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Abstract We study the periodic solutions of the non–autonomous periodic Lyness’
recurrence un+2 = (an + un+1)/un, where {an}n is a cycle with positive values a,b
and with positive initial conditions. Among other methodological issues we give an
outline of the proof of the following results: (1) If (a,b) 6= (1,1), then there exists a
value p0(a,b) such that for any p> p0(a,b) there exist continua of initial conditions
giving rise to 2p–periodic sequences. (2) The set of minimal periods arising when
(a,b) ∈ (0,∞)2 and positive initial conditions are considered, contains all the even
numbers except 4, 6, 8, 12 and 20. If a 6= b, then it does not appear any odd period,
except 1.

1 Introduction

1.1 The set of periods

In this note we give a description of the set of periods of the 2-periodic Lyness’
equations

un+2 =
an +un+1

un
, with an =

{
a for n = 2`+1,
b for n = 2`, (1)
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where (u1,u2) ∈Q+ := {(x,y) ∈R2 : x > 0,y > 0}; ` ∈N and a > 0,b > 0. We will
only outline the main results and focus on some methodological issues. We refer
the reader to [1], where a further analysis and the proofs of the main results can be
found.

Theorem 1 ([1, Corollary 3]). Consider the 2–periodic Lyness’ recurrence (1) for
a > 0, b > 0 and positive initial conditions u1 and u2.

(i) If (a,b) 6= (1,1), then there exists a number p0(a,b) ∈ N such that for any
p > p0(a,b) there exist continua of initial conditions giving rise to 2p–periodic
sequences.

(ii) The set of minimal periods arising when (a,b) ∈ (0,∞)2 and positive initial con-
ditions are considered contains all the even numbers except 4, 6, 8, 12 and 20. If
a 6= b, then it does not appear any odd period, except 1.

As we will see, the number p0(a,b) is computable with our tools, in an open and
dense set of the parameter space.

1.2 A dynamical system approach

To study the recurrence (1) we will adopt a dynamical systems approach, by using
the associated composition map:

Fb,a(x,y) := (Fb ◦Fa)(x,y) =
(a+ y

x
,

a+bx+ y
xy

)
, (2)

being Fa and Fb the Lyness maps Fα(x,y) = (y,(α + y)/x) , associated to the au-
tonomous lyness recurrence un+2 = (α +un+1)/un.

It is very easy to observe that the first component of the iterates of the composi-
tion map gives the odd terms of the recurrence (1), while the second one gives the
even terms.

The maps Fb,a are particular cases of the family of QRT maps, which is a big class
of mappings introduced in [13, 14], that contains many families of discrete dynam-
ical systems arising in mathematical physics. The QRT one constitutes a paradig-
matic family of discrete integrable maps, and the reader is referred to exhaustive
monograph [8] for a deeper approach.

The main feature of QRT maps is that they are defined by a geometrical construc-
tion, in such a way they preserve a fibration of the plane given by some algebraic
curves of a prescribed form. In the case of the map Fb,a, this preserved fibration is
given by the family of cubics:

Ch := {(bx+a)(ay+b)(ax+by+ab)−hxy = 0}.

Of course, this is equivalent to the fact that the map possess a first integral (invariant
function) given by
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Vb,a(x,y) :=
(bx+a)(ay+b)(ax+by+ab)

xy
. (3)

Recall that V is a first integral of a map F if and only if V (F) = V , so that the
orbits of the dynamical system described by F lie on the level sets of the function V
(the energy levels from now on). The expression of Vb,a was also found, in another
context, in [10] by following a technique for finding invariants for recurrences with
periodic coefficients introduced in [9].

Since our approach depends strongly on the fact that the maps Fb,a are QRT, it is
worth noticing that the only k-periodic Lyness’ difference equations such that their
associated composition maps are QRT for all values of the parameters are the cases
k ∈ {1,2,3,6} (see [7, Corollary 4]).

It is known that if a,b > 0, then any map Fb,a has a unique fixed point (xc,yc) ∈
Q+ given by the solution of the system{

x2 = a+ y, y2 = b+ x,

which corresponds to the unique global minimum of Vb,a in Q+.
Setting hc := {Vb,a(xc,yc)}, the level sets C+

h :=
{
{Vb,a = h}∩Q+

}
are given

by the curves

C+
h := {(bx+a)(ay+b)(ax+by+ab)−hxy = 0}∩Q+ for h > hc,

which are closed ones ([6, Theorem 2]; see also Figure 1).
It is also known (see [6], and also [1]) that the dynamics of Fb,a restricted on

each connected component of the invariant curves Ch is conjugate to a rotation on
the unit circle.

Coming back to the problem of determining the periodic orbits of Equation (1),
and since the first components of the iterates of the map Fb,a give the odd terms
of the recurrence and the second one gives the even terms, in fact, by previously
proving that if a 6= b there are no periodic orbits with odd period different from 1
([1, Lemma 22]), we obtain that Theorem 1 follows as a corollary of the next result:

Theorem 2 ([1, Theorem 2]). Consider the family of maps Fb,a given in (2) for
a,b > 0.

(i) If (a,b) 6= (1,1), then there exists a value p0(a,b) ∈ N such that for any p >
p0(a,b) there exist at least a continuum of initial conditions in Q+ (an oval C+

h )
giving rise to p–periodic orbits of Fb,a.

(ii) The set of periods arising in the family {Fb,a, a > 0,b > 0} restricted to Q+

contains all minimal periods except 2, 3, 4, 6 and 10.

It is interesting to notice that the minimal periods 2 and 3 do not appear for any
a and b in the whole domain of definition of the dynamical system defined by Fb,a,
but periods 4, 6, and 10 appear for some a,b > 0 and some initial conditions outside
Q+, see the example of Section 3.1 for instance.
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2 Searching for periods

In this section we explain the strategy to compute the allowed periods for a particular
map Fb,a, and finally for the whole family {Fb,a, a,b > 0}.

2.1 Each map Fb,a has an infinite number of periods

In this section we give an sketch of the proof of Theorem 2 (i). First observe that
since Fb,a is conjugated to a rotation on each set C+

h , we can consider the rotation
number function parameterized by the energy level h≥ hc: θb,a(h), see Figure 1.

Fig. 1 The invariant curves C+
h , and the sketch of the graph a possible function θb,a(h) with the

definition of the interval I(a,b).

In [6] (and also in [1] using another approach) is proved that θb,a(h) is a contin-
uous function in [hc,∞), in fact analytic in (hc,∞). Furthermore, we can compute
θb,a(hc) := limh→hc θb,a(h) and limh→+∞ θb,a(h), resulting that generically (that is,
in an open and dense subset of the parameter space) θb,a(hc) 6= limh→+∞ θb,a(h).
This means that generically there exists a non-degenerate interval containing some
allowed rotation numbers I(a,b) = 〈θb,a(hc),2/5〉 ⊆ θb,a(hc,+∞) (see Corollary 1),
which means that the problem of partially knowing the set of periods of the map is
equivalent to the problem of determining the set of denominators of the irreducible
fractions in the interval I(a,b). In summary:

Proposition 1 ([1, Proposition 13]). The rotation number map θb,a(h) is continuous
in [hc,+∞). Furthermore

lim
h→h+c

θb,a(h) = σ(a,b) :=
1

2π
arccos

(
1
2

[
−2+

1
xc yc

])
and lim

h→+∞
θb,a(h) =

2
5
.
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As a consequence of the above result we have the following corollary:

Corollary 1. Set I(a,b) :=
〈
σ(a,b), 2

5

〉
:=(min(σ(a,b),2/5) ,max(σ(a,b),2/5)) .

(i) If σ(a,b) 6= 2/5, then for all θ ∈ I(a,b), there exists an oval C+
h such that

Fb,a(C
+
h ) is conjugate to a rotation, with a rotation number θb,a(h) = θ .

(ii) For all irreducible q/p ∈ I(a,b), there exists periodic orbits of Fb,a of minimal
period p.

The above result guarantees that if the parameters a and b are such that σ(a,b) 6=
2/5, then there exists a known non-degenerate interval containing the information
of some allowed periods. The existence of this interval ensures the existence of
a computable number p0(a,b) ∈ N, such that for all natural number p > p0(a,b)
there exists an irreducible fraction q/p ∈ I(a,b)⊆ θb,a(hc,+∞), and hence proving
Theorem 2 (i) for this case. The computability of p0(a,b) is explained in the next
subsection, now we focus on the fact that the property σ(a,b) 6= 2/5 is a generic
one. Indeed, consider the parameter space P := {(a,b), a,b > 0}, then the subset
{σ(a,b) = 2/5} ⊂P for a,b > 0 is given by the curve

Γ := {σ(a,b) = 2/5, a,b > 0}=
{
(a,b) =

(
t3−φ 2

t
,

φ 4− t3

t2

)
, t ∈ (φ

2
3 ,φ

4
3 )

}
,

see [1, Corollary 19] and Figure 2.

Fig. 2 The curve Γ =
{σ(a,b) = 2/5 for a,b > 0}
in the parameter space P .

Of course P \Γ is open and dense in P , and therefore the fact that I(a,b) 6= /0
and the computability of p0(a,b) are generic properties.
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Suppose that σ(a,b) = 2/5. As mentioned before (see also [1, Lemma 22]) it
is proved that if a 6= b there are no period orbits of odd period, and that (a,b) =
(1,1) is the only point in the parameter space satisfying both that σ(a,b) = 2/5 and
a = b. Then, if (a,b) 6= (1,1) it is clear that J(a,b) := θb,a ([hc,+∞]) is a closed
interval with nonempty interior (i.e. not the single value 2/5), since otherwise there
will be globally 5-periodic maps Fb,a with a 6= b, a contradiction. This last fact,
implies the existence of the number p0(a,b) ∈ N, such that for all natural number
p > p0(a,b) there exists an irreducible fraction q/p ∈ θb,a(hc,+∞). This number is
non-computable with our method.

Collecting all the above considerations one gets the proof of Theorem 2 (i), and
hence Corollary 1 (i).

2.1.1 Determining the particular periods of a given map Fb,a

In this section we briefly outline a methodology for determining the set of periods
of a map Fb,a, for some given fixed values a,b > 0, in the case σ 6= 2/5. In this case
it is clear that to determine which are the periods of a particular Fb,a is equivalent
to determine which are the irreducible fractions in I(a,b), and this can be done
following the next steps:

1. If σ(a,b) 6= 2/5, since the interval I(a,b) is known, it is possible to obtain con-
structively a value p such that for any r > p, there exists an irreducible fraction
q/r∈ I(a,b). This can be done in many ways, for instance, by using the following
result

Lemma 1 ([5, Theorem 25 and Corollary 26]). Consider an open interval (c,d)
with 0 ≤ c < d; denote by p1 = 2, p2 = 3, p3, . . . , pn, . . . the set of all the prime
numbers, ordered following the usual order. Also consider the following natural
numbers:

• Let pm+1 be the smallest prime number satisfying that pm+1 > max(3/(d−
c),2),

• Given any prime number pn, 1≤ n≤m, let sn be the smallest natural number
such that psn

n > 4/(d− c).
• Set p := ps1−1

1 ps2−1
2 · · · psm−1

m .

Then, for any r > p there exists an irreducible fraction q/r such that q/r ∈ (c,d).

2. Finally, a finite checking (that can be done with a computer using integer arith-
metics, if the above value p is large) determines which values of r ≤ p are such
that there exists an irreducible fraction q/r ∈ I(a,b). The minimum value is then
p0(a,b).

It is known that the rotation function θb,a(h) is not always monotonic, hence
I(a,b)⊂ θb,a ([hc,+∞]). So still the finite set of forbidden periods have to be deter-
mined to know exactly the set of periods of the map Fb,a. To do this, it is useful the
algebraic geometric approach described in Section 3.1.
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2.2 The periods of the family {Fb,a, a,b > 0}

Now we give an sketch of the proof of Theorem 2 (ii). By using the characterization
of the interval I(a,b) for the subfamily determined by a = b2, it is straightforward
to obtain that ⋃

b>0

I(b2,b) =
(

1
3
,

1
2

)
\
{

2
5

}
,

see [1, Lemma 16 and Proposition 17]. Hence, since

⋃
b>0

I(b2,b) =
(

1
3
,

1
2

)
\
{

2
5

}
⊆

⋃
a>0,b>0

I(a,b)⊆
⋃

a>0,b>0

θb,a (hc,+∞) ,

and the map F1,1 is globally 5-periodic (with θ1,1 ≡ 2/5), we have the following
result:

Proposition 2. For each θ in (1/3,1/2) there exists a,b > 0 and at least an oval
C+

h , such that Fb,a(C
+
h ) is conjugate to a rotation with rotation number θb,a(h) = θ .

In particular, for all irreducible q/p ∈ (1/3,1/2), there exists p-periodic orbits of
Fb,a.

We will be able, then, to characterize some periods of {Fb,a, a,b > 0} (in fact
all of them), if we are able to characterize the irreducible fractions in (1/3,1/2).
To this end we apply Lemma 1 to the interval (1/3,1/2), obtaining that for all
r ∈ N, such that r > p with p := 24 ·33 ·5 ·7 ·11 ·13 ·17 = 12252240, there exists
an irreducible fraction q/r ∈ (1/3,1/2). Again, a finite checking determines which
values of r≤ p are such that q/r ∈ (1/3,1/2), resulting that there appear irreducible
fractions with all the denominators except 2,3,4,6 and 10. Hence from Proposition
2 we have that for all p /∈ {2,3,4,6,10} there exists a,b > 0 and at least an oval C+

h
with associated rotation number θb,a(h) = q/p, thus giving rise to a continuum (at
least) of p–periodic orbits of Fb,a.

Notice that still it must be proved that 2, 3, 4, 6 and 10 are forbidden. The reader
is referred to [1] where, to this end, it is used the algebraic geometric approach
described in Section 3.1.

3 Asymptotic behavior of θb,a(h)

The key point in all the proofs of the above results is the characterization of the
intervals I(a,b), and in particular the asymptotic value of θb,a(h) at infinity given in
Proposition 1 (the value at the fixed point can be computed straightforwardly using
tools like [4, Proposition 8], for example). In this section we sketch the proof of
this result, by following the methodology introduced in [2] to study the autonomous
Lyness equation. This methodology has been applied also for other equations, see
[3, 4], for instance.
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3.1 The map Fb,a from an algebraic geometric approach

In this section we will give an easy formulation of map Fb,a(Ch) in terms of an inner
operation of the invariant curve. This description is useful to see that the action of
Fb,a on each connected component of Ch is conjugated to a rotation, and to study
and locate the invariant curves filled with periodic orbits with a prescribed period,
as well.

We start by extending the curves Ch and the map Fb,a to the complex projective
space. Indeed, The curves Ch, in homogeneous coordinates [x : y : t] ∈ CP2, are

C̃h = {(bx+at)(ay+bt)(ax+by+abt)−hxyt = 0}.

Observe that there exists three points at the infinity line: H = [1 : 0 : 0]; V = [0 : 1 : 0];
and D = [b :−a : 0] which are common to all the curves (see Figure 3).

Fig. 3 A typical curve C̃h
with h > hc in the real affine
plane. The infinity points V ,
H, and D, are common to all
curves. Observe that in the
projective plane the three real
unbounded components form
a closed curve.

The key point in our approach is the following result:

Proposition 3 ([1, Proposition 4]). If a> 0 and b> 0, then for all h> hc, the curves
C̃h are elliptic.

Recall that a cubic curve is elliptic if and only if it does not contain any singular
point. Also recall that in any elliptic curve an inner sum can be defined, endowing it
with a group structure. This inner operation is given by the chord-tangent process,
described bellow (see [16], for instance, for further details):
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The chord-tangent law in a non-singular cubic. Consider a nonsingular
cubic C . Take two points P and Q ∈ C .

1. Select a point O on the curve, to be the neutral element of the inner sum.
2. Take the chord passing through P and Q (the tangent line if P = Q). It will

always intersect C at a third point denoted by P∗Q.
3. The point P+Q is then defined as O ∗ (P∗Q).

The curve endowed with this operation, denoted by (E,+,O), is an abelian
group.

Fig. 4 The chord-tangent law
defined on an elliptic curve,
taking the infinite vertical
point V as a neutral element.
The chord passing through
P and Q intersects the curve
at a third point denoted by
P∗Q. The point P+Q is then
defined as V ∗ (P∗Q).

Any map Fb,a extends to CP2 as the polynomial map: F̃b,a ([x : y : t]) =
[
ayt + y2 :

at2 + bxt + yt :xy] . As for any QRT map, in fact for any birational map preserving
an elliptic curve, there is a relation between the dynamics of the map and the group
structure of the curve, see [11, Theorem 3]. In our case it is very easy to verify the
following result (see Figure 5):

Proposition 4. For each value h such that C̃h is elliptic,

F̃b,a|
C̃h
(P) = P + H,

Where + is the addition of the group law of C̃h taking the infinite point V as the
neutral element.

As a corollary of this result the action of Fb,a on each connected component of
C+

h is conjugated to a rotation.
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Fig. 5 The relation between
the dynamics of F̃b,a and the
group structure of C̃h, which
also follows from the fact that
Fb,a is a QRT map.

Observe that, as a consequence of the above result

F̃n
b,a(P) = P + nH.

Hence, the set C̃h is full of p-periodic orbits if and only if the following equation is
satisfied

pH = V, (4)

that is, if and only if H is a torsion point of (C̃h,+,V ). This equation is very useful
to characterize the level sets where the periodic points are located, as well to char-
acterize the forbidden periods of a particular Fb,a, or the whole family as well, as it
is shown in the following example.

Example. Here we will characterize which are the level sets C̃h, where the 4-
periodic orbits of F̃b,a are located, by using Equation (4).

First, we notice that since the neutral element V is not an inflection point of C̃h,
then the usual collinearity relation writes A+B+C =V ∗V , instead of A+B+C =

V . In consequence for any given a point P on C̃h, we have −P = P ∗ (V ∗V ) =
P∗ [−a/b : 0 : 1], see [1, Remark 7].

Now, observe that condition 4H =V is equivalent to 2H =−2H, and then 2H =
2H ∗ [−a/b : 0 : 1]. An straightforward computation gives that 2H = [0 :−a : 1] and

2H ∗ [−a/b : 0 : 1] =
[
−a3−a2b2−ab−h+b3

ab(a−b2)
,−ab+h−b3

a(a−b2)
: 1
]
,

hence there will be 4-periodic orbits if and only if a =
(
ab+h−b3

)
/
(
a
(
a−b2

))
,

and then the energy level where the 4-periodic orbits are located is given by: h4 :=
(a−b2)(a2−b). In [1, Proposition 21], it is proved that when a,b > 0, then h4 < hc,
and therefore there are not 4 periodic orbits in Q+.



On the set of periods of the 2-periodic Lyness’ Equation 11

3.2 The Weierstrass form of the curves C̃h and the conjugated
dynamics on them

To compute the asymptotic behavior of θb,a(h) at infinity, we follow the scheme
introduced in [2]. According to this, instead of looking for a normal form of the
map F̃b,a we look for a normal form of the invariant curve C̃h. The idea is to find
a birational change of variables preserving the group structure (a group’s isomor-
phism) sending each curve (C̃h,+,V ) to the corresponding Weierstrass Normal
Form (ÊL,+,V ), where

ÊL := {y2t = 4x3−g2 xt2−g3 t3},

being gi := gi(a,b,h), some functions whose expression can be found in [1, Propo-
sition 11]; and where the group law is the chord-tangent one with the vertical point
V as a neutral element. This isomorphism, can be found in [1, Section 2.2.1]1, and
it gives a conjugation between the action of F̃b,a(C̃h) and the action of certain bira-
tional map Ĝ(EL):

i : (C̃h,+,V )
∼=−→ (ÊL,+,V )

F̃b,a|C̃h
: P 7→ P + H → Ĝ|EL : P 7→ P + Ĥ

where Ĥ = i(H), (see [1, Proposition 11 (iii)]). The purpose of working with the
Weierstrass normal form is the following:

1. We can parameterize the Weierstrass curve by using the Weierstrass ℘ function.
2. This parametrization allows us to obtain the integral expression (8) for the rota-

tion number function.
3. The asymptotic behavior of the integral expression (8) can be studied, using the

tools in [2], giving the desired result.

By Proposition 3, the cubic curves C̃h with h> hc are elliptic (thus non-singular),
and therefore the curves ÊL are also elliptic. In this case, the degree-genus formula
for complex algebraic curves [12],

g =
1
2
(d−1)(d−2),

(where d and g stand for the degree and genus of the curve, respectively), gives g =

1, and hence each curve ÊL is (holomorphic) homeomorphic to a two dimensional
torus T2. It is well known (the reader is addressed to any standard book of Algebraic
Geometry like [12] or [15] for instance) that there is a suitable parametrization of
the curve ÊL obtained in the following way:

1 The Weierstrass Normal Form can be computed using computer algebra systems like Magma or
Sage, see the Appendix. In [1] the isomorphism is explicitly constructed in order to use them in
some steps of the proof of Proposition 11.
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The standard parametrization of the Weierstrass Cubic. For a given
Weierstrass cubic ÊL, there exists a lattice

Λ = {2nω1 +2miω2 such that (n,m) ∈ Z2} ⊂ C,

such that the map

φ : T2 ∼= C/Λ −→ ÊL

z −→
{
[℘(z) :℘′(z) : 1] if z /∈Λ ,

V = [0 : 1 : 0] if z ∈Λ ,

where ℘(z) is the Weierstrass ℘ function relative to Λ

℘(z) =
1
z2 + ∑

λ∈Λ\{0}

[
1

(z−λ )2 −
1

λ 2

]
,

is an holomorphic homeomorphism, and it gives a parametrization of ÊL. Ob-
serve that, in consequence, the function ℘ satisfies the differential equation

℘
′(z)2 = 4℘(z)3−g2℘(z)−g3. (5)

In our case ω1 and ω2 depend on a,b and h, and the lattice Λ can be chosen in
such a way that the associated parametrization posses the following properties that
are interesting for our purposes, see Figure 6:

1. The circle given by [0,2ω1]/Λ is projected bijectively into the real unbounded
branch of the Weierstrass curve ÊL, namely EL = {y2 = 4x3− g2 x− g3}, (from
now on we drop the hat when referring to the curve in the real plane).

2. The interval [0,ω1] ∈ Λ is projected bijectively into the real unbounded half
branch of EL with negative coordinates.

3. The point ω1 ∈ C/Λ is projected to the real affine point (e1,0) which is the
intersection of the real unbounded branch of EL, with the real abscissa axis (see
Figure 6) so

e1 =℘(ω1) (6)

With all the above geometric consideration, we have that by direct integration of
the differential equation (5) on [0,u) with u≤ ω1, we have that in real variables

u =
∫ +∞

℘(u)

ds√
4s3−g2s−g3

. (7)

On the other hand the map Ĝ|EL
has the following properties:

1. The map Ĝ|EL
is conjugated to rotation with rotation number Θ(L) ∈

[
0, 1

2

)
.
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Fig. 6 Relationship between the geometry of the Weierstrass elliptic curve EL and the action of Ĝ.

2. Since V is the neutral element of (EL,+,V ), then

Ĝ|EL
(V ) = V + Ĥ = Ĥ

3. The point Ĥ = i(H), is located on the real unbounded half branch of EL with
negative coordinates, [1, Proposition 11 (iii)].

In summary, Ĝ maps the point V , with associated parameter u = 0 in the inter-
val [0,ω1]/Λ , to the point Ĥ with some parameter u = 2ω1Θ(L) ∈ [0,ω1]. Hence,
the abscissa of Ĥ, say X(L), must satisfy X(L) =℘(2ω1Θ(L)). Using the integral
expression (7) we have that

2ω1Θ(L) =
∫ +∞

X(L)

ds√
4s3−g2 s−g3

.

Now, using Equation (6) and again (7), we get the desired integral expression for
the rotation number

Θ(L) =
1
2

∫ +∞

X(L)

ds√
4s3−g2 s−g3∫ +∞

e1

ds√
4s3−g2 s−g3

. (8)

The asymptotic analysis of this equation can be done using the tools developed in
[2], resulting that Θ(L) ∼ 2/5. To this end, the asymptotic expansions of some of
the elements of the curve and of X(L) must to be known, and this is one of the main
computational obstruction in the proof, see [1] for further details.
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Appendix

The following, is a Magma code for computing the Weierstrass Normal form ÊL of
the curves C̃h.

K<a,b,h>:=FunctionField(Rationals(),3);
A<x,y>:=AffineSpace(K,2);
C:=Curve(A,(b*x+a)*(a*y+b)*(a*x+b*y+a*b)-h*x*y);
CP:=ProjectiveClosure(C);
P:=CP![0,1,0];
E:=EllipticCurve(CP,P);
WeierstrassModel(E);

It can be processed in the Magma’s site http://magma.maths.usyd.edu.au/calc/. Us-
ing Magma V2.18-8, it gives the expression of ÊL in 0.220 seconds with a total
memory usage of 12.06MB.
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