On a degenerate Hopf bifurcation

Luis Barreira ${ }^{1}$, Jaume Llibre ${ }^{2}$ and Claudia Valls ${ }^{1}$
${ }^{1}$ Departamento de Matemática, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
${ }^{2}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
E-mail: barreira@math.ist.utl.pt, jllibre@mat.uab.cat and cvalls@math.ist.utl.pt

Received 18 February 2010, in final form 11 May 2010
Published 14 June 2010
Online at stacks.iop.org/JPhysA/43/285201

Abstract

We consider a one-parameter family of \mathcal{C}^{3} differential equations $\dot{x}=f(x, \varepsilon)$ in \mathbb{R}^{m} with $m \geqslant 5$ and a parameter ε. We assume that for each ε the differential equation has an equilibrium point $x(\varepsilon)$, that the Jacobian matrix $f_{x}(x(\varepsilon), \varepsilon)$ has two pairs of complex eigenvalues $\varepsilon \alpha_{i} \pm \mathrm{i}\left(\beta+\varepsilon \beta_{i}\right)+O\left(\varepsilon^{2}\right)$ for $i=1,2$ with $\alpha_{1} \alpha_{2} \beta \neq 0$, and that the other eigenvalues are $\varepsilon c_{k}+O\left(\varepsilon^{2}\right) \in \mathbb{R}$ with $c_{k} \neq 0$ for $k=5, \ldots, m$. We note that when $\varepsilon=0$ the eigenvalues of the Jacobian matrix for the equilibrium point $x(0)$ are $\pm \mathrm{i} \beta$ with multiplicity 2 , and 0 with multiplicity $m-4$. We study the degenerate Hopf bifurcation which takes place in this parameter family at $\varepsilon=0$.

PACS numbers: $02.30 . \mathrm{Hq}, 02.30 . \mathrm{Oz}$
Mathematics Subject Classification: 34C23, 34C29, 37G15

1. Introduction

Consider a system of ordinary differential equations

$$
\begin{equation*}
\dot{x}=f(x, \varepsilon), \quad x=\left(x_{1}, \ldots, x_{m}\right) \tag{1}
\end{equation*}
$$

having an equilibrium point $x(\varepsilon)$ for each ε in a neighborhood U of $\varepsilon=0$, i.e. $f(x(\varepsilon), \varepsilon)=0$ for $\varepsilon \in U$. The numbers x_{k}, for $k=1, \ldots, m$, are real variables, ε is the bifurcation parameter, and the dot refers to differentiation with respect to the independent variable t.

We can always assume that the equilibrium point $x(0)$ is at the origin of the coordinates, i.e. that $x(0)=0$. We consider the linear variational equation

$$
\begin{equation*}
\dot{x}=A x, \quad A=f_{x}(0,0) \tag{2}
\end{equation*}
$$

where $f_{x}(0,0)$ denotes the Jacobian matrix of the function f evaluated at $(x, \varepsilon)=(0,0)$. Clearly, every pair of conjugated purely imaginary eigenvalues of A gives rise to the periodic solutions of (2). We are concerned with the classical problem of finding periodic solutions

