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Abstract

We consider a one-parameter family of C* differential equations ¥ = f(x, )
in R™ withm > 5 and a parameter €. We assume that for each ¢ the differential
equation has an equilibrium point x(¢), that the Jacobian matrix f, (x(¢), €)
has two pairs of complex eigenvalues eo;; £i(8+¢8;) + O (€% fori = 1,2 with
ajap B # 0, and that the other eigenvalues are ecy + 0(?) € Rwithey #0
for k = 5,..., m. We note that when ¢ = 0 the eigenvalues of the Jacobian
matrix for the equilibrium point x (0) are £i8 with multiplicity 2, and 0 with
multiplicity m — 4. We study the degenerate Hopf bifurcation which takes
place in this parameter family at ¢ = 0.
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1. Introduction

Consider a system of ordinary differential equations

X:f(x,g), x=(x1,...,xm), (1)
having an equilibrium point x (¢) for each ¢ in a neighborhood U of ¢ = 0, i.e. f(x(g),e) =0
for e € U. The numbers x;, fork = 1, ..., m, are real variables, ¢ is the bifurcation parameter,

and the dot refers to differentiation with respect to the independent variable .
We can always assume that the equilibrium point x (0) is at the origin of the coordinates,
i.e. that x(0) = 0. We consider the linear variational equation

% = Ax, A = £.(0,0), 2)

where f,(0, 0) denotes the Jacobian matrix of the function f evaluated at (x, ) = (0, 0).
Clearly, every pair of conjugated purely imaginary eigenvalues of A gives rise to the periodic
solutions of (2). We are concerned with the classical problem of finding periodic solutions
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