, and W = φ−1(D(0, ε)) for a small ε > 0 is a simply connected absorbing domain in
U for f , such that f(W ) ⊂ W and

⋂
n≥0 f

n(W ) = {ζ} (see e.g. [11]).
From now on, assume that

f : U → U

is a holomorphic map on a hyperbolic domain U ⊂ C and the iterates of f converge to
a boundary point ζ of U . Changing the coordinates by a Möbius map, we can assume
ζ =∞, so

fn →∞ as n→∞
almost uniformly on U . Since the above definition of an absorbing domain is quite wide,
(observe for instance that the whole domain U is always absorbing for f), we introduce a
notion of a nice absorbing domain.

Definition (Nice absorbing domain). An absorbing domain W in a domain U ⊂ C for
a holomorphic map f : U → U with fn →∞ is called nice, if

(a) W ⊂ U ,

(b) fn(W ) = fn(W ) ⊂ fn−1(W ) for every n ≥ 1,
(c)

⋂∞
n=1 f

n(W ) = ∅.

An example of a nice absorbing domain is an attracting petal W in a basin U of a
parabolic p-periodic point ζ =∞ for a rational map f̃ , where f = f̃p (see e.g. [11]).

The question of existence of absorbing regions in hyperbolic domains U is particularly
interesting in studying the dynamics of entire and meromorphic maps with Baker domains.
Recall that a p-periodic Baker domain for a transcendental meromorphic map f̃ : C → C
is a Fatou component U ⊂ C, such that f̃p(U) ⊂ U and f̃pn → ∞ as n → ∞. Note
that periodic Baker domains for entire maps are always simply connected (see [1]), while
in the transcendental meromorphic case they can be multiply connected. The dynamical
properties of Baker domains have been studied in many papers, see e.g. [3, 7, 8, 14, 15, 19,
21, 22] and a survey [20].

The Baker–Pommerenke–Cowen results [2, 12, 18] imply that for a holomorphic map
f : H → H with fn → ∞ as n → ∞, there exists a nice simply connected absorbing
domain W in U for f , such that the map ϕ which semi-conjugates f to a Möbius map
T : Ω → Ω is univalent on W . Hence, by the use of a Riemann map, one can construct
nice simply connected absorbing domains for f : U → U with fn →∞, if U ⊂ C is simply
connected.

The existence of such absorbing regions in non-simply connected hyperbolic domains U ,
in particular Baker domains for transcendental meromorphic maps was an open question
addressed e.g. in [6, 10, 17], related to the question of the existence of so-called virtual
immediate basins for Newton root-finding algorithm for entire functions.

In [15], König showed that if U is an arbitrary hyperbolic domain in C and every closed
loop in U is eventually contractible in U under iteration of f , then there exists a nice
simply connected absorbing domain in U for f . In particular, this holds if U is a p-periodic
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Baker domain for a transcendental meromorphic map f̃ with finitely many poles, where
f = f̃p (see Theorem 5).

In a recent paper [4], the authors constructed nice absorbing domains for f : U → U
with fn → ∞ for an arbitrary hyperbolic domain U ⊂ C (see Theorem 9). In particular,
the construction was used to prove that the Baker domains of Newton’s method for entire
functions are always simply connected.

In this paper we consider the question of existence of simply connected absorbing do-
mains W in U for f . This is equivalent to the condition that every closed loop in U
is eventually contractible in U under iteration of f (see Proposition 13). We prove the
following.

Theorem B. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic
map, such that fn →∞ as n→∞ and ∞ is not an isolated point of the boundary of U in
C. If f is of parabolic I type, then there exists a nice simply connected absorbing domain
W in U for f .

Note that the assumption on the point at infinity is necessary. In fact, if∞ is an isolated
point of the boundary of U in C, then a simply connected absorbing domain cannot exist
for any type of the map f (see Proposition 14).

On the other hand, we provide counterexamples for other types of the map f .

Theorem C. There exist transcendental meromorphic maps f : C→ C with an invariant
Baker domain U ⊂ C, such that f |U is not of parabolic I type and there is no simply
connected absorbing domain W in U for f . The examples are constructed in two cases:

• %U(fn+1(z), fn(z)) 6→ 0 as n→∞ for z ∈ U and infz∈U limn→∞ %U(fn+1(z), fn(z)) =
0,
• infz∈U limn→∞ %U(fn+1(z), fn(z)) > 0 (f |U is of hyperbolic type).

We also provide examples of simply connected absorbing domains W in U for f of
parabolic I type. In all three types of examples, the map f has the form

f(z) = z + 1 +
∑
p∈P

ap
(z − p)2

, ap ∈ C \ {0},

where P is the set of poles of f . Moreover, {∞} is a singleton component of C \ U ,
in particular it is a singleton component of J(f). To our knowledge, these are the first
examples of Baker domains of that kind. A detailed description of the examples is contained
in Theorem 15.

The plan of the paper is the following. In Section 2 we present definitions and results
used in the proofs of Theorems A, B, C. In Section 3 we characterize parabolic I type
(Theorem A) and in Section 4 we prove Theorem B. The examples described in Theorem C
are constructed in Section 5.
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2. Background

For z ∈ C and A,B ⊂ C we write

dist(z, A) = inf
a∈A
|z − a|, dist(A,B) = inf

a∈A, b∈B
|a− b|.

The symbols A, ∂A denote, respectively, the closure and boundary of A in C. The Eu-
clidean disc of radius r centred at z ∈ C is denoted by D(z, r) and the unit disc D(0, 1) is
simply written as D.

Let U ⊂ C be a hyperbolic domain, i.e. a domain whose complement in C contains at
least two points. By the Uniformization Theorem, there exists a universal holomorphic
covering π from the right half-plane H onto U . Every holomorphic map f : U → U can be
lifted by π to a holomorphic map g : H→ H, such that the diagram

H g−−−→ Hyπ yπ
U

f−−−→ U

commutes. By %U(·) and %U(·, ·) we denote, respectively, the density of the hyperbolic
metric and the hyperbolic distance in U , defined by the use of the hyperbolic metric in H.
The disc of radius r centred at z with respect to the hyperbolic metric in U is denoted by
DU(z, r).

Recall the classical Schwarz–Pick Lemma and Denjoy–Wolff Theorem.

Schwarz–Pick’s Lemma ([11, Theorem 4.1]). Let U, V be hyperbolic domains in C and
let f : U → V be a holomorphic map. Then

%V (f(z), f(z′)) ≤ %U(z, z′)

for every z, z′ ∈ U . In particular, if U ⊂ V , then

%V (z, z′) ≤ %U(z, z′),

with strict inequality unless z = z′ or f lifts to a Möbius automorphism of H.

Denjoy–Wolff Theorem ([11, Theorem 3.1]). Let g : H → H be a non-constant holo-
morphic map, which is not a Möbius automorphism of H. Then there exists a point
ζ ∈ H ∪ {∞}, such that gn tends to ζ as n→∞ almost uniformly on H.

The following estimate relates the hyperbolic density %U to the quasi-hyperbolic density
1/ dist(z, ∂U).

Lemma 1 ([11, Theorem 4.3]). Let U ⊂ C be a hyperbolic domain. Then

%U(z) ≤ 2

dist(z, ∂U)
for z ∈ U

and

%U(z) ≥ 1 + o(1)

dist(z, ∂U) log(1/ dist(z, ∂U))
as z → ∂U.
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Moreover, if U is simply connected, then

%U(z) ≥ 1

2 dist(z, ∂U)
for z ∈ U.

The above lemma implies the following standard estimation of the hyperbolic distance.
We include the proof for completeness.

Lemma 2. Let U be a hyperbolic domain in C and let z, z′ ∈ U . Then

|z − z′|
dist(z, ∂U)

≥ 1− e−%U (z,z′)/2.

Proof. Suppose that there exist z, z′ ∈ U such that

(1)
|z − z′|

dist(z, ∂U)
< 1− e−%U (z,z′)/2

and let γ be the straight line segment connecting z and z′. In particular, (1) implies that
|z − z′| < dist(z, ∂U), so γ ⊂ U and |u− z| < dist(z, ∂U) for u ∈ γ. Thus, by the second
inequality in Lemma 1,

%U(z, z′) ≤
∫
γ

%U(u)|du| ≤ 2

∫
γ

|du|
dist(u, ∂U)

≤ 2

∫
γ

|du|
dist(z, ∂U)− |u− z|

= 2

∫ |z−z′|
0

ds

dist(z, ∂U)− s
= 2 ln

dist(z, ∂U)

dist(z, ∂U)− |z − z′|
= −2 ln

(
1− |z − z′|

dist(z, ∂U)

)
,

which contradicts (1). �

The lower bounds for hyperbolic metric from Lemma 1 can be improved in the presence
of dynamics. The following result was proved by Rippon in [19] (actually, it was formulated
under an additional assumption fn →∞ as n→∞, but the proof does not use this).

Theorem 3 ([19, Theorem 1]). Let U be a hyperbolic domain in C and let f : U → U be
a holomorphic map without fixed points and without isolated boundary fixed points. Then
for every compact set K ⊂ U there exists a constant C > 0 such that

|fn(z)− fn(z′)|
dist(fn(z), ∂U)

≤ C%U(fn(z), fn(z′))

for every z, z′ ∈ K and every n ≥ 0.

The following result proved by Bonfert in [9] describes a relation between the dynamical
behaviour of f and its lift g.

Theorem 4 ([9, Theorem 1.1]). Let U be a hyperbolic domain in C and let f : U → U
be a holomorphic map without fixed points. Let g : H → H be a lift of f by a universal
covering map π : H→ U . Then

%U(fn+1(z), fn(z))→ 0 ⇐⇒ %H(gn+1(1), gn(1))→ 0

as n→∞ for any z ∈ U .
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An easy consequence of this theorem is that the left hand side of the equation is either
satisfied for every z ∈ U or for none.

The next theorem summarizes the results of Baker–Pommerenke–Cowen [2, 12, 18] on
the dynamics of holomorphic maps in H. We use the notation from [12]. (The equivalence
of the Baker–Pommerenke and Cowen approaches were shown by König in [15].)

Cowen’s Theorem ([12, Theorem 3.2], see also [15, Lemma 1]). Let g : H → H be a
holomorphic map such that gn → ∞ as n → ∞. Then there exists a simply connected
domain V ⊂ H, a domain Ω equal to H or C, a holomorphic map ϕ : H → Ω, and a
Möbius transformation T mapping Ω onto itself, such that:

(a) V is absorbing in H for g,
(b) ϕ(V ) is absorbing in Ω for T ,
(c) ϕ ◦ g = T ◦ ϕ on H,
(d) ϕ is univalent on V .

Moreover, ϕ, T depend only on g. In fact (up to a conjugation of T by a Möbius transfor-
mation preserving Ω), one of the following cases holds:

• Ω = C, T (ω) = ω + 1 (parabolic I type ),
• Ω = H, T (ω) = ω ± i (parabolic II type),
• Ω = H, T (ω) = aω for some a > 1 (hyperbolic type).

Remark. An equivalent description of the three cases can be done by taking

• Ω = C (parabolic I type ),
• Ω = {z ∈ C : Im(z) > 0} (parabolic II type),
• Ω = {z ∈ C : 0 < Im(z) < b} for some b > 0 (hyperbolic type)

and T (ω) = ω + 1 in all three cases.

The following theorem gathers the König results from [15].

Theorem 5 ([15]). Let U be a hyperbolic domain in C and let f : U → U be a holomorphic
map, such that fn →∞ as n→∞. Suppose that for every closed curve γ ⊂ U there exists
n > 0 such that fn(γ) is contractible in U . Then there exists a simply connected domain
W ⊂ U , a domain Ω and a transformation T as in Cowen’s Theorem, and a holomorphic
map ψ : U → Ω, such that:

(a) W is absorbing in U for f ,
(b) ψ(W ) is absorbing in Ω for T ,
(c) ψ ◦ f = T ◦ ψ on U ,
(d) ψ is univalent on W .

Moreover,

• T is of parabolic I type if and only if

lim
n→∞

|fn+1(z)− fn(z)|
dist(fn(z), ∂U)

= 0 for every z ∈ U,
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• T is of parabolic II type if and only if

lim
n→∞

|fn+1(z)− fn(z)|
dist(fn(z), ∂U)

> 0 for every z ∈ U and inf
z∈U

lim
n→∞

|fn+1(z)− fn(z)|
dist(fn(z), ∂U)

= 0,

• T is of hyperbolic type if and only if

inf
z∈U

inf
n≥0

|fn+1(z)− fn(z)|
dist(fn(z), ∂U)

> 0.

Furthermore, if f̃ : C → C is a meromorphic map with finitely many poles, and U is a
periodic Baker domain of period p, then the above assumptions are satisfied for f = f̃p, and
consequently, there exists a simply connected domain W in U with the properties (a)–(d)

for f = f̃p.

In fact, if under the assumptions of Theorem 5, we take V and ϕ from Cowen’s Theorem
for a lift g of f by a universal covering π : H → U , then π is univalent in V and one can
take W = π(V ) and ψ = ϕ ◦ π−1, which is well defined in U .

Remark 6. It was shown by the authors in [4] that under the conditions of Cowen’s
Theorem or Theorem 5, one can choose the absorbing domain W to be nice.

Definition 7 (Isolated boundary fixed point). Let ζ be an isolated point ζ of the
boundary of U in C, i.e. there exists a neighborhood V ⊂ C of ζ such that V \ {ζ} ⊂ U .
Since f(U) ⊂ U and U is hyperbolic, it follows from Picard’s Theorem that f extends
holomorphically to V ∪ {ζ}. If f(ζ) = ζ, we say that ζ is an isolated boundary fixed point
of f .

The following theorem was proved by Bonfert in [9].

Theorem 8 ([9, Theorem 1.4]). Let U be a hyperbolic domain in C and let f : U → U be
a holomorphic map without fixed points and without isolated boundary fixed points. Then
there exist a domain X ⊂ C, a non-constant holomorphic map Ψ : U → X and a Möbius
transformation S mapping X onto itself, such that

Ψ ◦ f = S ◦Ψ.

Moreover, if %U(fn+1(z), fn(z)) → 0 for z ∈ U , then X = C, S(ω) = ω + 1. Otherwise,
the domain X is hyperbolic.

The existence of nice absorbing regions in arbitrary hyperbolic domains was proved by
the authors in [4].

Theorem 9 ([4, Theorem A]). Let U be a hyperbolic domain in C and let f : U → U be
a holomorphic map, such that fn → ∞ as n → ∞. Then there exists a nice absorbing
domain W in U for f , such that f is locally univalent on W . Moreover, for every z ∈ U
and every sequence of positive numbers rn, n ≥ 0 with limn→∞ rn =∞, the domain W can
be chosen such that

W ⊂
∞⋃
n=0

DU(fn(z), rn).
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Remark. If f is of parabolic I type, thenW can be chosen such thatW ⊂
⋃∞
n=0DU(fn(z), bn)

for a sequence bn with limn→∞ bn = 0 and bn < b for an arbitrary given b > 0, see [4, Propo-
sition 3.1].

3. Characterization of parabolic I type: Proof of Theorem A

Let U be a hyperbolic domain in C and let f : U → U be a holomorphic map without
fixed points. Consider a universal covering π : H→ U and a lift g : H→ H of the map f
by π. Then g has no fixed points, so by the Denjoy–Wolff Theorem, gn → ζ for a point
ζ in the boundary of H in C. Conjugating g by a Möbius map, we can assume ζ = ∞.
Consider the map T : Ω → Ω from Cowen’s Theorem for the map g. By properties of a
universal covering, for different choices of π and g, the suitable maps T are conformally
conjugate, so in fact the type of T does not depend on the choice of π and g. Hence, we
can state the following definition.

Definition (Type of f). The map f is of parabolic I, parabolic II or hyperbolic type if
the same holds for its lift g.

Theorem A. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic
map without fixed points and without isolated boundary fixed points. Then the following
statements are equivalent:

(a) f is of parabolic I type,
(b) %U(fn+1(z), fn(z))→ 0 as n→∞ for some z ∈ U ,
(c) %U(fn+1(z), fn(z))→ 0 as n→∞ almost uniformly on U ,
(d) |fn+1(z)− fn(z)|/ dist(fn(z), ∂U)→ 0 as n→∞ for some z ∈ U ,
(e) |fn+1(z)− fn(z)|/ dist(fn(z), ∂U)→ 0 as n→∞ almost uniformly on U .

Proof. First we prove (a) ⇒ (b). Since f is of parabolic I type, we have Ω = C, T (ω) = ω+1
in Cowen’s Theorem for a lifted map g : H → H. We claim that for every ω ∈ C there
exists m ∈ N and a sequence dn > 0 with dn →∞ as n→∞, such that

(2) D(T n(ω), dn) ⊂ ϕ(V ) for every n ≥ m,

for ϕ, V from Cowen’s Theorem for g. Indeed, if (2) does not hold, then D(T n(ω), d) 6⊂
ϕ(V ) for some d > 0 and infinitely many n, which contradicts assertion (b) of Cowen’s

Theorem for K = D(ω, d).
Since |T n+1(ω)− T n(ω)| = |ω + n+ 1− (ω + n)| = 1 and dn →∞, Lemma 1 implies

%D(Tn(ω),dn)(T
n+1(ω), T n(ω))→ 0,

so by (2) and the Schwarz–Pick Lemma,

%ϕ(V )(T
n+1(ω), T n(ω)) ≤ %D(Tn(ω),dn)(T

n+1(ω), T n(ω))→ 0

as n → ∞. By Cowen’s Theorem, ϕ is univalent on V , so for ω ∈ ϕ(V ) and z =
π((ϕ|V )−1(ω)), by the Schwarz–Pick Lemma applied to the map π ◦ (ϕ|V )−1, we have

%U(fn+1(z), fn(z)) ≤ %ϕ(V )(T
n+1(ω), T n(ω))→ 0,

which shows (b).
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Now we show (b) ⇒ (a). By Theorem 4, we have %H(gn+1(w), gn(w)) → 0 for some
w ∈ H. Suppose that g is not of parabolic I type. Then Ω = H in Cowen’s Theorem for
the map g, so by the Schwarz–Pick Lemma applied to the map ϕ, we have

%H(T n+1(ϕ(w)), T n(ϕ(w))) = %H(ϕ(gn+1(w)), ϕ(gn(w))) ≤ %H(gn+1(w), gn(w))→ 0,

which is not possible, since for T (ω) = aω or T (ω) = ω ± i we have

%H(T n+1(ϕ(w)), T n(ϕ(w))) = %H(T (ϕ(w)), ϕ(w)) > 0.

Hence, Ω = C, T (ω) = ω + 1 and g is of parabolic I type.
The implication (c) ⇒ (b) is trivial. To show (b) ⇒ (c), note first that by Theorem 4,

the pointwise convergence holds for every z ∈ U . Take a compact set K ⊂ U and suppose
that the convergence is not uniform on K. This means that there exist sequences zj ∈ K,
nj →∞ as j →∞, and a constant c > 0, such that

%U(fnj+1(zj), f
nj(zj)) > c.

Passing to a subsequence, we can assume zj → z for some z ∈ K. Then %U(zj, z)→ 0, so
by the Schwarz–Pick Lemma, for every n ≥ 0

%U(fn(zj), f
n(z)) ≤ %U(zj, z)→ 0

as j →∞. Hence, since %U(fnj+1(z), fnj(z))→ 0 by the pointwise convergence, we have

0 < c < %U(fnj+1(zj), f
nj(zj))

≤ %U(fnj+1(zj), f
nj+1(z)) + %U(fnj+1(z), fnj(z)) + %U(fnj(z), fnj(zj))

≤ 2%U(zj, z) + %U(fnj+1(z), fnj(z))→ 0,

which is a contradiction. This ends the proof of (b) ⇔ (c).
The implication (c) ⇒ (e) follows from Theorem 3 for z′ = f(z) and the implication

(e) ⇒ (d) is trivial. To show (d) ⇒ (b), we use Lemma 2 for the points fn(z), fn+1(z). In
this way we have proved the equivalences (b) ⇔ (c) ⇔ (d) ⇔ (e). �

By Theorem A and Theorem 8, we immediately obtain the following.

Corollary A’. The map f is of parabolic I type if and only if we have X = C, S(ω) = ω+1
in Theorem 8.

The following proposition gives a sufficient condition for a map f to be of hyperbolic
type.

Proposition 10. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic
map without fixed points and without isolated boundary fixed points. If

inf
z∈U

lim
n→∞

%U(fn+1(z), fn(z)) > 0,

then f is of hyperbolic type.
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Remark 11. By the Schwarz–Pick Lemma, the limit limn→∞ %U(fn+1(z), fn(z)) always
exists for z ∈ U and

inf
z∈U

lim
n→∞

%U(fn+1(z), fn(z)) > 0 ⇐⇒ inf
z∈U

%U(f(z), z) > 0.

Proof of Proposition 10. In view of Theorem A, to prove the proposition it is sufficient to
show that if f is of parabolic II type, then

inf
z∈U

lim
n→∞

%U(fn+1(z), fn(z)) = 0.

We proceed as in the proof of the implication (a) ⇒ (b) in Theorem A. Let g : H→ H be
a lift of f by a universal covering π : H → U . If f is of parabolic II type, then we have
Ω = H, T (ω) = ω ± i in Cowen’s Theorem for the map g.

Take a small ε > 0 and ω ∈ H with Re(ω) = 1/ε. Let

Dn = D
(
T n(ω),

1

2ε

)
for n ≥ 0. Then Dn ⊂ H, so Dn ⊂ ϕ(V ) for large n = n(ε, ω) by the assertion (b) of
Cowen’s Theorem. We have |T n+1(ω) − T n(ω)| = 1 and dist(T n(ω), ∂Dn) = 1/(2ε), so
Lemma 1 implies

%Dn(T n+1(ω), T n(ω)) < 4ε.

Since ϕ is univalent on V , by the Schwarz–Pick Lemma we have

%U(fn+1(z), fn(z)) ≤ %ϕ(V )(T
n+1(ω), T n(ω)) ≤ %Dn(T n+1(ω), T n(ω)) < 4ε

for large n, where z = π((ϕ|V )−1(ω)). Hence, for any arbitrarily small ε > 0, there exists
z ∈ U such that %U(fn+1(z), fn(z)) < 4ε for n large enough. It follows that

inf
z∈U

lim
n→∞

%U(fn+1(z), fn(z)) = 0.

�

Remark 12. If the images under fn of any closed curve in U are eventually contractible
in U (e.g. when U is a Baker domain for a meromorphic map with finitely many poles),
then by Theorem 5, one obtains a characterization of all three types of f in terms of its
dynamical behaviour. In the general case, apart of the characterization of parabolic I
type in Theorem A, Proposition 10 gives a sufficient condition for f to be of hyperbolic
type. It would be interesting to check whether the condition is necessary, and to obtain a
characterization of all three types of f in terms of its dynamical behaviour in the general
case.

4. Simply connected absorbing domains: Proof of Theorem B

With the goal of proving Theorem B, we present a condition equivalent to the existence
of a simply connected absorbing domain W in U for f .

Proposition 13. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic
map, such that fn →∞ as n→∞. Then the following statements are equivalent:
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(a) There exists a simply connected absorbing domain W in U for f .
(b) There exists a nice simply connected absorbing domain W in U for f .
(c) For every closed curve γ ⊂ U there exists n > 0 such that fn(γ) is contractible in

U .

Proof. The implication (a) ⇒ (c) follows by the absorbing property of W , the implication
(c) ⇒ (b) is due to Theorem 5 and Remark 6, and the implication (b) ⇒ (a) is trivial. �

Definition. For a compact set X ⊂ C we denote by ext(X) the connected component of
C \X containing infinity. We set K(X) = C \ ext(X).

Before proving Theorem B, we show that if ∞ is an isolated point of the boundary of
U , then a simply connected absorbing domain W does not exist.

Proposition 14. Let U be a hyperbolic domain in C and let f : U → U be a holomorphic
map, such that fn →∞ as n→∞. If ∞ is an isolated point of the boundary of U in C,
then there is no simply connected absorbing domain W in U for f .

Proof. By assumption, U is a punctured neighbourhood of ∞ in C. Since U is hyperbolic
and f(U) ⊂ U , the set f(U) omits at least three points in C, so by the Picard Theorem,
the map f extends holomorphically to U ∪ {∞}. Let V = {z ∈ C : |z| > R} ∪ {∞} for a
large R > 0. Since fn →∞ uniformly on the boundary of V in C, by the openness of fn,
the closure of fn(V ) in C is contained in V for every sufficiently large n. This easily implies
that ∞ is an attracting fixed point for the extended map f . Hence, f in a neighbourhood
of ∞ is conformally conjugate by a map ψ to z 7→ λz for some λ ∈ C, 0 < |λ| < 1 or to
z 7→ zk for some integer k ≥ 2 in a neighbourhood of 0. Let γ = ψ−1(∂D(0, r)) for a small
r > 0. Then for every n > 0 we have fn(γ) ⊂ ext(γ) and K(fn(γ)) ⊃ K(γ), so fn(γ) is
not contractible in U and we can use Proposition 13 to end the proof. �

Now we prove the main result of this section.

Theorem B. Let U be a hyperbolic domain in C, let f : U → U be a holomorphic map,
such that fn(z)→∞ as n→∞ for z ∈ U and ∞ is not an isolated point of the boundary
of U in C. If f is of parabolic I type, then there exists a nice simply connected absorbing
domain W in U for f .

Proof. Note first that f has no fixed points in U . Moreover, we will show that f has no
isolated boundary fixed points. Indeed, suppose that ζ0 is an isolated point of the boundary
of U in C and f extends holomorphically to U ∪ {ζ0} with f(ζ0) = ζ0. By assumption,
ζ0 6=∞. Take a Jordan curve γ0 ⊂ U surrounding ζ0 in a small neighbourhood of ζ0, such
that D \ {ζ0} ⊂ U , where D is the component of C \ γ0 containing ζ0. Since fn → ∞
uniformly on γ0 and ζ0 = fn(ζ0) ∈ fn(D), by the Maximum Principle we obtain

U ⊃
∞⋃
n=0

fn(D \ {ζ0}) ⊃
∞⋃
n=0

fn(D) \ {ζ0} = C \ {ζ0},

so in fact U = C\{ζ0}, which is impossible since U is hyperbolic. Hence, f has no isolated
boundary fixed points.
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Take a closed curve γ ⊂ U . We will check that there exists n > 0 such that fn(γ)
is contractible in U . By Proposition 13, this will prove the existence of a nice simply
connected absorbing domain W in U for f . Suppose this is not true. By Theorem 3 for
K = γ ∪ f(γ), there exists a constant C > 0 such that for every z ∈ γ and every n ≥ 0,

|fn+1(z)− fn(z)|
dist(fn(z), ∂U)

≤ C%U(fn+1(z), fn(z)),

so by Theorem A (c), there exists n0 ≥ 0 such that for every z ∈ γ and every n ≥ n0,

(3) |fn+1(z)− fn(z)| < 1

2
dist(fn(z), ∂U).

Fix an arbitrary point v ∈ C \ U . By (3), for every z ∈ γ and every n ≥ n0 we have

|fn+1(z)− fn(z)| < 1

2
|fn(z)− v|.

This implies that fn+1(z)− v lies in a disc D of center fn(z)− v and radius 1
2
|fn(z)− v|.

Clearly 0 /∈ D and a simple calculation shows that D is included in a sector of angle π/6.
Hence, there exists a branch of the argument function in D, and in a small neighborhood
of z we have

|Arg(fn+1(z)− v)− Arg(fn(z)− v)| < π

6
.

Taking an analytic continuation of this branch while z goes around γ, we see that the
winding number of fn(γ) around v is the same as the winding number of fn+1(γ) around
v. In particular, v is in a bounded component of C \ fn(γ) if and only if it is in a bounded
component of C \ fn+1(γ). By induction, this implies

(4) v ∈ K(fn(γ)) if and only if v ∈ K(fn
′
(γ))

for every n′ ≥ n.
Take n ≥ n0. By assumption, fn(γ) is not contractible in U , so there exists a point

v0 ∈ K(fn(γ)) \U . Since fk →∞ as k →∞ uniformly on γ, there exists n′ > n such that
fn

′
(γ) ∩K(fn(γ)) = ∅. We cannot have K(fn

′
(γ)) ⊂ ext(fn(γ)), because then we would

have v0 /∈ K(fn
′
(γ)), which contradicts (4) for v = v0. Hence, K(fn(γ)) ⊂ K(fn

′
(γ)), so

K(fn(γ)) \ U ⊂ K(fn
′
(γ)) \ U.

On the other hand,

K(fn(γ)) \ U ⊃ K(fn
′
(γ)) \ U,

because otherwise there would exists a point v1 ∈ C \ U , such that v1 ∈ K(fn
′
(γ)) \

K(fn(γ)), which contradicts (4) for v = v1.
We conclude that for every n ≥ n0 there exists n′ > n, such that

K(fn(γ)) \ U = K(fn
′
(γ)) \ U.

In this way we can construct an increasing sequence nj, j ≥ 0, such that

(5) K(fnj(γ)) ⊂ K(fnj+1(γ)) and K(fnj(γ)) \ U = K(fn0(γ)) \ U
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for every j. Since fnj →∞ as j →∞ uniformly on γ, (5) implies that
∞⋃
j=0

K(fnj(γ)) = C

and C \ U =
⋃∞
j=0K(fnj(γ)) \ U = K(fn0(γ)) \ U is a compact subset of C. Hence, U

contains a punctured neighbourhood of∞ in C, so∞ is an isolated point of the boundary
of U in C, which is a contradiction. �

5. Examples

Let

(6) f(z) = z + 1 +
∑
p∈P

ap
(z − p)2

, ap ∈ C \ {0},

where P ⊂ C has one of the three following forms:

(i) P = iZ = {im : m ∈ Z},
(ii) P = Z or Z+,

(iii) P = Z + iZ = {j + im : j,m ∈ Z}.
It is obvious that for sufficiently small |ap|, the map (6) is transcendental meromorphic,
with the set of poles equal to P .

Let

P̃ =
∞⋃
j=0

(P − j) = {p− j : p ∈ P , j = 0, 1, . . .}.

(In the case P = Z or P = Z + iZ we have P̃ = P .) The assertions of Theorem C and
other results mentioned in Section 1 are gathered in the following theorem.

Theorem 15. For every sufficiently small δ > 0, there exists a map f of the form (6) with
an invariant Baker domain U , such that U ⊃ C \

⋃
p∈P̃ D(p, δ). Moreover,

• in case (i) we have %U(fn+1(z), fn(z)) → 0 as n → ∞ for z ∈ U and f |U is of
parabolic I type, so there exists a simply connected absorbing domain W in U for
f ;
• in case (ii) we have %U(fn+1(z), fn(z)) 6→ 0 as n→∞ for z ∈ U ,

inf
z∈U

lim
n→∞

%U(fn+1(z), fn(z)) = 0,

and there does not exist a simply connected absorbing domain W in U for f ;
• in case (iii) we have

inf
z∈U

lim
n→∞

%U(fn+1(z), fn(z)) > 0,

f |U is of hyperbolic type, and there does not exist a simply connected absorbing
domain W in U for f .

Moreover, in all three cases, {∞} is a singleton component of C \ U , in particular it is a
singleton component of J(f).
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Let
e(z) =

∑
p∈P

ap
(z − p)2

= f(z)− (z + 1)

and notice for further purposes that for all n ≥ 1,

fn(z)− (z + n) =
n−1∑
k=0

e(fk(z)).

To prove Theorem 15, we will use the two following lemmas.

Lemma 16. For every sufficiently small ε > 0, there exist non-zero complex numbers ap,

p ∈ P, such that for every n ≥ 0 and z0, . . . , zn ∈ C, if dist(z0, P̃) ≥ ε and |zk−z0−k| < ε/2
for k = 0, . . . , n, then

n∑
k=0

|e(zk)| <
ε

2
.

Proof. Take a small ε > 0 and points z0, . . . , zn fulfilling the condition stated in the lemma.
Then zk = z0 + k + ζk, where ζk ∈ C, |ζk| < ε/2 < 1.

First, consider case (ii), P = Z (the case P = Z+ is analogous). Then

(7)
n∑
k=0

|e(zk)| ≤
n∑
k=0

∑
p∈Z

|ap|
|zk − p|2

.

Note that

(8) |zk − p| = |z0 + k + ζk − p| ≥ |z0 + k − p| − |ζk| ≥ ε− ε

2
=
ε

2
,

because |z0 + k − p| ≥ dist(z0, P̃) ≥ ε. Let

k0 = [Re(z0)].

We will show that

(9) |zk − p| ≥
ε

4
|k − p+ k0|.

Indeed, if |k − p+ k0| ≤ 2, then (9) holds, because by (8),

|zk − p| ≥
ε

2
≥ ε

4
|k − p+ k0|.

Otherwise, |k − p+ k0| ≥ 3, so

|zk − p| = |z0 + k + ζk − p|
≥ |Re(z0 + k + ζk − p)|
= |Re(z0) + k + Re(ζk)− p|
≥ |k − p+ k0| − |Re(z0)− k0| − |Re(ζk)|
≥ |k − p+ k0| − 2

≥ 1

3
|k − p+ k0|,
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which shows (9) if ε is sufficiently small. By (7), (8) for k = p−k0 and (9) for k ∈ Z\{p−k0},

n∑
k=0

|e(zk)| ≤
∑
p∈Z

|ap|

 4

ε2
+

16

ε2

∑
k∈Z\{p−k0}

1

|k0 + k − p|2


≤
∑
p∈Z

|ap|

 4

ε2
+

16

ε2

∑
k∈Z\{0}

1

k2

 <
ε

2

if |ap| are chosen sufficiently small.
Now we consider case (iii). Then, writing p = j + im for j,m ∈ Z, we have

(10)
n∑
k=0

|e(zk)| ≤
n∑
k=0

∑
j∈Z

∑
m∈Z

|aj+im|
|zk − j − im|2

.

Similarly as previously,

(11) |zk − j − im| = |z0 + k + ζk − j − im| ≥ |z0 + k − j − im| − |ζk| ≥ ε− ε

2
=
ε

2
,

since |z0 − j + k − im| ≥ dist(z0, P̃) ≥ ε. Set

k0 = [Re(z0)], m0 = [Im(z0)].

We will show that

(12) |zk − j − im| ≥
ε

8
(|k + k0 − j|+ |m−m0|).

To prove (12), we note that if |k + k0 − j|+ |m−m0| ≤ 4, then by (11),

|zk − j − im| ≥
ε

2
≥ ε

8
(|k + k0 − j|+ |m−m0|),

which gives (12). Otherwise, |k + k0 − j|+ |m−m0| ≥ 5 and

|zk − j − im| = |z0 + k + ζk − j − im|

≥
√

2

2
(|Re(z0 + k + ζk − j − im)|+ |Im(z0 + k + ζk − j − im)|)

=

√
2

2
(|Re(z0) + k + Re(ζk)− j|+ |Im(z0) + Im(ζk)−m)|)

≥
√

2

2
(|k + k0 − j|+ |m−m0| − |Re(z0)− k0| − |Im(z0)−m0| − |Re(ζk)| − |Im(ζk)|)

≥
√

2

2
(|k + k0 − j|+ |m−m0| − 4)

≥
√

2

10
(|k + k0 − j|+ |m−m0|),
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which shows (12) for sufficiently small ε. By (10), (11) and (12),

n∑
k=0

|e(zk)| ≤
∑
j∈Z

∑
m∈Z

|aj+im|

 4

ε2
+

64

ε2

∑
k∈Z\{j−k0}

1

(|k + k0 − j|+ |m−m0|)2


≤
∑
j∈Z

∑
m∈Z

|aj+im|

 4

ε2
+

64

ε2

∑
k∈Z\{0}

1

k2

 <
ε

2

if |aj+im| are sufficiently small.
Finally, case (i) is proved exactly as case (iii) by setting j = 0. �

For a small ε > 0 let

V = C \
⋃
p∈P̃

D(p, ε), Ṽ = C \
⋃
p∈P̃

D(p, 2ε).

Lemma 17. For every ε > 0, there exist non-zero complex numbers ap, p ∈ P, such that

for every z ∈ Ṽ and every n ≥ 0,

|fn(z)− z − n| < ε

2
.

In particular, this implies fn(z) ∈ V for every n ≥ 0.

Proof. Take ap, p ∈ P from Lemma 16 and z ∈ Ṽ . We prove, by induction on n, the
following claim:

(13) dist(fn(z), Ṽ ) ≤
n−1∑
k=0

|e(fk(z))| and |fn(z)− z − n| < ε

2

(with the convention
∑−1

k=0 = 0 for n = 0). For n = 0 the claim (13) is trivial. Suppose it
holds for 0, . . . , n. By the definition of f ,

fn+1(z) = fn(z) + 1 + e(fn(z)),

so by induction,

dist(fn+1(z), Ṽ ) ≤ dist(fn(z) + e(fn(z)), Ṽ )

≤ dist(fn(z), Ṽ ) + |e(fn(z))|

≤
n∑
k=0

|e(fk(z))|

and |fk(z)− z− k| < ε/2 for k = 0, . . . , n. Hence, the points zk = fk(z), k = 0, . . . , n fulfil
the assumptions of Lemma 16, so there exist |ap| small enough so that

n∑
k=0

|e(fk(z))| < ε

2
.
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This together with the definition of f implies

|fn+1(z)− z − n− 1| = |
n∑
k=0

e(fk(z))| ≤
n∑
k=0

|e(fk(z))| < ε

2
,

which proves the claim (13) for n + 1, completing the induction. Note that (13) implies
fn(z) ∈ V for k = 0, . . . , n, since z + n ∈ Ṽ and dist(Ṽ ,C \ V ) = ε. This ends the proof
of the lemma. �

Proof of Theorem 15. Take a small δ > 0. Set ε = δ/2 and consider a map of the form (6)
for the numbers ap, p ∈ P satisfying the conditions of Lemmas 16 and 17. By Lemma 17, we

have fn →∞ as n→∞ almost uniformly on Ṽ and Ṽ is connected, so Ṽ = C\
⋃
p∈P̃ D(p, δ)

is contained in an invariant Baker domain U for f .
In case (i), we have 1 ∈ Ṽ ⊂ U . By Lemma 17,

|fn+1(1)− fn(1)| < 1 + ε < 2

and

dist(fn(1), ∂U) ≥ dist(fn(1), ∂Ṽ ) > n+ 1− 5

2
ε > n

for n ≥ 0. Hence, by Lemma 2,

%U(fn+1(1), fn(1)) ≤ 2 ln
1

1− |fn+1(1)− fn(1)|/ dist(fn(1), ∂U)
< 2 ln

1

1− 2/n
→ 0

as n → ∞. Therefore, Theorem A implies that %U(fn+1(z), fn(z)) → 0 as n → ∞ for
z ∈ U and f |U is of parabolic I type. For instance, W = {z ∈ C : Re(z) > 1} can be taken
to be a nice simply connected absorbing domain in U for f .

Consider now case (ii). Then ik ∈ Ṽ ⊂ U for every positive integer k, and by Lemma 17,

1/2 < 1− ε < |fn+1(ik)− fn(ik)| < 1 + ε < 2

and

k/2 < k − 5

2
ε < dist(fn(ik), ∂Ṽ ) ≤ dist(fn(ik), ∂U) < k +

5

2
ε < 2k

for n ≥ 0. Hence, by Theorem 3 for K = {ik, f(ik)},

%U(fn+1(ik), fn(ik)) ≥ 1

C

|fn+1(ik)− fn(ik)|
dist(fn(ik), ∂U)

>
1

4Ck
> 0,

so Theorem A implies %U(fn+1(z), fn(z)) 6→ 0 as n→∞ for z ∈ U . Moreover, by Lemma 2,

%U(fn+1(ik), fn(ik)) ≤ 2 ln
1

1− |fn+1(ik)− fn(ik)|/ dist(fn(ik), ∂U)
< 2 ln

1

1− 4/k
→ 0

as k →∞, which shows infz∈U limn→∞ %U(fn+1(z), fn(z)) = 0 (cf. Remark 11).
Consider now case (iii) and take z ∈ U . Then there exists p ∈ P , such that

|z − p| ≤
√

2

2
.
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Lemma 17 implies that

|f(z)− p| < 1 +

√
2

2
+
ε

2
< 2

and

|f(z)− z| > 1− ε > 1/2.

Note that p, p+ 1 /∈ U , so by the Schwarz–Pick Lemma,

%U(f(z), z) ≥ %C\{p,p+1}(f(z), z) = %C\{0,1}(w,w
′),

where w = f(z) − p, w′ = z − p and w ∈ D(0, 2), w′ ∈ D(0,
√

2/2), |w − w′| > 1/2. This
easily implies that if γ is the hyperbolic geodesic connecting w and w′ in C \ {0, 1}, then
there is γ̃ ⊂ γ, such that γ̃ ⊂ D(0, 2) and the Euclidean length of γ̃ is larger than 1/2.
By Lemma 1, there exists c > 0 (independent of z), such that %C\{0,1}(u) > c for every
u ∈ D(0, 2) \ {0, 1}. Hence,

%C\{0,1}(w,w
′) =

∫
γ

%C\{0,1}(u)du ≥
∫
γ̃

%C\{0,1}(u)du >
c

2
,

which shows infz∈U %U(f(z), z) > c/2 > 0, so infz∈U limn→∞ %U(fn+1(z), fn(z)) > 0 and,
by Proposition 10, f |U is of hyperbolic type.

In all three cases (i)–(iii), the boundary of the square

Qk = {z ∈ C : |Re(z)| ≤ k + 1/2, |Im(z)| ≤ k + 1/2}
is contained in U for every integer k ≥ 0, which shows that {∞} is a singleton component
of C \ U . Moreover, in cases (ii) and (iii), if γ = ∂Q0, then fn(γ) is not contractible in
U . To see this, notice that by Lemma 17, the points of fn(γ) are ε/2-close to the suitable
points of the boundary of the square Q0 + n, which winds once around the pole n of f .
Similarly as in the proof of Theorem B, this implies that fn(γ) winds once around the pole
n, so it is not contractible in U . By Proposition 13, we conclude that in cases (ii) and (iii)
there is no simply connected absorbing domain W in U for f .

�
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