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In this paper we show a mechanism to explain transport from the outer to
the inner Solar System. Such mechanism is based on dynamical systems theory.
More concretely we consider a sequence of uncoupled bicircular restricted four
body problems –BR4BP– (involving the Sun, Jupiter, a planet and an infinitesi-
mal mass), being the planet Neptune, Uranus and Saturn. For each BR4BP we
compute the dynamical substitutes of the collinear equilibrium points of the cor-
responding restricted three body problem (Sun, planet and infinitesimal mass),
which become periodic orbits. These periodic orbits are unstable and the role that
their invariant manifolds play in relation with transport from exterior planets to
the inner ones is discussed.
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1 Introduction
The geometrical approach provided by Dynamical Systems methods allows the
use of stable/unstable manifolds for the determination of spacecraft transfer orbits
in the Solar System (see, for example, [3], [5]). The same kind of methods can
also be used to explain some mass transport mechanisms in the Solar System.

Figure 1: Semi-major axis and eccentricity of the stable manifold of the L2 li-
bration point (in black) and of the unstable manifold of the L1 libration point (in
green) for several Sun-planet systems modelled as circular restricted three-body
problems [4].

Inspired by the work of Gladman et al. [6], Ren et al. introduced in [8] two
natural mass transport mechanisms in the Solar System between the neighbor-
hoods of Mars and the Earth. The first mechanism is a short-time transport, and
is based on the existence of “pseudo-heteroclinic” connections between libration
point orbits of uncoupled pairs of Sun–Mars and Sun-Earth Circular Restricted
Three-Body Problems, RTBPs. The term “pseudo” is due to the fact that the two
RTBPs are uncoupled, the hyperbolic manifolds of the departing and arrival RTBP
only intersect in configuration space and a small velocity increment is required to
switch from one to the other. The second and long-time transport mechanism
relies on the existence of heteroclinic connections between long-period periodic
orbits in one single RTBP (the Sun-Jupiter system), and is the result of the strongly
chaotic motion of the minor body of the problem.
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Lo and Ross [4] also explored the transport mechanism by considering a se-
quence of RTBP. In each of them, they computed the osculating orbital elements
of the 1-dimensional invariant manifolds of the collinear libration points L1 and
L2 (see Fig. 1). The results suggest possible heteroclinic connections between the
manifolds associated to the three most outer planets.

The present paper is devoted to provide a dynamical mechanism for the trans-
port of comets, asteroids and small particles from the outer towards the inner Solar
System. The study is based on the analysis of the dynamics of the Bicircular Re-
stricted Four-Body Problem (BR4BP) in which the main bodies (primaries) are
the Sun, Jupiter and an external planet (Saturn, Uranus and Neptune); in this way,
the outer Solar System will be modelled as a sequence of bicircular models. Some
preliminary results about this problem already appeared in [7].

The BR4BP is a simplified model of the four body problem, in which it is
assumed that a particle moves under the gravitational attraction of two bodies
(primaries) revolving in circular orbits around their center of mass, and a third
primary, moving in a circular orbit around their barycenter. We will consider as
a primaries the Sun and two planets, and assume that the four bodies move in the
same plane. In contrast with the RTBP, this model is not coherent, in the sense
that the circular trajectories assumed for the Sun, and the two planets do not satisfy
Newton’s equations of the three-body problem. The lack of coherence becomes
an important issue when there are resonances between the natural motion of the
infinitesimal particle and the period of the third primary, as was shown by Andreu
[1] in the Sun–Earth–Moon system, but this is not the case for the problem under
consideration.

The differential equations of the BR4BP are non-autonomous, with periodic
time-dependence with the same period as the synodical period of the planet. The
time-periodic character of the differential equations implies the non-existence of
equilibrium points. Nevertheless, the BR4BP can be viewed as a perturbation of
the RTBP, where equilibrium points do exist. The collinear equilibrium points,
Li, i = 1,2,3, are replaced by some periodic orbits that are named their dynamical
substitutes, since they play in the BR4BP a dynamic role similar to the one of the
equilibrium points.

We will consider bicircular models Sun–planet–planet. According to the val-
ues of the gravity potential of the planets (see Fig. 2), it is convenient to include
Jupiter in all the BR4BPs. As it has already been said, the Solar System will
be modelled by a sequence of bicircular Sun–Jupiter–planet problems, dynami-
cally uncoupled. Taking an aligned initial configuration of the three primaries,
for each BR4BP, the dynamical substitutes of L1 and L2 corresponding to the
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(Sun+Jupiter)–planet system can be computed. These periodic orbits inherit the
center × saddle character of their associated equilibrium points. The hyperbolic
invariant stable and unstable manifolds associated to the dynamical substitutes
will be used to determine the possible pseudo-heteroclinic connections between
the different BR4BPs, analogously as it was done by Lo and Ross in [4].

r
0,8 1,0 1,2 1,4 1,6 1,8 2,0

0

5# 10
- 18

1# 10
- 17

1,5# 10
- 17

r
5 10 15 20 25 30 35

0

1# 10
- 17

2# 10
- 17

3# 10
- 17

Figure 2: Values of the gravity potential (in AU2s−2) of the Earth (red), Mars
(black) and Jupiter (blue) in the heliocentric region including the orbits of the
Earth and Mars (left), and gravity potential of Jupiter (blue), Saturn (red), Uranus
(green) and Neptune (black) in the heliocentric region corresponding the outer
Solar System.

The paper is organised as follows:

• Section 2 introduces the methodology for the computation of periodic or-
bits, and their hyperbolic invariant manifolds, in time periodic differential
systems. Some lemmas supporting the statements of this section are given
in the Appendix.

• In Section 3, the differential equations of the bicircular problem, together
with the numerical values of the parameters appearing in the equations,
are given. Using the methods introduced in the preceding section, the dy-
namical substitutes of the equilibrium points are computed for the different
BC4BPs used in the paper.

• Section 4 is devoted to the computation of the invariant manifolds of the
substitutes of the equilibrium points in the bicircular four body problems:
Sun-Jupiter-Neptune, Sun-Jupiter-Uranus and Sun-Jupiter-Saturn. The pos-
sible connections between the invariant manifods of these problems is anal-
ysed in this last section.
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2 Computing periodic orbits and their invariant man-
ifolds in periodic differential systems

The general form of a time-periodic system of (first order) differential equations
is

ẋxx = fff (xxx,θ0 + tω), (1)

where xxx ∈ Rn, t is the independent variable, θ0,ω ∈ R and

fff : Rn×R−→ R
(xxx,θ) 7−→ fff (xxx,θ),

is 2π-periodic in θ . This is a time-periodic differential system with period T =
2π/ω . Actually, it is a family of systems of ordinary differential equations (ODE)
depending on the parameter θ0. For each value of θ0, we will denote by φφφ

θ0
t the

flow from time 0 to time t of the corresponding system of ODE, this is{
d
dt φφφ

θ0
t = fff

(
φφφ

θ0
t (xxx0),θ0 + tω

)
,

φφφ
θ0
0 (xxx0) = xxx0.

(2)

For a fixed θ0, the flow φφφ
θ0
t (x0) can be evaluated as a function of t,xxx0 using a

numerical integrator of ordinary differential equations. The flows corresponding
to the different possible values of θ0 are related by the following lemma:

Lemma 1 For any xxx ∈ Rn, θ , t,s ∈ R, we have

φφφ
θ+tω
s

(
φφφ

θ
t (xxx)

)
= φφφ

θ
s+t(xxx).

Proof: Introducing θ as an additional coordinate, make autonomous the system
of ODE (1) as {

ẋxx = fff (xxx,θ),

θ̇ = ω.

Denote this last system as ẊXX =FFF(XXX), with XXX =(xxx,θ)> and FFF(XXX)= ( fff (xxx,θ),ω)>.
Denote its flow from time 0 to time t by ΦΦΦt . The components of ΦΦΦt are

ΦΦΦt(XXX) =

(
φφφ

θ
t (xxx)

θ + tω

)
,
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with φφφ
θ
t defined by (2). Now, for any XXX = (xxx,θ)>, by the flow property of ΦΦΦt ,(

φφφ
θ
s+t(xxx0)

θ +(s+ t)ω

)
=ΦΦΦs+t(XXX) =ΦΦΦs

(
ΦΦΦt(XXX)

)
=ΦΦΦs

(
φφφ

θ
t (xxx)

θ + tω

)
=

(
φφφ

θ+tω
s

(
φφφ

θ
t (xxx)

)
θ + tω + sω

)
,

and the lemma follows from the equality of the first components in both ends. �

Assume that, given an starting phase θ0, we have found an initial condition
xxx0 ∈ Rn of a T -periodic orbit of system (1) by numerically solving for xxx0 the
equation

φφφ
θ0
T (xxx0) = xxx0. (3)

Once xxx0 is found (for the starting phase θ0), a numerically evaluable parameteri-
sation of the periodic orbit is provided by the function ϕϕϕ defined as

ϕϕϕ(θ) = φφφ
θ0
(θ−θ0)/ω

(xxx0). (4)

Using Lemma 1, ϕϕϕ can be shown (see Lemma 2 in the Appendix) to be 2π-
periodic in θ and to satisfy the invariance equation

φφφ
θ
t
(
ϕϕϕ(θ)

)
= ϕϕϕ(θ + tω). (5)

Finding a periodic orbit in terms of an initial condition xxx0 requires to choose a
starting phase θ0 to be used in its computation. But the periodic orbit itself, as an
invariant object, is independent of θ0. This is suggested by the previous invariance
equation (5) and further corroborated by the following fact: by a straightforward
application of Lemma 1, it can be checked that if xxx1 = φφφ

θ0
t (xxx0) and θ1 = θ0 + tω

then
φφφ

θ0
(θ−θ0)/ω

(xxx0) = φφφ
θ1
(θ−θ1)/ω

(xxx1).

An additional way to see that the periodic orbit, as invariant object, is independent
of θ0 is to check, again through Lemma 1, that ϕϕϕ(θ) is a periodic orbit of the 2π-
periodic differential system

xxx′(θ) =
1
ω

fff
(
xxx(θ),θ

)
,

which is obtained from (1) by changing the independent variable to θ . Actually,
the BR4BP could be defined as a 2π–periodic system in this way (using θ as
time), thus avoiding the need for θ0. We will not use this last approach since we
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will work with different BR4BP models and we will want to refer all of them to
the same time scale.

Assume now that xxx0 is an initial condition of a periodic orbit of (1) with start-
ing phase θ0, found by solving (3), and assume also that Dφφφ

θ0
T (xxx0) (its monodromy

matrix) has an eigenvalue Λ ∈ R, Λ > 1 (resp. Λ < 1), with eigenvector vvv0. In or-
der to state a formula for the linear approximation of the corresponding unstable
(resp. stable) manifold of the periodic orbit, we first define

vvv(θ) = Λ
− θ−θ0

2π Dφφφ (θ−θ0)/ω(xxx0)vvv0. (6)

Again using Lemma 1 (see Lemma 3), vvv can be shown to be a 2π-periodic function
of θ . The linear approximation of the corresponding invariant manifold is given
by

ψ̄ψψ(θ ,ξ ) = φφφ(θ)+ξ vvv(θ). (7)

The fact that this expression provides the linear approximation (in ξ ) of an invari-
ant manifold of the periodic orbit is given by the following approximate invariance
equation, that can be proven again through Lemma 1 (see Lemma 4):

φφφ
θ
t
(
ψ̄ψψ(θ ,ξ )

)
= ψ̄

(
θ + tω,Λt/T

ξ
)
+O(ξ 2). (8)

In the computations that follow, we will generate points on a periodic orbit
with initial condition xxx0 for the starting phase θ0 by numerically evaluating ϕϕϕ(θ)
as defined in (4) for different values of θ . For any of such values, the correspond-
ing trajectory in the invariant manifold (corresponding to the Λ eigenvalue of the
monodromy matrix) will be obtained by choosing ξ small enough for the O(ξ 2)
term in (8) to be small (e.g. ξ = 10−6) and numerically evaluating

φφφ
θ
t
(
ψ̄ψψ(θ ,ξ )

)
,

for t as large as needed.

3 The bicircular problem

3.1 The equations of motion
The bicircular restricted four-body problem (BR4BP) is a simplified model for
the four body problem. We assume that two primaries are revolving in circular
orbits around their center of mass, assumed from now on to be the origin O, and a
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third primary moves in a circular orbit around this origin. The BR4BP describes
the motion of a massless particle that moves under the gravitational attraction of
the three primaries without affecting them. We consider here the planar case, in
which all the bodies move in the same plane.

As mentioned in the Introduction, we will assume that the two main primaries
are the Sun and Jupiter, and the third one a planet of the outer Solar System. Our
aim is to consider the Solar System as a sequence of uncoupled bicircular models
in order to get a first insight of transport in the Solar System that may be explained
using the separated bicircular problems.

First, and in order to fix the notation, we briefly recall how to obtain the equa-
tions of motion of the BR4BP (see also [1]).

Consider a reference system centered at the center of mass of the Sun–Jupiter
system, and assume that, in suitable units of mass, length and time, the Sun, S,
Jupiter, J, and the planet, P, have masses 1− µ , µ and µP, and describe circular
orbits of radius µ and 1− µ and aP, respectively. The mean motion of S and J
becomes one, and the universal gravitation constant is also equal to one. Then,
see Fig. 3, we can write the coordinates of S, J, P and of the barycenter B of the
three bodies as

RS = Mθ1+t

(
µ

0

)
,

RP = Mθ2+ωpt

(
aP
0

)
,

RJ = Mθ1+t

(
µ−1

0

)
,

B =
µP

1+µP
RP,

where Mα is the matrix of a plane rotation of angle α , θ1, θ2 are the initial phases
of the Sun and the planet respectively, and ωP is the mean motion of the planet
that satisfies Kepler’s third law

ω
2
P a3

P = 1+µP.

Newton’s equations for a particle (located by the position vector R) submitted
to the gravitational attraction of the Sun, Jupiter and the planet, are:

R̈− B̈ =−(1−µ) (R−RS)

‖R−RS‖3 − µ(R−RJ)

‖R−RJ‖3 −
µP(R−RP)

‖R−RP‖3 .

We consider a rotating (synodical) system of coordinates, with angle θ1 + t,
measured counterclockwise from the Jupiter–Sun direction (see Fig. 3). In this
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Figure 3: The geometry of the BCP, indicating the position of the Sun (S), Jupiter
(J), a planet (P), and the particle (R) with respect to the center of mass of the
Sun-Jupiter

rotating sytem, the Sun and Jupiter remain fixed at (µ,0), (µ − 1,0), and the
equations of motion for the particle (with position vector (x,y)) can be written as

(
ẍ
ÿ

)
+2
(
−ẏ
ẋ

)
+

(
−x
−y

)
− µP

a2
P

(
−cosθ

−sinθ

)
=

−1−µ

ρ3
1

(
x−µ

y

)
− µ

ρ3
2

(
x−µ +1

y

)
− µP

ρ3
P

(
x−aP cosθ

y−aP sinθ

)
,

(9)

where

ρ1 = ((x−µ)2 + y2)1/2,

ρ2 = ((x−µ +1)2 + y2)1/2,

ρP = ((x−aP cosθ)2 +(y−aP sinθ)2)1/2,

θ = θ2−θ1 + t(ωP−1),

Observe that the previous equations are a system of ODE of the form (1) with
θ0 = θ2−θ1.
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Defining momenta px = ẋ− y, py = ẏ+ x, the equations may be written as a
Hamiltonian system of differential equations with Hamiltonian function

H(x,y, px, py) =
1
2
(p2

x + p2
y)+ ypx− xpy

− 1−µ

ρ1
− µ

ρ2
− µP

ρP
+

µP

a2
P
(ysinθ + xcosθ)

(10)

In this way, we get a non autonomous Hamiltonian system of 2 degrees of freedom
which is periodic in t with period

TP =
2π

ωP−1
. (11)

Later on, it will be useful to consider the Hamiltonian as an autonomous one. To
do so, we just introduce variables t, pt and a new Hamiltonian with 3 degrees of
freedom defined by H̃(x,y, t, px, py, pt) = H(x,y, px, py)+ pt .

Table 1 gives the values of the parameters corresponding to the planets of the
outer Solar System used in this paper.

Planet µP aP ωP
Saturn 0.285613279409×10−3 1.83656320583 0.401840025142
Uranus 0.436207916533×10−4 3.69400574196 0.140852033933
Neptune 0.514647520743×10−4 5.78756168061 0.0718236921118

Table 1: Parameter values for the mass ratio, semimajor axis and mean motion of
Saturn, Uranus and Neptune.

3.2 Dynamical substitutes of the equilibrium points
Since our aim is concerned with possible mechanisms to explain transport in the
Solar System, we want to study the following possibility: the matching of the
(different orbits on the) invariant manifolds of suitable unstable periodic orbits
from different BC4BP. That is, (pseudo)-heteroclinic connections between certain
periodic orbits. This section is focused on the computation of these periodic orbits.

The BR4BP may be regarded as a periodic perturbation of the restricted three-
body problem (RTBP). It is well known that the RTBP has 5 equilibrium points:
the collinear ones L1, L2 and L3, which are unstable (of type center ×saddle)
for any µ ∈ (0,1/2], and the equilateral ones L4 and L5 that are linearly stable
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for µ ∈ (0,µRouth) and unstable for µ ∈ (µRouth,1/2]. Each collinear equilibrium
point Li, i= 1,2,3 gives rise to a periodic orbit in the BR4BP. These periodic orbits
are called the dynamical substitutes of the equilibrium points and are unstable
periodic orbits. In particular, we will be interested in the role that the invariant
manifolds of the dynamical substitutes of L1 and L2 play on the transport. We will
denote them by OLi, i = 1,2. Fig.4 shows the periodic orbits OL1 and OL2 for the
BR4BP Sun-Jupiter-Saturn in the synodical system of coordinates, where the Sun
and Jupiter remain fixed on the x axis.

-2

-1

 0

 1

 2

-2 -1  0  1  2

y

x

SJ

OL1

OL2

Figure 4: Projection in configuration space (rotating coordinates) of the dynamical
substitutes OL1 and OL2 for the BR4BP Sun-Jupiter-Saturn. The orbit of Saturn
is also shown with a dotted line.

Let us describe first how to compute these periodic orbits. We label each
planet of the Solar System with the index ip = 1,2,3,4,6,7,8 corresponding to
Mercury, Venus, Earth, Mars, Saturn, Uranus, Neptune, respectively. We fix ip
and consider the corresponding BR4BPip Sun-Jupiter-(ip planet). As it has been
explained in Section 2, one can take the initial phases θ1 = θ2 = 0. Since we look
for a periodic orbit of period TP, given by (11), the system to be solved is:

F(x,y, px, py) = φφφ TP
(x,y, px, py)− (x,y, px, py) = 0,

so: (a) we need a seed to start with, and (b) we will apply Newton’s method to
refine it.

In order to do so, we carry out the following procedure:

i) We consider the RTBP taking into account the Sun and the planet ip. We
compute the location of the equilibrium points L1 and L2.
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Planet Initial conditions (x, py)

Saturn
OL6

1 1.754258959238766, 0.7043618732499882

OL6
2 1.921870553845556, 0.7719091895937062

Uranus
OL7

1 3.604609729648801, 0.5077129195887936

OL7
2 3.784916933322854, 0.5331101168175304

Neptune
OL8

1 5.639606878614984, 0.4050567387299962

OL8
2 5.938111451650008, 0.4264965527265244

Table 2: Initial conditions of the dynamical substitutes OLi, i = 1,2 for the outer
planets

ii) We transform the position of the Li, i = 1,2 computed to suitable units ac-
cording to the BR4BPip considered. Let xLi be the value of the x coordinate
of the initial condition. We expect that the periodic orbit we are looking
for will be close to a circular orbit of radius xLi in the BR4BPip in rotating
coordinates.

iii) As an initial seed, we start with the initial condition of Li and we apply the
Newton’s method to solve

φφφ TP
(qqq0)−qqq0 = 0.

This is a good seed for ip = 7,8 but it is not for ip ≤ 6. Due to the high
instability of the substituting periodic orbits (see Table 3), the convergence
of the Newton’s method fails. In these cases, the strategy is to consider a
multiple shooting (MS) method. More concretely, we take as initial condition
m points on the circular orbit of radius xLi and angular velocity ωP− 1. We
apply Newton’s method using MS and we have convergence to the required
substituting periodic orbit.

As it has already been said, the dynamical substitutes of Li, i= 1,2 are denoted
by OLip

i , i = 1,2 (or simply OLi). In Table 2 we give the initial conditions of the
dynamical substitutes OLi, i = 1,2 for the outer bicircular problems BR4BPip,
ip = 6,7,8. The initial conditions are (x,y, px, py) with y = px = 0, so we just list
(x, py).

The periodic orbits are of type centre × saddle, so for each one there exist
stable and unstable manifolds W s/u(OLi). In Table 3 we show the value of the
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Outer planets Λ(OLip
i ), i = 1,2 Inner planets Λ(OLip

i ), i = 1,2

Neptune (ip = 8) 3.492, 3.286 Mars (ip = 4) 9×107, 2.5×108

Uranus (ip = 7) 14.105, 12.473 Earth (ip = 3) 2.8×107, 3.4×107

Saturn (ip = 6) 6.5×104, 2.5×104 Venus (ip = 2) 1.5×107, 1×107

Table 3: Value of the eigenvalue Λ > 1 corresponding to the dynamical substitutes
OLip

i , i = 1,2 of each bicircular problem.

eigenvalue Λ > 1 associated to the periodic orbits OLip
i , i = 1,2 ip = 2, . . . ,8.

We can see that the value of the eigenvalue increases as ip decreases, and for the
planets of the inner Solar System the value of Λ is really big. This high instability
is the reason why, on one hand, a multiple shooting method has been necessary
to compute the initial conditions of the periodic orbits, and, on the other hand,
the linear approximation, given by (7), is not good enough to follow the invariant
manifolds W u/s(OLi) for a long time in the bicircular models corresponding to the
inner planets (ip≤ 4).

4 Connections between sequences of bicircular prob-
lems

4.1 Invariant manifolds of OLip
i

We want to see if some natural transport mechanism in the Solar System can
be explained by chaining bicircular restricted Sun-Jupiter-planet problems. In
[8], the authors consider short-time natural transport based on the existence of
heteroclinic connections between libration point orbits of a pair of “consecutive”
Sun-planet restricted three body problems. Following the same idea, we want to
explore these type of connections between two different bicircular problems.

More concretely, we want to see if the invariant manifolds of the dynamical
substitutes from consecutive bicircular problems match. Notice that if two in-
variant manifolds of two different bicircular problems reach the same point (in
position and velocity), they do not really intersect, because they are associated
to different dynamic problems. But such a match is a good indicator of a possi-
ble transport mechanism in the Solar System, in the sense that could be refined
to a true heteroclinic connection in a model including all the bodies involved
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in the two bicircular problems. We call such common points connections. If a
connection between two bicircular problems exists, we can expect to have natu-
ral transport from one planet to the next one in the sequence of bicircular prob-
lems, and a particle could drift away from one planet to reach a neighbourhood
of the following planet. After that, for transport between neighborhoods of the
libration points of the same Sun-planet problem, it is enough to consider a RTBP
(Sun+planet+infinitesimal particle), in which case it is well known the existence
of heteroclinic connections between libration point orbits around L1 and L2. These
connections would allow a particle to continue its journey towards the innermost
Solar System. See Fig. 5.

Pip+1Pip

L1
L1 L2 L2

BR4BPip – BR4BPip+1

RTBPip RTBPip+1

Figure 5: Scheme of the chain of connections between two consecutive restricted
bicircular Sun-Jupiter-planet (BR4BPip) problems, and two consecutive restricted
Sun-planet (Pip) problems (RTBPip).

For the computation of the connections, we proceed as follows. Consider two
consecutive bicircular problems BR4BPip and BR4BPip+1 corresponding to the
planets ip and ip+ 1. We are interested in transits from the outer to the inner
Solar System. In all the bicircular problems, OL1 is an inner orbit than the orbit
of the planet with respect the Sun, and OL2 is an outer orbit (see Fig. 4). Then,
the suitable connections are those involving the invariant manifolds of OLip+1

1 and
OLip

2 . It is well known that the invariant manifolds associated to the equilibrium
points L1 and L2 in the RTBP have two branches: one goes inwards, while the
other one goes outwards, at least for times not too big. The invariant manifolds of
the dynamical substitutes have the same behavior. According to this, we denote
by W u/s

+ (OL) the branch of the invariant manifold that goes outwards, and by
W u/s
− (OL) the branch of the invariant manifold that goes inwards.

Therefore, in order to find connections, in the BR4BPip, we compute the (lin-
ear approximation of the) parametrisation of the stable manifold (see Eq. (7)) and
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we follow the branch W s
+(OL2), and in the BR4BPip+1, we compute the (linear

approximation of the) parametrisation of the unstable manifold (again see Eq. (7))
and we follow the branch W u

−(OL1). To study if there exist connections, we also
fix a section ΣR = {(x,y);x2+y2 = R2}, where R is an intermediate value between
the radii of the orbits of the planets of the two bicircular problems, aip and aip+1
(see Fig. 6).

The main objectives are: first, to determine if both manifolds reach the sec-
tion Σ, and, second, to study which is the minimum distance between the sets
W s(OLip

2 )∩ Σ and W u(OLip+1
1 )∩ Σ. That is, we want to see if both manifolds

intersect, or if they do not, and how far (as sets) they are from each other.
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 2
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-6 -4 -2  0  2  4  6

y

x
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OL7
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Figure 6: Projection in configuration space (rotating coordinates) of the dynamical
substitutes OL8

1, OL7
2, one orbit on the invariant manifolds W u(OL8

1) (blue) and
W s(OL7

2) (red), and the section ΣR for R =
√

22.

We propagate a large number of orbits along each invariant manifold and we
study the evolution of the distance r(t) =

√
x2 + y2 for |t| ≤ T , for a fixed maxi-

mum time T . First, we explore which are the maximum and minimum values of
r(t) that each invariant manifold W s(OLip

2 ) and W u(OLip+1
1 ) can reach, that are

denoted by rM and rm. The exploration gives an idea whether the invariant man-
ifolds can intersect and which sections Σ are more suitable. We explore in each
case the behavior of the two branches W u/s

± . As we will see, the function r(t)
has, in general, an oscillating behavior, but the orbits on the branch W+, r(t) take
values greater than the mean radius of the corresponding orbit OLi, whereas the
orbits on the branch W−, r(t) take values less than that mean radius (at least for
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values of |t| not too large). See Figs. 7, 8, 9 and 10, where we show the evolution
of r(t) along both branches of some orbits of the invariant manifolds W u/s(OLip

1 )
for ip = 6,7,8.

Figure 7: Behavior of the distance r(t) of some orbits of the branches W u
+(OL8

1)
(left) and W u

−(OL8
1) (right). The dotted line corresponds to r = a8, the circular

orbit of Neptune. The continuous black line corresponds to the value of r of the
orbit OL8

1.

Figure 8: Behavior of the distance r(t) of some orbits of the branches W s
+(OL7

2)
(left) and W s

−(OL7
2) (right). The dotted line corresponds to r = a7, the circular

orbit of Uranus. The continuous black line corresponds to the value of r of the
orbit OL7

2.

It seems natural that the branches to be considered, in order to see if the invari-
ant manifolds W u(OLip+1

1 ) and W s(OLip
2 ) match, should be W u

− and W s
+. Figs. 7

and 8 suggest that this is the case for Uranus and Neptune. Notice that in the
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BR4BP8 there are orbits on the W u
+(OL8

1) branch that, after some time moving
outwards (with r(t) greater than the mean radius of OL8

1), cross the OL8
1 orbit and

move inwards (see Fig. 7 left). This can be explained in two ways: on one hand,
the orbits follow paths that overlap the orbit of the planet, so the particle can have
a close encounter with the planet and suffer a big deviation; on the other hand, the
existence of homoclinic orbits to OL8

1 would allow the existence of transit orbits,
i.e., orbits that spend some time surrounding the planet, have a passage near the
OL8

1 orbit and follow a path to the inner region (this behavior has been observed
in the RTBP, see for example [2]). Nevertheless, as Fig. 8 suggests, this behavior
is rare. In this paper, we only consider the branches W u

−(OL8
1) and W s

+(OL7
2) for a

possible matching.
We repeat the exploration for the orbits on the manifold W u(OL7

1) (Sun-Jupiter-
Uranus problem) and W s(OL6

2) (Sun-Jupiter-Saturn problem), see Figs. 9 and 10.
In the last case, the orbits OL6

i are highly unstable (see Table 3) and the invariant
manifolds spread far away (inwards and outwards). That is the particular case of
the branch W s

−(OL6
2): although their orbits initially tend to the inner Solar System,

most of them move outwards reaching distances r(t) greater than the location of
Neptune (see Fig. 10 right).

Figure 9: Behavior of the distance r(t) of some orbits of the branches W u
+(OL7

1)
(left) and W u

−(OL7
1) (right). The dotted line corresponds to r = a7, the circular

orbit of Uranus. The continuous black line corresponds to the orbit OL7
2.

In Table 4 we summarise the maximum and minimum values of r(t) of each
manifold for |t| ≤ 104. As we have explained, we are exploring transport in the
outer Solar System, and we have not studied from Saturn inwards. This minimum
and maximum values indicate that there exists the possibility of a connection be-
tween the bicircular problems for Uranus and Neptune and Saturn and Uranus.
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Figure 10: Behavior of the distance r(t) of some orbits of the branches W s
+(OL6

2)
(left) and W s

−(OL6
2) (right). The dotted line corresponds to r = a6, the circular

orbit of Saturn. The continuous black line corresponds to the orbit OL6
2.

Bicircular problem rm(W u(OLip
1 )) rM(W s(OLip

2 ))

Sun-Jupiter-Neptune (ip = 8) 4.09629

Sun-Jupiter-Uranus (ip = 7) 2.60607 5.57242

Sun-Jupiter-Saturn (ip = 6) > 10

Table 4: Minimum and maximum values of r(t) of each manifold W u(OL1) and
W s(OL2) (resp) and |t| ≤ 104.

4.2 Matching consecutive bicircular problems
Next we choose two intermediate sections ΣR, for R = R1 =

√
22 and R = R2 =√

11, and we compute the intersection of the appropriate invariant manifolds with
the sections: on one hand W u(OL8

1)∩ΣR1 and W s(OL7
2)∩ΣR1 , to explore con-

nections between the bicircular problems Sun-Jupiter-Neptune and Sun-Jupiter-
Uranus, and, on the other hand, between W u(OL7

1) ∩ ΣR2 and W s(OL6
2) ∩ ΣR2

to explore connections between the bicircular problems Sun-Jupiter-Uranus and
Sun-Jupiter-Saturn.

First, we compute the value of the osculating semimajor axis at each point of
the orbits of the invariant manifolds at the section, in order to obtain an equiva-
lent of Fig. 1 for the bicircular problem, see Fig. 11. In the case of the bicircular
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Figure 11: Osculating semimajor axis vs eccentricity for the points of W u(OL8
1)∩

ΣR1 and W u(OL7
1)∩ΣR2 (in blue), and W s(OL7

2)∩ΣR1 and W s(OL6
2)∩ΣR2 (red).

problems associated to Neptune and Uranus, we see that there are points of both
invariant manifolds with the same semimajor axis, and this suggests the existence
of intersections between these manifolds. In the case of Saturn and Uranus bicir-
cular problems it seems that there are not common points.

In order to look for actual intersections, we explore the distance between the
sets W u(OLip+1

1 )∩ ΣR and W s(OLip
2 )∩ ΣR. We proceed in the following way.

We follow N orbits along each invariant manifold and compute their intersections
with the section ΣR for |t| < T , for a fixed T . As we have seen in Figs. 7 and
8, the distance r(t) from the orbits to the origin has an oscillatory behavior so,
in general, the orbits meet the section several times. Each orbit on the invariant
manifold is uniquely determined by the parameter θ (see (7) for more details).
Thus, each point on the intersection W u(OLip+1

1 )∩ ΣR is determined by θ and
the time required to reach the section, tΣ. Then, for each one of these points
(θ , tΣ) we compute the distance in position and velocity to each point on the set
W s(OLip

2 )∩ ΣR. We keep both the minimum distance in position, that will be
denoted as dp(θ , tΣ), and the minimum distance in velocity, that will be denoted
as dv(θ , tΣ). A connection between the bicircular problems ip and ip+ 1 would
be obtained if dp +dv = 0.

We start with BR4BP7 and BR4BP8, and their intersections with the section
ΣR1 . For the explorations done (N = 500 and T = 104) we do not find any con-
nection, in the sense that dp + dv is never exactly zero. Fig. 12 shows the results
obtained in this case. The plot on the left shows that there exists points such that
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their distance dp is less than 10−7, and few points with distance or order 10−9

(about 800 meters). The plot on the right shows the distance in velocity dv only
for those points such that dp < 10−5. In this case we observe that dv > 10−5, and
there are some points such that dv ∈ (10−4,10−3) (10−5 is about 1.306 m/s).

Figure 12: Minimum distances dp (positions, left) and dv (velocities, right) be-
tween points of the invariant manifolds at the section ΣR1 of the Uranus and Nep-
tune bicircular problems. See the text for more details.

Next we repeat the exploration to look for connections between the bicircular
problems Sun-Jupiter-Uranus (BR4BP7) and Sun-Jupiter-Saturn (BR4BP6). Sim-
ilarly to the previous case, initially we consider the branches W u

−(OL7
1) (inner

branch, see Fig. 9 right) and W s
+(OL6

2) (outer branch, see Fig. 10 left). We fol-
low N = 500 orbits up to the section ΣR2 for |t| < 104. The results are shown in
Figure 13. We obtain similar results as in the previous case in positions (mini-
mum dp of order 10−8 or 10−9), but the results in velocities are not so good.We
remark that the simulations have been done for a fixed and moderate value of T
(T = 104) –say short term integrations–. Of course, for higher values of T –long
term integrations–, we might have better results. This is the case for the bicircular
problems Sun-Jupiter-Uranus (BR4BP7) and Sun-Jupiter-Saturn (BR4BP6) where
we obtain minimum in distance dp of order 10−8 and minimum in velocities dv of
order 10−3 for T = 5 ·104.

Recovering the behavior of the branches of W s(OL6
2), we notice that the “in-

ner” branch W s
− has a significant number of orbits that move outwards after some

time (see Fig. 10 right). In fact, this branch sweeps a wide region of the outer
Solar System, and a possible connection with the branches of W u(OL7

1) can oc-
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Figure 13: Minimum distances dp (position, left) and dv (velocities, right) between
points of the invariant manifolds W u

−(OL7
1) and W s

+(OL6
2) at the section ΣR2

cur. Therefore, we repeat the exploration with the W s
−(OL6

2) branch: we com-
pute its intersections with the section ΣR2 and then we look for matchings with
W u
−(OL7

1)∩ΣR2 . The results are shown in Fig. 14. Again in positions we have
good results (points at a distance of orders of meters), but in velocities the differ-
ences are larger than in the previous case.

Figure 14: Minimum distances dp (position, left) and dv (velocities, right) between
points of the invariant manifolds W u

−(OL7
1) and W s

−(OL6
2) at the section ΣR2
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5 Conclusions
In this paper we have explored a natural transport mechanism, in the outer region
of the Solar System, based on the existence of heteroclinic connections between
the invariant hyperbolic manifolds of the dynamical substitutes of the collinear
libration points of the Sun-Neptune, Sun-Uranus, and Sun-Saturn restricted three
body problems. The study is based on the analysis of a sequence of bicircular
restricted four body problems, in which, aside from the Sun and the three outer
planets already mentioned, the gravitational effect of Jupiter is included in all
the bicircular problems. The existence of connections between the manifolds of
the Sun-Jupiter-Neptune and Sun-Jupiter-Uranus, suggests a natural short term
mass transport mechanism between these two systems. The situation is not so
clear between the Sun-Jupiter-Uranus and Sun-Jupiter-Saturn, since the invariant
manifolds considered for the short term transport do not have a clear intersec-
tion. However integration for longer ranges of time seem to be a good strategy
to improve such connections. The paper includes a rigorous justification of the
procedures used for the computations of the periodic orbits and their associated
invariant manifolds in the bicircular restricted problems.
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Appendix
The lemmas in this Appendix support the statements in Section 2.

Lemma 2 The function ϕϕϕ(θ), as defined in (4), is 2π-periodic in θ and satisfies
the invariance equation (5).

Proof: The invariance equation is proven by the following calculation, for which
it is necessary to use Lemma 1 in the second equality:

φφφ
θ
t
(
ϕϕϕ(θ)

)
= φφφ

θ
t
(
φφφ

θ0
(θ−θ0)/ω

(xxx0)
)
= φφφ

θ0
t+(θ−θ0)/ω

(xxx0) = ϕϕϕ(θ + tω).
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A similar argument proves 2π-periodicity:

ϕϕϕ(θ +2π) = φφφ
θ0
2π/ω+(θ−θ0)/ω

(xxx0) = φφφ
θ0+2π

(θ−θ0)/ω

(
φφφ

θ0
2π/ω

(xxx0)︸ ︷︷ ︸
xxx0

)
= ϕϕϕ(θ),

and the lemma follows. �

Lemma 3 The function vvv(θ) defined in (6) is 2π-periodic in θ and satisfies

Dφφφ
θ
t
(
ϕϕϕ(θ)

)
vvv(θ) = Λ

t/T vvv(θ + tω). (12)

Proof: We first prove (12). Using the definition of vvv, the chain rule and Lemma 1,

Dφφφ
θ
t
(
ϕϕϕ(θ)

)
vvv(θ) = Dφφφ

θ
t
(
φφφ

θ0
(θ−θ0)/ω

(xxx0)
)
Λ
− θ−θ0

2π Dφφφ
θ0
(θ−θ0)/ω

(xxx0)vvv0

= Λ
− θ−θ0

2π D
(

φφφ
θ
t ◦φφφ

θ0
(θ−θ0)/ω

)
(xxx0)vvv0,

= Λ
tω
2π Λ
− θ+tω−θ0

2π Dφφφ
θ0
(θ+tω−θ0)/ω

(x0)v0

= Λ
t/T vvv(θ + tω).

A similar argument proves 2π-periodicity in θ ,

v(θ +2π) = Λ
− θ+2π−θ0

2π Dφφφ
θ0
(θ+2π−θ0)/ω

(xxx0)vvv0

= Λ
− θ+2π−θ0

2π D
(
φφφ

θ0+2π

(θ−θ0)/ω
◦φφφ

θ0
2π/ω

)
(xxx0)vvv0

= Λ
−1

Λ
− θ−θ0

2π Dφφφ
θ0+2π

(θ−θ0)/ω

(
φφφ

θ0
2π/ω

(xxx0)︸ ︷︷ ︸
xxx0

)
Dφφφ

θ0
T (xxx0)vvv0︸ ︷︷ ︸
Λvvv0

= v(θ),

and the lemma follows. �

Lemma 4 The expression (7) of the linear approximation of an invariant manifold
of a periodic orbit satisfies the approximate invariance equation (8).

Proof: Expanding φφφ
θ
t by Taylor around ϕϕϕ(θ), and using Lemmas 2 and 3, we

have

φφφ
θ
t
(
ψ̄ψψ(θ ,ξ )

)
= φφφ

θ
t
(
ϕϕϕ(θ)

)
+Dφφφ

θ
t
(
ϕϕϕ(θ)

)
ξ vvv(θ)+O(ξ 2)

= ϕϕϕ(θ + tω)+ξ Λ
t/T vvv(θ + tω)+O(ξ 2),

and the lemma follows. �
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