Periodic Orbits near Equilibria

LUIS BARREIRA Instituto Superior Técnico

JAUME LLIBRE Universitat Autònoma de Barcelona

AND

CLAUDIA VALLS Instituto Superior Técnico

Abstract

Lyapunov, Weinstein, and Moser obtained remarkable theorems giving sufficient conditions for the existence of periodic orbits emanating from an equilibrium point of a differential system with a first integral. Using averaging theory, we establish a similar result for a differential system *without* assuming the existence of a first integral. Our result can also be interpreted as a kind of special Hopf bifurcation. © 2010 Wiley Periodicals, Inc.

1 Introduction

Consider a system of ordinary differential equations

(1.1)
$$\dot{x} = f(x), \quad x = (x_1, \dots, x_m),$$

near an equilibrium point that we assume to be the origin x = 0. The x_k , for k = 1, ..., m, are real variables, and the dot refers to differentiation with respect to the independent variable t.

A special role in the theory is played by Hamiltonian systems

(1.2)
$$\dot{x}_k = H_{x_{n+k}}, \quad \dot{x}_{n+k} = -H_{x_k}, \quad k = 1, \dots, n,$$

where H_{x_l} denotes the partial derivative of the Hamiltonian $H(x_1, \ldots, x_{2n})$ with respect to the variable x_l . We can combine equations (1.2) into a single equation by writing

(1.3)
$$\dot{x} = JH_x, \quad J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix},$$

where H_x denotes the gradient of H and where I is the $n \times n$ identity matrix.

For the equilibrium point x = 0, we consider the linear variational equation

$$\dot{x} = Ax, \quad A = f_x(0)$$

Communications on Pure and Applied Mathematics, Vol. LXIII, 1225–1236 (2010) © 2010 Wiley Periodicals, Inc.