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HAMILTONIAN SYSTEMS WITHOUT EQUILIBRIUM POINTS
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ABSTRACT. In this paper we study the existence of limit cycles of planar piece-
wise linear Hamiltonian systems without equilibrium points. First we prove
that if these systems are separated by a parabola they can have at most two
crossing limit cyles, and if they are separated by a hyperbola or an ellipse they
can have at most three crossing limit cycles. Additionally we prove that these
upper bounds are reached. Second we show that there is an example of two
crossing limit cycles when these systems have four zones separated by three
straight lines.

1. INTRODUCTION

The problem of existence of limit cycles is one of the most and difficult problem
in the qualitative theory of differential systems in the plane. Limit cycles appear
in natural way in many appliations.

We recall that a limit cycle is a periodic orbit of a differential system which is
isolated in the set of all periodic orbits of the system.

Recently the problem of existence and the number of limit cycles has also been
studied for discontinuous piecewise linear differential systems, this study goes back
to Andronov et all [1], and still have attention by researchers, mainly due to
their simplicity and to their applications to a large number of phenomena, such
as switches in electronic circuits, see for instance [2, 10, 11]. Lum and Chua [15]
conjectured that a continuous planar piecewise linear system with two zones sepa-
rated by a straight line can exhibit at most one limit cycle. Freire et al [5] proved
this conjecture in 1998. For the planar discontinuous piecewise linear systems, Han
and Zhang [7] conjectured that these systems can have at most two crossing limit
cycles when we separate them by a straight line, but Huan and Yang [8] gave a
numerical example with three limit cycles, this result was proved analytically by
Llibre and Ponce [13]. In 2015 Llibre et all [12] proved that if we separate the
planar discontinuous piecewise linear differential centers by a straight line we can
not have any limit cycle. Recently, in [3, 9, 14] were studied planar discontinous
linear differential centers separated by an algebraic curve, such that a conic, or a
reducible and irreducible cubic, and it was proved that these differential systems
can exhibit at most three crossing limit cycles having two intersection points with
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the conic of separation and the same result is proved if the curve of separation is a
cubic.

In the literature we find many papers studying pieccewise smooth vector fields
with two zones, and few papers for three and four zones.

In this paper we consider planar piecewise linear Hamiltonian systems without
equilibrium points.

Our first objective is to provide the exact maximum number of crossing limit
cycles of planar discontinuous piecewise linear Hamiltonian systems without equi-
librium points (or simply PHS) and separated by a conic ¥. We follow the Filippov
rules for defining the flow of the piecewise differential systems on a line of discon-
tinuity, see [4].

We know that any conic takes nine canonical formes, but the four following
formes: 22 4+1 =0, 22+ y2 =0, and 22 + y?> + 1 = 0 do not sepatate the plane in
connected regions, then we omit them. We do not study the crossing limit cycles
separated by the conic 22 — 1 = 0, because in [6] it was proved that PHS with three
zones which separated by two parallel straight lines have at most one crossing limit
cycle.

The second objective of this paper is to study the crossing limit cycles of piecewise
smooth differential systems such that in each piece the differential system is linear,
Hamiltonian and without equilibrium points. Then easy computations show a such
differential system in each piece must have a vector field of the form

Xi(z,y) = (= Nibiz + by + 7i, —AZbix + Aibiy + 6;),
0; # Niv; and b; # 0, with ¢ = 1...4. Their corresponding Hamiltonian function is
Hy(x,y) = (=A7b:/2)a” + Nibiwy — (bi/2)y” + iz — viy-

For more details see [6].

1.1. Crossing limit cycles for planar piecewise linear Hamiltonian systems
without equilibrium points separated by a conic. In this subsection we give
the upper bound of crossing limit cycles of PHS separated by a parabola, P: y—22 =
0, by a hyperbola H: 22 — y? — 1 = 0 or by an ellipse E: 22 +y?> — 1 = 0.

We consider only the crossing limit cycles that intersect the conics in exactly
two points, for this reason we will not study the crossing limit cycles separated by
two intersecting straight lines zy = 0.

Our first main result is the following.

Theorem 1. The following statements hold.

(a) The mazimum number of crossing limit cycles of PHS intersecting the
parabola P in two points is at most two, and this maximum s reached,
see Figure 1.

(b) The mazimum number of crossing limit cycles of PHS intersecting the hy-
perbola H in two points is at most three, and this maximum is reached, see
Figure 2.



(¢) The mazimum number of crossing limit cycles of PHS intersecting the el-
lipse E in two points is at most three, and this maximum is reached, see
Figure 3.

The proof of Theorem 1 is given in section 2.

1.2. Crossing limit cycles for planar piecewise linear Hamiltonian systems
without equilibrium points with four zones. In this subsection we study the
existence of crossing limit cycles of the planar piecewise linear Hamiltonian systems
without equilibrium points with four zones

Xl(x»y)v X S _]-7
_ XZ(xvy)a _]-Sxéoa
(1) X(x’y) o X3($?y)a 0 S x S L
Xa(z,y), =>1

satisfying the condition:

C. The vector fields X7, Xs, X3 and X, are linear and Hamiltonian without
equilibrium points.

Our second results are the following.

Theorem 2. Continuous planar piecewise Hamiltonian systems without equilib-
rium points with four zones satisfying C, have no crossing limit cycles.

Theorem 3. There are discontinuous planar piecewise Hamiltonian systems with-
out equilibrium points with four zones satisfying C, exhibiting exactly two crossing
limit cycles.

The proofs of Theorems 2 and 3 are given in section 3.
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FiGURE 1. Two crossing limit cycles of PHS intersecting the
parabola in two points.
2. PROOF OF THEOREM 1

Proof of statement (a) of Theorem 1. In the region Ry = {(z,y) : y — 2% > 0} we
consider the planar discontinuous piecewise linear Hamiltonian systems without
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FIGURE 2. Three crossing limit cycles of PHS intersecting the hy-
perbola in two points.

T
2 ]

FIGURE 3. Three crossing limit cycles of PHS intersecting the el-
lipse in two points.

equilibrium points

(2) &= —Mbiz+biy+y, g =-Abw+ \biy + 41,
with by # 0 and §; # A17y1. Its corresponding Hamiltonian function is
(3) Hi(z,y) = —(A\1b1/2)2® + Mbizy — (b1/2)y> + 612 — m1y.
In the region Ry = {(z,y) : y — 2% < 0} we consider

(4) &= —Xobow +boy + 72,  § = —A3bax + Aaboy + b,
with bs # 0 and d2 # Aoys. Its corresponding Hamiltonian function is
(5) Ho(z,y) = —(A2ba/2)x? + Xoboxy — (b2/2)y? + oz — Yoy.

In order to have a crossing limit cycle which intersects the parabola y — 22 = 0 in
the points (x;,y;) and (xg, yx), these points must satisfy the following system

Hl(xivyi) - Hl(xlwyk) = Oa
(6) Hg(x“yl) - HQ(xlmyk) = Oa

Yi — xz2 = Oa

Yk — xz =0.
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We suppose that the two systems (2) and (4) have three crossing limit cycles. Then
system (6) must have three pairs of points as solutions, namely p; = (r;,r?) and
¢ = (si,57), with i = 1,2,3. Due to the fact that these points satisfy system (6)
and if we consider the points p; = (r1,77) and ¢; = (s1,s7), from (6) we obtain
that the parameters v; and v, must be

1
m(—rlri’ — bir3sy — bir1s? — byst + 201 + 20172 Ny + 2017151\
1+ 51

+2b18%)\1 — bl’l“l)\% - blsl)\%),
and 72 has the same expression that 77 changing (b1, A1,01) by (b2, A2, 02).

71 =

If the second points py = (r2,73) and g2 = (s2, s3) satisfy system (6), then the
parameters §; and d; must be
by 3 3 2 3 2 3 3
o1 = (=rire — riry + 1iresy — 1381 4+ r1rest + 287 +rise

2(7"1 — 79+ 81 — 82)
—7‘17"%32 + rfslsg — r%slsg + 1"13%32 + 5?32 — 7"17‘28% — 7’25153 — rlsg — 5153
727”%7’2)\1 + 27"17’%)\1 — 27‘17‘281)\1 + 27’%81)\1 — 27‘28%)\1 — 27’%82)\1 + 27”17’282)\1
—27”18182)\1 + 27“28182)\1 — 28%82)\1 + 27”18%)\1 + 2818%)\1),

and dy has the same expression that ¢; changing (by, A1) by (b2, A2).

Finally, we suppose that the points p3 = (r3,73) and g3 = (s3, s3) satisfy system
(6), then the parameters A; and Ay must be Ay = A/B where
A

= 73(ro — 73+ 82 —83) +7251(rg — 13 + 859 — 83) + 13(r3 — 81 + 83) + r2sa(rz — 51

2

+83) + (=13 + 13 — 1357 — 1350 + 8789 — 85 + ro(sT — 53) + r3s3 — s¥s3 + 738
+53) + (51— 82)(r3 + 1383 + (51 — 83) (52 — 83)(51 + 82 + 83) — r3(s7 + 5182 + 53

—53)) = ra(r§ — 51 + 5153 + risy — 353 + 55 + ra(—s3 + 53)),

B = 2((51 — 52)(7"% + (81 — 83)(52 — 83) — Tg(Sl —+ S9 — 53)) —+ T%(TQ — T3 —+ S9 — 83)

+73(r3 — 81+ 83) + 71(—73 + 13 — r3sy +ro(s1 — S2) + 8182 — 83 + 1r3s3 — 8183

+52) — 12(r3 + r3(—s2 + 53) — (51 — 83)(81 — S2 + 83)).
And )\; has the same expression that A\ changing b; by bs.

We replace 1, A1 and §; in the expression of Hy(x,y), and 2, Ay and Jy in the
expression of Hs(x,y) and we obtain H(z,y) = Ha(z,y). So the piecewise linear
differential system becomes a linear differential system, which does not have limit
cycles. So the maximum number of crossing limit cycles in this case is two.

Example with two limit cycles. Consider the planar discontinuous piecewise

linear Hamiltonian system without equilibrium points separated by the parabola
P:

(7) T =5.5x—05y+3, y=060.5r—55y+0.2
in the region Ry, its corresponding Hamiltonian function is
H,(z,y) = 302522 — 5.5zy + 0.2z 4+ 0.25¢% — 3y.
The second system is
(8) =02z —0.1y —0.778814, y = 0.4z — 0.2y + 0.00727332,
in the region Ra, its corresponding Hamiltonian function is

Hy(z,y) = 0.22% — 0.22y + 0.00727332z + 0.05y2 + 0.778814y.
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These PHS have the limit cycles shown in Figure 1. This completes the proof of
statement (a) of Theorem 1. O

Proof of statements (b) of Theorem 1. In the region Ry = {(x,y) : 2> —y*>—1 > 0}
we consider the PHS given in (2). Its corresponding Hamiltonian function is given
by equation (3).

In the region Ry = {(x,y) : 22 — y*> — 1 < 0} we consider the PHS given in (2).
Its corresponding Hamiltonian function is given by equation (5).

In order that to have a crossing limit cycle which intersects the hyperbola % —
y? —1 =0 in the points (x;,y;) and (x1, yx), these points must satisfy the system

Hi(xi,y;) — Hi(xk, yi) = 0,
H2(Ii7yi) - H2($k7yk) = Oa
I’LZ - yzz =1,
x% — y,% =1.

(9)

We assume that the two systems (2) and (4) have four crossing limit cycles. So sys-
tem (9) must have four pairs of points p; = (cosh r;, sinh ;) and ¢; = (cosh s;, sinh s;)
for i = 1,2,3,4 as solutions. Since these points satisfy system (9), we consider the
points p; = (coshry,sinhry) and ¢; = (coshsy,sinhs;), and from (9) we obtain
that the parameters v, and v, must be

1
2(sinhr; — sinh s7)
+b1)\1 sinh 81) + bl(f sinh2 1+ )\1 Sinh(27’1) + Sinh2 51).

M= (261 coshry — by \? cosh?ry + bi)\? cosh? s; — 2 cosh s1(01

If we change (b1, A1,d1) by (b2, A2, d2) in the expression of 71 we get the expression
of 5.

We suppose that the second points p, = (cosh ro, sinhr5) and g2 = (cosh s, sinh s3)
satisfy system (9), then the parameters ; and d2 must be

1 _
01 = (blcsch(r1 51

-2 -2
4(cosh (%) _ cosh (W%)) 2

(=2 cosh? ry

sinh 7y + A2 cosh? sy sinh ry — sinh? ry sinh 7y + A\p sinh(2ry) sinh e 4 sinh r4 sinh? ry
— 1 sinh rq sinh(2rg) + A3 cosh? ro(sinhr; — sinh s;) — sinh? ro sinh s1 4+ A sinh(2r3)
sinh s; + sinh ro sinh? s; + A2 cosh? sa(—sinh 7 + sinh s1) — A sinh 7o sinh(2s7)
+)\% cosh? r1sinh sg — )\% cosh? s1 sinh s9 + sinh? r1 sinh so — A1 sinh(2r) sinh s9

— sinh? sy sinh s + \; sinh(2s1 ) sinh s5 — sinh 7y sinh? s, + sinhsy sinh? s,
+A1(sinhr; — sinh s1) sinh(2s5))).

If we change (b1, A1) by (b2, A2) in the expression of §; we obtain ds.

Now we suppose that points p3 = (coshrs,sinhrs) and g3 = (cosh s3, sinh s3)
satisfy system (9), then we obtain two values of A\; we name them /\gl) and /\52)
and two values of Ay we name them )\él) and )\§2). The first value of \; is given by



MY = (4 - (1/2)VB)/C and AP = (A + (1/2)V/B)/C, where
A _Sinh(rl—7“2—7“3—1—81—52—383)+Sinh(71—72—T3+81—332—33

2
. 7"1—7"2—3T3+81—82—83
— sinh

—sinh

—sinh

2
4 sinh 3ry —ro+ 13+ 51 — 82+ 53

5 )
(3T‘1+T27T3+51+827$3>
2
(7"1+7“2—7“3+351+52—83>

2
*T2+T3+351*52+53> .
— sinh

. 1
b
+ sin 5
B— _4(Cosh(7’17’l"27’r‘3+2517827353
—‘rCOSh(Tl —7“2—37”3;—51 —52—83)
3r1 +r9 —r3+ 81+ 59 — S3
— cosh

2
7”1+7"277"3+381+$27$3

— cosh

+ cosh

2
+ cosh ry—1ro+ 13+ 351 — So+ S3

(

(37“—7“-‘1-7"%-5 —s+s>
()
( )

+4(sinh

— cosh (
osh (

+ cosh
cosh
cosh

sinh

ry —1ro —3r3+ 81 — So — S3

2
3ri1+ro—r3+s1 + 59— s3

2
3ry —ro+1r3+ 51— S2+ 83

2
1 —Tro+1r3+ 351 — S+ S3
2

(
<r+r—r—|—23s+s—s)
()
( )
)

—sinh (

and the expression of C' is

2
(7’177‘277"34’817827383)

— sinh

sinh 5
. (7”1+7’2—7’3+81+382—83)
— sinh

2
7‘1—37’2—T3+81—82—83

2
ry—1ro+3r3+ 51 — Sy + S3

2
T4 — T2+ 73+ 81— 2+ 3s3
2

)
r1+3r2r32+51+5233§
)
)
)

( ;
(7”1+7“2—T3+81+382—83

T17T277‘3+517352783
— cosh

2
T1—3T2—T3+81—82—83)

2
r1 4+ 3ro —r3+ 81 + 89 — S3

2
(7’1+7’27T3+81+352753

2
(T1—T2+3T3—|—81—82+S3

2
o (T1 — T2+ 13+ 81 — 52+ 353

2
(7’177’277‘34’817382783)

2
7’1—37‘2—7‘3+81—32—S3)

2
(T1+3T2—T3+81+82—83

2
(Tl—T2+3T‘3—|—81—82—|—53

2
(7"1 — 1o +1r3+ 5 —52+383>)
2 b

C = cosh(rl_r2_r3+31_52_353>_Cosh<r1—7"2—1"3-1-51—352—33)

ry—1ro —3r3+ 81 — Sg — S3

+cosh( 5
3T1+T‘2—7“3+81+82—83

— cosh (

— cosh

2
—I—COSh(grl — 1o+ 173+81 — S2+ 83

2
—7"2+’1"3+381—82+83)

T1
h (
+ cos 2

)—cosh

. ) +cosh
7‘1+T2—7‘3+351+52—53>+Cosh(
)—cosh

2
r1 —3ro —r3+ 81 — So — S3

2
7’1+37‘2—T’3+81+82—83

2
(Tl—T2+3T3+81—82+83

)
)
r1+r2—r3—0—251+332—33)
)
)

2
(Tl—T2+T3+81—82+383
— cosh

2

We get the expression of /\él) and /\;2) by changing b; by bs in the expression of

)\gl) and )\52), respectively.

We replace 1, d; and )\gi) in the expression of Hi(z,y), and 79, d2 and )\gi) in
the expression of Hy(z,y), and we obtain Hq(x,y) = Ha(z,y), for i = 1,2. Hence
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in these cases the piecewise linear differential system becomes a linear differential
system, which does not have limit cycles. So the maximum number of crossing limit
cycles in this case is two.

Now we consider either )\52) and )\(21), or )\gl) and /\§2), by replacing the expres-

sions of vy, 1 and )\gz) (resp. )\gl)) in the expression of Hi(z,y), and 7a, d2 and

)\gl) (resp. Ag2)) in the expression of Hy(x,y) we have Hy(x,y) # Ha(z,y).
Then we assume that points py = (coshry,sinhry) and g4 = (cosh sy, sinh s4)
satisfy system (9), then we obtain by = 0 and by = 0. This is a contradiction

because by the assumptions they are not zero. Then we proved that the maximum
number of crossing limit cycles for PHS separated by a hyperbola is at most three.

Example with three limit cycles. We consider a PHS separated by the
hyperbola H:

1
(10) o =—0140+14y+ 2, §=-00ld.2+014y+19,

in the region Ry = {(z,y) : 2% — y*> — 1 < 0}. It has the Hamiltonian function

Hi(z,y) = —0.007..2% + 0.14zy + 1.92 — 0.7y — g
Now we consider the second PHS
(11) T = 5x — % — 7.14286.., 9 =50z — 5y — 67.8571..,

in the region Ry = {(x,y) : 22 — y?> — 1 > 0}. This differential system has the
Hamiltonian function

2
Hy(z,y) = 2522 — 5y — 67.8571..0 + yz 4 7.14286..5.

The PHS (10)—(11) has exactly three crossing limit cycles, because the system of
equations

Hl(aﬂﬁ) - Hl(%5) = 07

HQ(aaB) _HQ(F)/a(S) :Oa
(12) a2_62_1:0’
¥ —-62—-1=0,

has three real solutions (a1, f1,71,01) = (3.99376..,3.86653..,3.31341.., —3.1589..),
(a2, B2, 72, 02) = (3.43842..,3.28979.., 2.86513.., —2.68496..) and (a3, B3, 73,03) =
(2.64219..,2.44565.., 2.2285.., —1.99154..), see Figure 2. 0

Proof of statement (c) of Theorem 1. We consider the PHS given in (2) in the re-
gion Ry = {(x,y) : 22 + y?> — 1 > 0}, with its corresponding Hamiltonian function
(3)-

We consider the PHS given in (2) in the region Ry = {(z,y) : 2% + y*> — 1 < 0},
with its corresponding Hamiltonian function (5).
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In order that systems (2) and (4) have crossing limit cycles intersect the ellipse
22+ 2% — 1 =0 in the points (x;,v;) and (2, ys), they must satisfy the system

Hl(x%yi) - Hl(£k‘7yk) = Oa
Hy (x4, yi) — Ha(wr,yx) = 0,
xf + y? =1,
xi—i—yi =1.

(13)

We suppose that systems (2) and (4) have four crossing limit cycles. So system
(13) must have four pairs of points p; = (cosr;,sinr;) and ¢; = (cos s;,sins;) for
i = 1,2,3,4 as solutions. So if we consider the points p; = (cosry,sinry) and
q1 = (cos s1,sin s1), from (13) we obtain that the parameters v and o must be

1
4(sinry — sin s1)
+b1 2% cos(2s1) + 2b1 A sin(2r;) — 2by g sin(2sy)).

v = (481 cosy + by cos(2ry) — by A2 cos(2ry) — 401 cos 51 — by cos(2s1)

If we change (b1, A1,d1) by (ba, A2, d2) in the expression of 71 we get the expression
of 5.

Now if the second points pas = (cosry,sinry) and go = (cos sa,sin sg) satisfy
system (13), then the parameters ¢; and J, take the values

5 = r1cos((ry + s51)/2) cse((ra — s2)/2) esc((r1 — ro + s1 — s2)/2) (02 cos® 1y sin

4( sinry — sin 31)
—)\% cos? s sinry; — 2\1 cos o sinry sinry + sinr sin® re + 21 cos(ry + s1)
sinrgsin(ry — $1) — )\% cos® rosin sy + )\% cos? s58in $1 + 2A1 cos 79 sin 79 sin 51
—sin? 1y sin sy — sinrq sin(ry — s1)sin(ry + s1) + A2 sinrg sin(ry; — s1) sin(ry + s1)
—2)1 cos(r1 + s1) sin(r] — s1) sin sy + sin(r; — s1) sin(ry + s1) sin sy — \?
sin(ry — s1)sin(ry + s1)sin so — sinrg sin? so + sin s1 sin® sg + A; sinrg sin(2s9)
—\q sin sq sin(2s2)).

If we change (b1, A1) by (b2, A2) in the expression of §; we obtain Js.

If we assume that the points ps = (cosrs,sinrs) and g3 = (cos s3, sin s3) satisfy
system (13), then we obtain two values of A\; namely )\gl) and )\52) and two values
of Ay namely )\gl) and )\g), such that )\(11) = (A++vB)/C and )\52) =(A-VB)/C,
where

r1T—1To—73+ 81 — So — 353 . r1—1To—173+ 8 — 38y — S3
A= —sm( 7 )—i—sm( 5 )
. (T1—T2—3r3+51 — 82— 53 . (T1—3r2 — T3+ 51 — 82— 83
—sm( 5 )—l—sm( 5 )
. 3T1+T‘27’I"3+51+52753 . T1+37’277’3+51+82783
_Sm( 2 >+Sm< 2 )
. (T1+ T2 —7T3+ 381+ S2 — S3 . (r1+ T2 —7T3+ 81+ 382 — S3
(I g (b )
. 3r1 —ro+1r3+ 81 — 89+ S3 . r1—1ro+3r3+ 51 — Sy + S3
+Sm( 2 >_Sm( 2 )
. (T1— T2 +713+ 351 —S2+ 53 . (T1— T2 +T3+ 81 —S2+3s3
+sm( 5 >fs1n< 5 ),
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1 —1To—7T3+ 81 — So — 3S3 1 —To—1r3+ 81 — 389 — S3
COS — COS

2
71 —T9 — 313 + 81 — S — S3 —3ry — T3+ 81 — 82— 83

—+ cos (

2
3T1+’I"27T‘3+51+52783
— COS

+ cos

2
<7’1+37‘277’3+81+52753

— COs —+ cos

-+ cos

— COS

; )
<T1+T2—T3+81+382—83)
2
<r1—7‘2+3r3+81—82+83>

3

2
T4 — T2+ 173+ 351 — S2 + s3
2

) )
7”1+7“2—7”3+351+82—83)

2
o (T1—T2+73+81 —52+3s
+ cos — COS ( 5 )

( 2
(3r1—r2+7“3+81—82+83

. 7‘1—T2—T3+81—382—S3
(sin 57“1—7“2—7“34—81—82—353 — sin 5
1 —1ro —3r3+ S1 — Sg — S3 . (r1—3r9 —r3+ 51 — Sy — S3
+ sin B — sin B
3ry +1ryg —1r3+ 81 + 52 — 53 . (T1+3r2 —7r3+ 51+ 82— 383
+ sin — Sin

2
(7‘1+7’2—7’3+81+382—53

( )
(7’1—|—T2—r3—|—331 —|—32—53)
+ sin

D) — S1n B
3T1—T2+T3+81—82+83)+Sin(T1—T2+3T3+81—52+S3
2 2
. 7”1—T2+T3+381—82+83 .92 Tl—T'2+7”3+81—82+383
fsm( 5 )Jrsm ( 5 ),

and the expression of C' is

7"177"277"3‘{“817827383 7‘177‘277“34’817382783

C= cos( )fcos( 3 )

r1— 79 —3r3 + 81 — So — S3 ry —3re — T3+ 81 — S — S3

-+ cos 5 )—cos 5 )

 cos 3r1+r2—7"3+51+52—33) r1+3r2—r3+51+82—53)
2 2

— cos 7“1+7"2—’)"3+381+82—83) + co 7’1+7’2—7’3+81+382—83)
2 2

3ry —ra+r3+51 — 83+ 83 riy — 1o+ 3r3 + 81 — s2 + 53

+cos( 5 )—COb 5 )

r1—1ro+ 13+ 351 — Sg+ S3 1 —ro+ 13+ 81 — So+ 353

+cos( 2 )—cos( 5 )

The expression of /\él) and Aém are the same than the expressions of )\gl) and )\52),
respectively, if we change b; by bs.

We replace ~1, 01 and )\gi) in the expression of Hi(z,y), and 72, d2 and )\gi) in
the expression of Ho(z,y) and we obtain Hy(z,y) = Ha(x,y) for i = 1,2. So the
maximum number of crossing limit cycles in these cases is two.

Now we consider either )\52) and )\(21), or )\gl) and /\§2), by replacing the expres-
sions of vy, ;1 and )\gz) (resp. )\gl)) in the expression of Hi(z,y), and 7a, d2 and

)\él) (resp. )\52)) in the expression of Hy(z,y), and we get two different expressions
of the Hamiltonian functions H;(z,y) and Ha(x,y).

Then we assume that points py = (cosry,sinry) and gy = (cos s4,sin s4) satisty
system (13), and by solving this system we obtain b; = 0 and by = 0, which is a
contradiction. Then we proved that the maximum number of crossing limit cycles
for PHS separated by an ellipse is at most three.
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Example with three limit cycles. In the region Ry = {(z,y) : 22+y?—1 > 0}
we consider the linear PHS
(14) & =253x+11y—0.6, y=—58192—2.53y —04,
its Hamiltonian function is
Hy(x,y) = —2.90952% — 2.53zy — 0.4z — 0.55y> + 0.6y.

In the region Ry = {(z,y) : 22 + y?> — 1 < 0} we consider the linear PHS
(15)
T = —0.308696x + 0.71y 4 0.0732085, v = —0.134216x + 0.308696y + 0.0488056.

Its Hamiltonian function is
Hy(x,y) = —0.0671078z2 + 0.308696xy + 0.0488056x — 0.355y2 — 0.0732085y.

The linear PHS (14)—(15) has exactly three crossing limit cycles, because the system
of equations

Hl(aaﬂ) - Hl(’)/, 6) = 07

HQ(aaﬁ) 7H2(’735) :07
(16) O[2+ﬂ2—].:0,
Y2+62—-1=0,

has three real solutions (a, 81,71, 91) = (—0.0450412.., —0.998985.., 0.730814.., —0.682576..),
(a2, B2, Y2, 02) = (—0.40163.., —0.915802..,0.92153.., —0.388307..) and (a3, B3, V3, 0) =
(—0.760814.., —0.64897..,0.99956.., —0.0296781..) [

FIGURE 4. Two crossing limit cycles of PHS with four zones.

3. PROOF OF THEOREMS 2 AND 3

Proof of Theorem 2. Consider a continuous linear Hamiltonian differential system
separated by the straight lines x = —1, x = 0 and x = 1. According to the
continuity of the vector field X we obtain
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X1(—=1,y) = Xa(-1,y), X2(0,y) = X3(0,y) and X3(1,y) = X4(0,y), Vy €R.
Which imply that
by = by = b3 =by =0,
01 =09 =03 =04 =,
M=7"2="73=7=7
A=A =A3=M= A\
Therefore, from system (1) the piecewise vector field becomes the vector field
X(z,y) = (=A\bx + by + v, =A%bx 4+ \by 4 6),6 # Ay, b # 0.

Since this linear differential system has no equilibrium point it has no periodic
orbits, then no limit cycles. This completes the proof of Theorem 2. ([l

Proof of Theorem 3. If the PHS with four zones have crossing limit cycles, then
there are crossing points (—1, o), (—1,y5); (0,91), (0, ya); and (1,y5), (1, ys) satis-
fying

Hl(_layo) = Hl(_17y5)a

H2(_13 ?JO) = HQ(Oa yl)v
(17) Hy(—1,y5) = H2(0,y4),

H3((0,y1) = H3(1,y2),

H3((0,y4) = H3(1,y3),

Hy((1,y2) = Ha(1,y3),
or equivalently
(18) (Yo — y5)(2b1 A1 + biyo + b1ys +271) = O,
(19) —boA3 — boyg — 2b2Xayo + bayi — 265 — 2vayo + 2721 = O,
(20) —bo A3 + bayi — bayz — 2badays — 202 + 272ys — 272y5 = O,
(21) b3A3 — bsy? + bsys — 2bsAsyz — 203 — 2y3y1 + 232 = O,
(22) b3A3 + bsy3 — 2b3A3ys — b3yi — 205 + 2v3y3 — 293ys = O,
(23) (y2 — y3)(—2bsAg + bayo + bayz +2v4) = 0.

As yo # ys5 and y2 # ys, we can solve equation (18) for ys as well as we can solve
equation (23) for ys. Substituting the obtained values of y5 and y3 into equations
(20) and (22), respectively, we obtain the following two equations

271
(24) Yo (== b +2M1 4+ yo +ya) — 02 — 2b2 (b2(b1(2M1 — A2 + Yo — ya) + 271)
(b1(2M1 — A2 +yo +ya) +2m1)) = 0
and
(25) b3(ba(A3 — 24 + Y2 — ya) + 274) (ba( A3 — 2X4 + y2 + ya) + 274)

—2b4(b4(83 + v3(—2Xg + y2 + y4)) + 29374) = 0.

First we solve equation (19) for yo and we get

(26) Yo = (1/b2)(=bada — 72 + /b3yF + 2b272X2 — 26202 + 2b2v2y1 +73)
then equation (21) for y» and we get

(27) = (1/b3)(+b3As — 73 £ /b3y? — 2b3733 + 2b3d5 + 2b33y1 + 72).
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Substituting (26) into (24) we obtain two equations f1 2(y1,%4) = 0 depend on y;
and y4. Then, substituting (27) into (25) we obtain two equations g1 2(y1,y4) = 0
depending on y; and y4.

So we compute the product F(y1,y2) = f1(y1,v2)f2(y1,y2) = 0 and G(y1,y2) =
91(y1,92)92(y1,y2) = 0, and we obtain two quartic polynomial equations with the
variables y; and yy.

By using Bézout Theorem we obtain that the number of solutions of the system

(28) F(y1,y4) =0, G(y1,y4) = 0.

is bounded by the product of the degrees of the polynomials F'(y1,y4) and G(y1,ya4)-
If (y1,v4) is a solution of these equations, (y4,y1) is also a solution. So we obtain
that the number of different solutions of system (28) is at most 8 which is an upper
bound for the maximum number of limit cycles that can have the PHS (17). Due
to the higher degree of this system and the number of its parameters we only can
give an example with two limit cycles.

Example with two limit cycles. Consider the vector fields X = (X1, X5, X3, X4)
such that

x x oy
X =(——=+2y—3,——+=+3
l(muy) ( 2+ Yy ) 8+2+ )7
Xo(z,y) = (24 22 — 2y, 2z — 2y + 30),
Xs(z,y) = (4 + 4z + 2y, 13 — 8z — 4y),
x Ty
X =(—= -3,——+ 2 -3).
Their corresponding Hamiltonian functions are given, respectively, by
2 xy
H =—-—— 4= —y?

Hy(z,y) = 2% — 22y + 302 + 32 — 2y,

Hj(z,y) = —42% — 4oy + 132 — y? — 4y,
? ay y?

H4(I7y) = *g + ? *31’* ? +3y
The first crossing limit cycle intersects the straight lines of discontinuity in the fol-
lowing points: (—1, —5.69679..) and (—1,8.19679..); (0, —1.11032..) and (0, 7.25999..);
and (1,0.66814..) and (1,6.33186..). The second crossing limit cycle intersects the
straight lines of discontinuity in the points: (—1,—5.35506..) and (—1,7.85506..);
(0,0.177417..) and (0,0.177417..); and (1, 1.07357..) and (1,5.92643..). The crossing

limit cycles of X are shown in Figure 4. (]
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