

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

A bound on the number of rationally invisible repelling orbits

Anna Miriam Benini ^{a,1}, Núria Fagella ^{b,*,2}

^a Dipartimento di Scienze Matematiche Fisiche e Informatiche, Università di Parma, Italy

ARTICLE INFO

Article history: Received 29 July 2019 Received in revised form 5 May 2020 Accepted 12 May 2020 Available online xxxx Communicated by Vadim Kaloshin

Keywords: Transcendental maps Fatou-Shishikura inequality Holomorphic dynamics Accessibility

ABSTRACT

We consider entire transcendental maps with bounded set of singular values such that periodic rays exist and land. For such maps, we prove a refined version of the Fatou-Shishikura inequality which takes into account rationally invisible periodic orbits, that is, repelling cycles which are not landing points of any periodic ray. More precisely, if there are $q < \infty$ singular orbits, then the sum of the number of attracting, parabolic, Siegel, Cremer or rationally invisible orbits is bounded above by q. In particular, there are at most q rationally invisible repelling periodic orbits. The techniques presented here also apply to the more general setting in which the function is allowed to have infinitely many singular values.

© 2020 Elsevier Inc. All rights reserved.

E-mail address: nfagella@ub.edu (N. Fagella).

^b Dep. de Matemàtiques i Informàtica, Universitat de Barcelona, Catalonia, Spain

^{*} Corresponding author.

¹ This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 703269 COTRADY.

 $^{^2}$ Partially supported by the Spanish grant MTM2017-86795-C3-3-P, the Maria de Maeztu Excellence Grant MDM-2014-0445 of the BGSMath and the catalan grant 2017 SGR 1374.