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THE SOLUTION OF THE SECOND PART OF THE 16TH

HILBERT PROBLEM FOR NINE FAMILIES OF

DISCONTINUOUS PIECEWISE DIFFERENTIAL SYSTEMS

REBIHA BENTERKI1 AND JAUME LLIBRE2

Abstract. We provide the exact maximum number of limit cycles of some

families of discontinuous piecewise differential systems formed by two differ-
ential systems separated by a straight line, when these differential systems are

linear centers or three families of cubic isochronous centers. These maximum

number of limit cycles vary from 0, 1, 2, 3, 5 and 7 depending of the chosen
families.

1. Introduction and the statement of the main results

We consider a polynomial differential systems in R2 of the form

(1)
dx

dt
= P (x, y),

dy

dt
= Q(x, y),

where the degree of the systems is the maximum degree of the polynomials P and
Q.

In 1900 David Hilbert [15] gave a talk at the International Congress of Mathe-
maticians in Paris, where he provided a list of 23 problems. One of these problems
which remain open up to now is the second part of the 16-th problem, in which
Hilbert asked for an upper bound for the maximum number of limit cycles of all
polynomial differential systems of a given degree, see also [19, 20].

In this paper we consider the discontinuous piecewise differential systems

(2) X± : (ẋ, ẏ) = (f±(x, y), g±(x, y)),

defined in the half-planes Σ± = {(x, y) ∈ R2 : ±x > 0}. On the straight line
Σ = {x = 0} the differential system is bivaluated. The straight line Σ is called
the straight line of discontinuity when the two vector fields X± do not coincide
on it. We use the Filippov conventions for defining the discontinuous piecewise
differential system on Σ, see [9]. If f+(0, y)f−(0, y) > 0 at the point (0, y) ∈ Σ we
say that (0, y) is a crossing point. If a periodic orbit of a discontinuous piecewise
differential system (2) has exactly two crossing points we say that it is a crossing
periodic orbit.
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A limit cycle (respectively crossing limit cycle) of system (1) (respectively (2))
is an isolated periodic orbit in the set of all periodic orbits (respectively crossing
periodic orbits) of system (1) (respectively (2)).

The study of the piecewise linear differential systems goes back to Andronov, Vitt
and Khaikin [1], and nowadays such systems still continue to receive the attention
of many researchers. These differential systems are widely used to model processes
appearing in electronics, mechanics, economy, etc., see for instance the books of
Bernardo [3] and Simpson [32], the survey of Makarenkov and Lamb [31], as well
as hundreds of references quoted in these last three works.

In recent years many authors have been widely interesting to solve the second
part of the 16-th problem of Hilbert for discontinuous piecewise linear differential
systems in R2 mainly separated by an straight line, see for instance [2, 4, 5, 6, 8,
10, 11, 12, 13, 14, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 29, 30].

In this paper we shall work with the following four kinds of isochronous centers.

(I) A linear differential system having a center can be written as

ẋ = −bx− 4b2 + ω2

4a
y + d, ẏ = ax+ by + c,

with a > 0 and ω > 0, and the first integral

H1(x, y) = 4(ax+ by)2 + 8a(cx− dy) + y2ω2.

For a proof see Lemma 5 of [28].
(II) The cubic isochronous differential system

ẋ = y(2R1x+ 2R2x
2 − 1), ẏ = R1

(
y2 − x2

)
+ 2R2xy

2 + x,

with the first integral

H̃2(x, y) =
x2 + y2

1− 2x(R1 +R2x)
.

For a proof see page 42 of [7].
(III) The cubic isochronous differential system

ẋ = y

(
8x

3
− 32y2

9
− 1

)
, ẏ = x− 4y2

3
,

with the first integral

H̃3(x, y) =
(
3x− 4y2

)2
+ 9y2.

For a proof see page 45 of [7].
(IV) The cubic isochronous differential system

ẋ = −y(1− x)(1− 2x), ẏ = 2x3 − 2x2 + x+ y2,

with the first integral

H̃4(x, y) =
(x− 1)2

(
x2 + y2

)
(2x− 1)2

.

For a proof see page 44 of [7].
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Figure 1. The unique crossing limit cycle of the discontinuous
piecewise differential systems (7)–(8).
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Figure 2. The unique crossing limit cycle of the discontinuous
piecewise differential systems (10)–(11).
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Figure 3. The two crossing limit cycles of the discontinuous piece-
wise differential systems (13)–(14).

Our first main goal is to provide the maximum number of crossing limit cycles
of discontinuous piecewise differential systems in two half-planes separated by the
straight line x = 0, such that in one half-plane there is an arbitrary linear differential
center (I) and in the other there is either another arbitrary linear differential system
(I) or one of the three cubic isochronous differential systems (II), (III) or (IV) after
an arbitrary affine change of variables.

Theorem 1. The maximum number of crossing limit cycles of discontinuous piece-
wise differential systems separated by the straight line x = 0 and formed by

(a) two arbitrary linear differential centers (I) in each half-plane is zero.
(b) the cubic isochronous system (II) after an arbitrary affine change of vari-

ables and a linear differential center is at most one. There are systems of
this type with one limit cycle, see Figure 1;
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(c) the cubic isochronous system (III) after an arbitrary affine change of vari-
ables and a linear differential center is at most one. There are systems of
this type with one limit cycle, see Figure 2;

(d) the cubic isochronous system (IV) after an arbitrary affine change of vari-
ables and a linear differential center is at most two. There are systems of
this type with two limit cycles, see Figure 3.

Statement (a) of Theorem 1 has been proved in Theorem 4 of [23] and in Theorem
3 of [28]. Statements (b), (c) and (d) of Theorem 1 are proved in section 3.
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Figure 4. The two crossing limit cycles of the discontinuous piece-
wise differential systems (16)–(17).
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Figure 5. The three crossing limit cycles of the discontinuous
piecewise differential systems (19)–(20).
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Figure 6. The five crossing limit cycles of the discontinuous piece-
wise differential systems (22)–(23).

The second main goal of this paper is to give the maximum number of cross-
ing limit cycles of discontinuous piecewise differential systems in two half-planes
separated by the straight line x = 0, such that in one half-plane there is one of
the three cubic isochronous differenial systems (II), (III) or (IV) after an arbitrary
affine change of variables.
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Figure 7. The four crossing limit cycles of the discontinuous
piecewise differential systems (25)–(26).
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Figure 8. The seven crossing limit cycles of the discontinuous
piecewise differential systems (28)–(29).

Theorem 2. The maximum number of crossing limit cycles of discontinuous piece-
wise isochronous cubic differential systems (II), (III) or (IV ) after an affine
change of the variables, which are separated by the straight line x = 0 and formed
by

(a) the cubic isochronous system (II) in each half-plane is at most two. There
are systems of this type with exactly two limit cycles, see Figure 4;

(b) the cubic isochronous systems (II) and (III) is at most three. There are
systems of this type with exactly three limit cycles, see Figure 5;

(c) the cubic isochronous systems (II) and (IV ) is at most five. There are
systems of this type with exactly five limit cycles, see Figure 6;

(d) the cubic isochronous system (III) in each half-plane is at most four. There
are systems of this type with exactly four limit cycles, see Figure 7;

(e) the cubic isochronous system (III) and (IV ) is at most seven. There are
systems of this type with exactly seven limit cycle, see Figure 8;

(f) the cubic isochronous system (IV ) in each half-plane is at most twelve.

The proof of Theorem 2 is given in section 4. Note that under the assumptions of
statement (f) we cannot find a discontinuous piecewise differential system realizing
the upper bound of twelve of crossing limit cycles for the maximum number of such
limit cycles.

2. The cubic isochronous differential systems (II), (III) and (IV)
after an affine change of variables

In this section we give the expression of the cubic isochronous differential systems
(II), (III) and (IV) and their first integrals after the general affine change of variables
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(x, y)→ (a1x+ b1y + c1, a2x+ b2y + c2). Thus after this affine change of variables
the differential system (II) becomes

(3)

ẋ =
1

(a2b1 − a1b2)

(
b1c1 + b2c2 − b1c21R1 − 2b2c1c2R1 + b1c

2
2R1

−2b2c
2
1c2R2 + 2b1c1c

2
2R2 − (−a1b1 − a2b2 + 2a1b1c1R1 + 2a2b2c1R1

−2a2b1c2R1 + 2a1b2c2R1 + 2a2b2c
2
1R2 − 4a2b1c1c2R2 + 4a1b2c1c2R2

−2a1b1c
2
2R2)x− (−b21 − b22 + 2b21c1R1 + 2b22c1R1 + 2b22c

2
1R2

−2b21c
2
2R2)y − (a21b1R1 − a22b1R1 + 2a1a2b2R1 − 2a22b1c1R2

+4a1a2b2c1R2 − 4a1a2b1c2R2 + 2a21b2c2R2)x2 − 2(a1b
2
1R1

+a1b
2
2R1 + 2a1b

2
2c1R2 − 2a2b

2
1c2R2)xy − b1(b21R1 + b22R1 + 2b22c1R2

−2b1b2c2R2)y2 − 2a1a2R2(−a2b1 + a1b2)x3 + 2(a2b1 − a1b2)(a2b1
+a1b2)R2x

2y + 2b1b2R2(a2b1 − a1b2)xy2
)
,

ẏ =
1

(a2b1 − a1b2)

(
− a1c1 − a2c2 + a1c

2
1R1 + 2a2c1c2R1 − a1c22R1

+2a2c
2
1c2R2 − 2a1c1c

2
2R2 + (−a21 − a22 + 2a21c1R1 + 2a22c1R1

+2a22c
2
1R2 − 2a21c

2
2R2)x+ (−a1b1 − a2b2 + 2a1b1c1R1 + 2a2b2c1R1

+2a2b1c2R1 − 2a1b2c2R1 + 2a2b2c
2
1R2 + 4a2b1c1c2R2 − 4a1b2c1c2R2

−2a1b1c
2
2R2)y + a1(a21R1 + a22R1 + 2a22c1R2 − 2a1a2c2R2)x2

+2(a21b1R1 + a22b1R1 + 2a22b1c1R2 − 2a21b2c2R2)xy + (a1b
2
1R1

+2a2b1b2R1 − a1b22R1 + 4a2b1b2c1R2 − 2a1b
2
2c1R2 + 2a2b

2
1c2R2

−4a1b1b2c2R2)y2 − 2a1a2R2(−a2b1 + a1b2)x2y + 2R2(a2b1 − a1b2)
(a2b1 + a1b2)xy2 + 2b1b2R2(a2b1 − a1b2)y3

)
,

with the first integral

H2(x, y) =
1

1− 2(c1 + a1x+ b1y)(R1 +R2(c1 + a1x+ b1y))

(
c21 + c22

+(a21 + 2a1c1 + 2a2c2)x+ a22x
2 + 2(b1c1 + b2c2)y

+2(a1b1 + a2b2)xy + (b21 + b22)y2
)
.

The differential system (III) becomes

(4)

ẋ =
1

9(a2b1 − a1b2)

(
9b1c1 + 9b2c2 − 24b2c1c2 − 12b1c

2
2 + 32b2c

3
2 + 3(3a1b1

+3a2b2 − 8a2b2c1 − 8a2b1c2 − 8a1b2c2 + 32a2b2c
2
2)x+ 3(3b21 + 3b22

−8b22c1 − 16b1b2c2 + 32b22c
2
2)y − 12a2(a2b1 + 2a1b2 − 8a2b2c2)x2

−24b2(2a2b1 + a1b2 − 8a2b2c2)xy − 12b22(3b1 − 8b2c2)y2 + 32a32b2x
3

+96a22b
2
2x

2y + 96a2b
3
2xy

2 + 32b42y
3 big),

ẏ =
1

9(a2b1 − a1b2)

(
− 9a1c1 − 9a2c2 + 24a2c1c2 + 12a1c

2
2 − 32a2c

3
2

−3(3a21 + 3a22 − 8a22c1 − 16a1a2c2 + 32a22c
2
2)x− 3(3a1b1 + 3a2b2

−8a2b2c1 − 8a2b1c2 − 8a1b2c2 + 32a2b2c
2
2)y + 12a22(3a1 − 8a2c2)x2

+24a2(a2b1 + 2a1b2 − 8a2b2c2)xy + 12b2(2a2b1 + a1b2 − 8a2b2c2)y2

−32a42x
3 − 96a32b2x

2y − 96a22b
2
2xy

2 − 32a2b
3
2y

3
)
,
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with the first integral

H3(x, y) = 9c21 + 9c22 − 24c1c
2
2 + 16c42 + 2(9a1c1 + 9a2c2 − 24a2c1c2

−12a1c
2
2 + 32a2c

3
2)x+ 2(9b1c1 + 9b2c2 − 24b2c1c2 − 12b1c

2
2

+32b2c
3
2)y + 3(3a21 + 3a22 − 8a22c1 − 16a1a2c2 + 32a22c

2
2)x2

+6(3a1b1 + 3a2b2 − 8a2b2c1 − 8a2b1c2 − 8a1b2c2 + 32a2b2c
2
2)

xy + 3(3b21 + 3b22 − 8b22c1 − 16b1b2c2 + 32b22c
2
2)y2 − 8a22(3a1

−8a2c2)x3 − 24a2(a2b1 + 2a1b2 − 8a2b2c2)x2y − 24b2(2a2b1
+a1b2 − 8a2b2c2)xy2 − 8b22(3b1 − 8b2c2)y3 + 16a42x

4

+64a32b2x
3y + 96a22b

2
2x

2y2 + 64a2b
3
2xy

3 + 16b42y
4.

The differential system (IV) becomes

(5)

ẋ =
1

(a2b1 − a1b2)

(
b1c1 − 2b1c

2
1 + 2b1c

3
1 + b2c2 − 3b2c1c2 + 2b2c

2
1c2 + b1c

2
2

+(a1b1 + a2b2 − 4a1b1c1 − 3a2b2c1 + 6a1b1c
2
1 + 2a2b2c

2
1 + 2a2b1c2

−3a1b2c2 + 4a1b2c1c2)x+ (b21 + b22 − 4b21c1 − 3b22c1 + 6b21c
2
1 + 2b22c

2
1

−b1b2c2 + 4b1b2c1c2)y + (−2a21b1 + a22b1 − 3a1a2b2 + 6a21b1c1
+4a1a2b2c1 + 2a21b2c2)x2 + (−4a1b

2
1 − a2b1b2 − 3a1b

2
2 + 12a1b

2
1c1

+4a2b1b2c1 + 4a1b
2
2c1 + 4a1b1b2c2)xy + 2b1(−b21 − b22 + 3b21c1 + 2b22c1

+b1b2c2)y2 + 2a21(a1b1 + a2b2)x3 + 2a1(3a1b
2
1 + 2a2b1b2 + a1b

2
2)x2y

+2b1(3a1b
2
1 + a2b1b2 + 2a1b

2
2)xy2 + 2b21(b21 + b22)y3

)
,

ẏ =
1

(a2b1 − a1b2)

(
− a1c1 + 2a1c

2
1 − 2a1c

3
1 − a2c2 + 3a2c1c2 − 2a2c

2
1c2

−a1c22 − (a21 + a22 − 4a21c1 − 3a22c1 + 6a21c
2
1 + 2a22c

2
1 − a1a2c2

+4a1a2c1c2)x− (a1b1 + a2b2 − 4a1b1c1 − 3a2b2c1 + 6a1b1c
2
1

+2a2b2c
2
1 − 3a2b1c2 + 2a1b2c2 + 4a2b1c1c2)y − 2a1(−a21 − a22

+3a21c1 + 2a22c1 + a1a2c2)x2 − (−4a21b1 − 3a22b1 − a1a2b2
+12a21b1c1 + 4a22b1c1 + 4a1a2b2c1 + 4a1a2b1c2)xy − (−2a1b

2
1

−3a2b1b2 + a1b
2
2 + 6a1b

2
1c1 + 4a2b1b2c1 + 2a2b

2
1c2)y2 − 2a21(a21

+a22)x3 − 2a1(3a21b1 + 2a22b1 + a1a2b2)x2y − 2b1(3a21b1 + a22b1
+2a1a2b2)xy2 − 2b21(a1b1 + a2b2)y3

)
,

with the first integral

H4(x, y) =
(c1 − 1 + a1x+ b1y)2

2c1(−1 + 2a1x+ 2b1y)2
(
c21 + c22 + 2(a1c1 + a2c2)x+ 2(b1c1

+b2c2)y + (a21 + a22)x2 + 2(a1b1 + a2b2)xy + (b21 + b22)y2
)
.

3. Proof of Theorem 1

We recall that statement (a) of Theorem 1 has already been proved in Theorem
4 of [23] and in Theorem 3 of [28].

Proof of statement (b) of Theorem 1. We consider the cubic polynomial differential
system (3) with its first integral H2(x, y) in the half-plane R1 = {(x, y) : x > 0},
and the planar linear differential center (I) with its first integral H1(x, y) in the
half-plane R2 = {(x, y) : x < 0}. The crossing limit cycles of this discontinuous
piecewise differential systems (I)-(3) intersect the line of discontinuity x = 0 in two
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different points (0, y) and (0, Y ). Clearly these two points must satisfy the system
of equations

(6)

H1(0, y)−H1(0, Y ) = (Y − y)(8ad− 4b2y − 4b2Y − ω2y − ω2Y ) = 0,
= (Y − y)Q1(y, Y ),

H2(0, y)−H2(0, Y ) = P2(y, Y ) = 0,

where Q1(y, Y ) and P2(y, Y ) are polynomials of degrees two and one, respectively.

From Q1(x, y) = 0 we obtain Y = f(y). Substituting the expression of Y in
P2(y, Y ) = 0, we obtain a quadratic equation in the variable y. This equation
has at most two real solutions y1 and y2. Therefore system (6) has at most two
real solutions of the form (yk, f(yk)) for k = 1, 2. We can easily show that the
two solutions are symmetric in the following sense (y1, f(y1)) = (f(y2), y2). So
both solutions provides the same limit cycle for the discontinuous piecewise differ-
ential system (I)-(3). In summary we have proved that the discontinuous piecewise
differential system (I)-(3) can have at most one limit cycle.

Now we give an example of a discontinuous piecewise differential system (I)-(3)
having one limit cycle. In the half-plane R1 we consider the cubic isochronous
differential center

(7)

ẋ = −3.2..x3 + x2(6.64..y + 12.5403..) + x((−1.2..y − 4.17612..)y
−5.77612..) + y(−1.70989..y − 3.29478..)− 1.10075..,

ẏ = x2(−3.2..y − 5.89851..) + x(y(6.64..y + 25.3194..) + 20.1194..)
+y((−1.2..y − 8.31194..)y − 16.2239..)− 9.25373..,

of type (3) with the first integral

H2(x, y) =
−3.625..x2 + x(3.125..y + 5.625..) + y(−1.88281..y − 5.3125..)− 3.90625..

x2 + x(−3.75..y − 6.875..) + y(3.51563..y + 12.8906..) + 10.1563..
.

In the half-plane R2 we consider the linear differential center

(8) ẋ = 2 + 2x− 13y, ẏ = 2 + x− 2y,

with the first integral

H1(x, y) = 4(x− 2y)2 + 8(−2x− 2y) + 36y2.

Without loss of generality we can restrict our attention to the solutions of sys-
tem (6) such that y < Y , then we obtain the following unique solution of system

(6) is
(

2
(
947−

√
55178849

)
/12311, 2

(√
55178849 + 947

)
/2311

)
, that provides the

crossing limit cycle of the discontinuous piecewise differential system (7)–(8) shown
in Figure 1. �

Proof of statement (c) of Theorem 1. In the half-plane R1 we consider the cubic
differential system (4) with its first integral H3(x, y). In the half-plane R2 we
consider the linear differential center (I) with its first integral H1(x, y). The crossing
limit cycles of this discontinuous piecewise differential systems (I)-(4) intersect the
line of discontinuity x = 0 in two different points (0, y) and (0, Y ), and these two
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points must satisfy the system of equations

(9)

H1(0, y)−H1(0, Y ) = (Y − y)(8ad− 4b2y − 4b2Y − ω2y − ω2Y ) = 0,
= (Y − y)Q1(y, Y ),

H3(0, y)−H3(0, Y ) = (Y − y)P3(y, Y ) = 0,

where Q1(y, Y ) and P3(y, Y ) are polynomials of degrees three and one, respectively.

By solving Q1(y, Y ) = 0 we obtain Y = f(y). We replace Y in P3(y, Y ) = 0,
and we obtain a quadratic equation in the variable y, the coefficient of y3 vanishes.
This equation has at most two real solutions again symmetric in the sense of the
proof of statement (b). Therefore system (9) has at most one real solution (y, Y )
satisfying y < Y . Hence the discontinuous piecewise differential system (I)–(4) has
at most one limit cycle.

In what follows we provide a discontinuous piecewise differential system (I)–
(4) with one limit cycle. In the half-plane R1 we consider the cubic isochronous
differential center

(10)

ẋ = (1/38961)(9(−432(24x+ 35)y2 + 144x(223− 6x)y + x(3x(927
−8x) + 5108)− 41472y3) + 97119y + 13264),

ẏ = (1/116883)(9(216(12x− 223)y2 + 54x(4x− 309)y + x(6(x− 176)x
+41051) + 10368y3)− 137916y + 146756),

of type (4) with the first integral

H3(x, y) = 18(24x+ 35)y3 +
9

16
(16x(6x− 223)− 1199)y2 +

1

8
x(3x(8x− 927)

−5108)y +
1

432
x(9x(x(3x− 704) + 41051) + 293512) + 1296y4

−1658y

9
+

10897

81
.

In the half-plane R2 we consider the linear differential center

(11) ẋ = −x
2
− 13y

2
− 0.776878.., ẏ = x+

y

2
+ 1,

with the first integral

H1(x, y) = 4
(
x+

y

2

)2

+ 8(x+ 0.776878..y) + 25y2.

The unique solution of system (9) is (−0.802603.., 0.563563..). The crossing limit
cycle of the discontinuous piecewise differential system (10)–(11) associated to this
solution is shown in Figure 2. �

Proof of statement (d) of Theorem 1. In the half-plane R1 we consider the cubic
differential system (5) with its first integral H4(x, y). In the half-plane R2 we
consider the linear differential center (I) with its first integral H1(x, y).

If the discontinuous piecwise differential system (I)–(5) has a crossing limit cycle
intersecting the line of discontinuity x = 0 in the points (0, y) and (0, Y ), these
points satisfy the system of equations

(12)

H1(0, y)−H1(0, Y ) = (Y − y)(8ad− 4b2y − 4b2Y − ω2y − ω2Y ) = 0,
= (Y − y)Q1(y, Y ),

H4(0, y)−H4(0, Y ) =
(y − Y )P5(y, Y )

(2c1 − 1 + 2b1y)2(2c1 − 1 + 2b1Y )2
= 0,
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where Q1(y, Y ) and P5(y, Y ) are polynomials of degrees four and one, respectively.

By solving Q1(y, Y ) = 0 we obtain Y = f(y). We replace Y in P5(y, Y ) = 0,
and we obtain a quartic equation in the variable y, the coefficient of y5 vanishes.
This equation has at most four real solutions again symmetric in the sense of the
proof of statement (b). Therefore system (12) has at most two real solutions (y, Y )
satisfying y < Y . Hence the discontinuous piecewise differential system (I)–(5) has
at most two limit cycles.

Now we give a discontinuous piecewise differential system (I)–(5) having two
limit cycles. In the half-plane R1 we consider the cubic isochronous differential
center

(13)
ẋ = −1

3
(3x+ 5.68138..)(6x+ 12.3628..)(2x+ 3y − 5.33333..),

ẏ = 26(x3 + x2(0.461538..y + 4.84226..) + x(1.97889..y + 6.9949..)
+(0.115385..y + 1.3907..)y + 3.75173..),

of type (5) with the first integral

H1(x, y) =
1

(x+ 2.06046..)2
(3.25(x+ 1.89379..)2(x2 + x(0.923077..y + 1.44269..)

+(0.692308..y − 2.46154..)y + 5.62194..)).

In the half-plane R2 we consider the linear differential center

(14) ẋ = 4− 9y

4
, ẏ =

1

3
+ x,

with the first integral

H2(x, y) = 4x2 +
8x

3
+ y(9y − 32).

The two real solutions of system (12) are
( (

16− 5
√

7
)
/9, (5

√
7 + 16)/9

)
and( (

16−
√

139)/9
)
, (
√

139 + 16)/9
)

. Then the two crossing limit cycles of systems

(I)–(5) associated to these two solutions are shown in Figure 3. �

In short, the proof of Theorem 1 is done.

4. Proof of Theorem 2

Proof of statement (a) of Theorem 2. In the half-planeR1 we consider an isochronous
cubic differential system (3) with its first integral H2(x, y). By changing the param-
eters (a1, a2, b1, b2, c1, c2, R1, R2) by the parameters (α1, α2, β1, β2, γ1, γ2, S1, S2) in
system (3) and in its first integral, we get a second isochronous cubic differential

system of type (3) with the first integral H̃2(x, y).

If a crossing limit cycle of this discontinuous piecewise differential system (3)–(3)
has two intersecting points (0, y) and (0, Y ) with the line of discontinuity x = 0,
the coordinates y and Y must satisfy the system

(15)
H2(0, y)−H2(0, Y ) = Q2(y, Y ) = 0,

H̃2(0, y)− H̃2(0, Y ) = P2(y, Y ) = 0,

where Q2(y, Y ) and P2(y, Y ) are polynomials of degrees two.
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By Bezout Theorem (see for instance [33]) system (15) has at most four real
solutions (y, Y ), which again are symmetric in the sense of the proof of statement
(b) of Theorem 1, therefore these solutions at most provide two limit cycles of the
discontinuous piecewise differential system (3)–(3).

Now we provide an example of discontinuous piecewise differential system (3)–
(3) having two limit cycles. In the half-plane R1 we consider the cubic isochronous
differential center

(16)
ẋ = −4 + 10y + 4((−1 + x)x+ x(7 + x)y + (4 + x)y2),
ẏ = 1− 6x2 + 2(−2 + y)y(3 + 2y) + 4x(−1 + (−4 + y)y),

of type (3) with the first integral

H2(x, y) =
−4

(
xy + x+ y2

)
− 1

2x2 + 4x(y + 2) + 2y(y + 4) + 3
.

In the half-plane R2 we consider the cubic isochronous differential center

(17)

ẋ =
1

64
(−8x2(−16y +

√
601− 5) + x(16y(8y +

√
57 + 5) + 5

√
57

−
√

34257− 32) + (
√

57 +
√

601)(y(8y + 5)− 2)),

ẏ =
(16y(8y −

√
601 + 5)− 5

√
601 + 57)(16x+ 16y +

√
57 + 5)

1024
,

of type (3) with the first integral

H̃2(x, y) =
−1

2(
y

2
+

1

32
(5−

√
601))2 − 1

(4(2x+
1

8
(
√

57 + 5))y + x(4x+
1

2
(
√

57

+5)) +
17y2

4
+

1

32
(5−

√
601)y +

1

64
(
√

57 + 5)2 +
(5−

√
601)2

1024
).

The real solutions of system (15) are
(1

4

(
−
√

2− 4
)
,

1

4

(√
2− 4

) )
and

(2

7

(
−
√

11− 5
)
,

2

7

(√
11− 5

) )
. Then the two crossing limit cycles of systems (16)–(17) provided

by these two solutions are shown in Figure 4. �

Proof of statement (b) of Theorem 2. In the half-planeR1 we consider an isochronous
cubic differential system (3) with its first integral H2(x, y). In the half-plane R2 we
consider an isochronous cubic differential system (4) with its first integral H3(x, y).
If a crossing limit cycle of the discontinuous piecewise differential system (3)–(4)
has the two intersecting points (0, y) and (0, Y ) with the line of discontinuity x = 0,
the coordinates y and Y must satisfy the system

(18)
H2(0, y)−H2(0, Y ) = Q2(y, Y ) = 0,

H3(0, y)−H3(0, Y ) = (y − Y )P3(y, Y ) = 0,

where Q2(y, Y ) and P3(y, Y ) are polynomials of degree two and three, respectively.

From the Bézout Theorem we obtain that the number of real solutions (y, Y )
of system (18) is at most six. Again these solutions are symmetric in the usual
sense. Therefore the number of real solutions (y, Y ) with y < Y of system (18) is at
most three. So the maximum number of crossing limit cycles that the discontinuous
piecewise differential systems (3)–(4) can exhibit is at most three.
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In what follows we give a discontinuous piecewise differential system of type (3)–
(4) with exactly three crossing limit cycles. In the half-plane R1 we consider the
cubic isochronous differential center

(19)

ẋ =
1

301
((7052x2 + 6296x− 2187)y + 8(43x− 185)y2 + 7x(12x

(99− 43x) + 1093)− 413),

ẏ =
1

301
(−28x2(129y + 217) + 2x(2y(1763y + 5474) + 7105)

+y(4y(86y + 675) + 6797) + 4459),

of type (3) with the first integral

H1(x, y) =
−49

(
9x2 + 3x+ 5

)
+ 14(11x− 29)y − 197y2

49 (4x2 − 8x(2y + 3) + 16y(y + 3) + 31)
.

In the half-plane R2 we consider the cubic isochronous differential center

(20)

ẋ = 0.00235656..x3 + x2(0.063627..y − 0.187745..) + x((0.572643..y
−0.712743..)y − 2.89186..) + y(y(1.71793..y + 8.79266..)
+14.9187..) + 8.27703..,

ẏ = x2(0.0373215..− 0.00706967..y) + x(y(0.37549..− 0.063627..y)
−1.24286..) + y(y(0.356372..− 0.190881..y) + 2.89186..)
−0.00026184..x3 + 2.52245..,

of type (4) with the first integral

H2(x, y) = 126.1054..− 93.9715..x+ 23.1508..x2 − 0.4634..x3 + 0.0024..x4

+308.3535..y − 107.7336..xy − 6.9942..x2y + 0.0877..x3y
+277.8910..y2 − 13.2763..xy2 + 1.1851..x2y2 + 109.1876..y3

+7.1111..xy3 + 16y4.

The three real solutions of system (18) are (−1.85583..,−0.977752..), (−1.78964..,
− 0.992802..) and (−1.65615..,−1.02976..). Then the three crossing limit cycles of
the discontinuous piecewise differential system (19)–(20) associated to these three
solutions are shown in Figure 5. This completes the proof of statement (b). �

Proof of statement (c) of Theorem 2. In the half-planeR2 we consider the isochronous
cubic differential system (3) with its first integral H2(x, y) with the parameters
(α1, α2, β1, β2, γ1, γ2, S1, S2) instead of the parameters (a1, a2, b1, b2, c1, c2, R1, R2).
In the half-plane R1 we consider the isochronous cubic differential system (5) and
its first integral H4(x, y). For a crossing limit cycle of the differential system (3)–(5)
which intersects the line of discontinuity x = 0 at the points (0, y) and (0, Y ), the
coordinates y and Y must satisfy the system

(21)
H2(0, y)−H2(0, Y ) = Q2(y, Y ) = 0,

H4(0, y)−H4(0, Y ) =
(y − Y )P5(y, Y )

(2c1 − 1 + 2b1y)2(2c1 − 1 + 2b1Y )2
= 0,

where Q2(y, Y ) and P5(y, Y ) are polynomials of degree two and five, respectively.

By using Bézout Theorem we obtain that the number of solutions of the system
Q2(y, Y ) = 0, P5(y, Y ) = 0 is bounded by ten. Due to the usual symmetry of these
solutions we obtain that the number of solutions (y, Y ) with y < Y is at most five,
which is an upper bound for the maximum number of crossing limit cycles that a
discontinuous piecewise differential system (3)–(5) can have.
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Next we provide a discontinuous piecewise differential system (3)–(5) having
five crossing limit cycles. In the half-plane R1 we consider the cubic isochronous
differential center

(22)
ẋ = −(1/2)(−2 + 2x)(−3 + 4x)(2− 4x+ 6y),

ẏ = 4x(5− 4x)y +
5

3
x(8(x− 2)x+ 11) + 6y2 − 8y − 25

6
,

with the first integral

H4(x, y) =
4(x− 1)2(5− 20x+ 20x2 + 24y − 48xy + 36y2)

(3− 4x)2
.

In the half-plane R2 we consider the cubic differential center

(23)
ẋ = x(−221.895..x+ 238.283..y + 132.807..)− 57.3212..y − 19.1071..,

ẏ = x(74.0647..− 153.943..x) + y(119.142..y + 26.0487..)− 7.48257..,

its first integral is

H2(x, y) =
1

(x− 0.240559..)
(0.643804..x2 + x(−1.3827..y − 0.301274..) + (0.74241..y

+0.49494..)y + 0.101736..).

The five solutions of system (21) are
(

(−
√

74− 8)/24, (
√

74− 8)/24
)

,
(

(−
√

14−

4)/12, (
√

14−4)/12
)

,
(

(−
√

38−8)/24, (
√

38−8)/24
)

,
(

(−
√

5−4)/12, (
√

5−4)/12
)

and
(

(−
√

2−8)/24, (
√

2−8)/24
)

. Then the five crossing limit cycles of the discon-

tinuous piecewise differential systems (22)–(23) associated to these five solutions
are shown in Figure 6. �

Proof of statement (d) of Theorem 2. In the half-planeR1 we consider an isochronous
cubic differential system (4) with its first integral H3(x, y). By changing the param-
eters (a1, a2, b1, b2, c1, c2, R1, R2) by the parameters (α1, α2, β1, β2, γ1, γ2, S1, S2) in
system (4) and in its first integral, we get a second isochronous cubic differential

system of type (4) with the first integral H̃3(x, y).

For a crossing limit cycle of this discontinuous piecewise differential system (4)–
(4) which has two intersecting points (0, y) and (0, Y ) with the line of discontinuity
x = 0, its coordinates y and Y must satisfy the system

(24)
H3(0, y)−H3(0, Y ) = (y − Y )Q3(y, Y ) = 0,

H̃3(0, y)− H̃3(0, Y ) = (y − Y )P3(y, Y ) = 0,

where Q3(y, Y ) and P3(y, Y ) are polynomials of degree three.

By using Bézout Theorem we obtain that the number of solutions of system
Q3(y, Y ) = 0, P3(y, Y ) = 0, is at most nine. Due to the usual symmetries we get
that the number of solutions (y, Y ) with y < Y of system (24) is at most four,
which is an upper bound for the maximum number of crossing limit cycles that can
have the discontinuous piecewise differential systems (4)–(4).

In what follows we give a discontinuous piecewise differential systems (4)–(4) with
four crossing limit cycles. In the half-plane R1 we consider the cubic isochronous
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differential center

(25)

ẋ = (1/1437)(408− 8x3 + x2(913 + 288y) + 3y(−655 + 144y(−15
+32y))− 8x(−245 + 6y(217 + 72y))),

ẏ = (1/4311)(−3730− 2x3 + 12x2(29 + 6y) + 24y(−245 + 3y(217
+48y))− 3x(4467 + 2y(913 + 144y))),

of type (4) with the first integral

H3(x, y) = (1/16)(1060 + x4 − 8x3(29 + 6y) + 3x2(4467 + 2y(913 + 144y))
+9y(272 + y(−655 + 288y(−5 + 8y))) + 4x(1865− 12y(−245
+3y(217 + 48y)))).

In the half-plane R2 we consider the cubic differential center

(26)

ẋ = 0.0908181..x3 + x2(1.8829..y + 0.67943..) + x(y(13.0125..y
+3.24792..) + 3.17466..) + y(y(29.9759..y − 10.0038..)
+26.6624..)− 4.08603..,

ẏ = −0.0131413..x3 + x2(−0.272454..y − 0.162624..) + x((−1.8829..y
−1.35886..)y − 0.989936..) + y((−4.3375..y − 1.62396..)y
−3.17466..)− 1.90192..,

with the first integral

H̃3(x, y) = 0.197531..(x4 + x3(27.6435..y + 16.5.) + x2(y(286.562..y + 206.807..)
+150.66..) + x(y(y(1320.26..y + 494.305..) + 966.314..) + 578.914..)
+y(y(y(2281.04..y − 1015..) + 4057.79..)− 1243.72..) + 1685.17..).

The real solutions of system (24) are (−0.238368.., 0.540639..), (−0.152094.., 0.459255..),
(−0.0806181.., 0.389055..) and (−0.00162763.., 0.310719..). Therefore the four cross-
ing limit cycles of the discontinuous piecewise differential system (25)–(26) associ-
ated to these four solutions are shown in Figure 7. �

Proof of statement (e) of Theorem 2. In the half-planeR2 we consider the isochronous
cubic differential system (4) with its first integral H3(x, y). In the half-plane R1 we
consider the isochronous cubic differential system (5) with its first integral H4(x, y).
If a crossing limit cycle of the discontinuous piecewise differential system (4)–(5)
has two intersecting points (0, y) and (0, Y ) with the line of discontinuity x = 0,
then y and Y must satisfy the system

(27)

H3(0, y)−H3(0, Y ) = (y − Y )Q3(y, Y ) = 0,

H4(0, y)−H4(0, Y ) =
(y − Y )P5(y, Y )

(2c1 − 1 + 2b1y)2(2c1 − 1 + 2b1Y )2
= 0,

where Q3(y, Y ) and P5(y, Y ) are polynomials of degree three and five, respectively.

By using Bézout Theorem we obtain that the number of solutions of system (27)
is bounded by fifteen. Due to the usual symmetry the maximum number of crossing
limit cycles that can have a discontinuous piecewise differential system (4)–(5) is
seven.

Now we give a discontinuous piecewise differential system (4)–(5) with seven
limit cycles. In the half-plane R2 we consider the cubic isochronous differential
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center

(28)

ẋ = −0.00284919..(y(y(1582.03..− 3375y) + 732.861..) + x3 + x2(−45..y
−180.156..) + x(y(675y + 2596.88..)− 487.578..)− 139.16..),

ẏ = −0.000189946..(x3 + x2(−45y − 273.75..) + x(y(675y + 5404.69..)
+16593.3..) + y(y(−3375y − 19476.6..) + 7313.67..) + 6119.92..),

of type (4) with the first integral

H3(x, y) = 0.0256..(x4 + x3(−60y − 365) + x2(y(1350y + 10809.4..) + 33186.6..)
+x(y(y(−13500y − 77906.3..) + 29254.7..) + 24479.7..) + y(y(y(50625y
−31640.6..)− 21985.8..) + 8349.61..) + 4560.16..).

In the half-plane R1 we consider the cubic differential center

(29)

ẋ = −0.0348443..(16y(54x2 + 12x− 37.6..(−9x− 1)− 19.1327..
(−9.56636..y − 1.95208..)y + 531.16..) + 4(−54x3 − 525.6..x2

+183.03..(−6x− 19.8..)y2 + 18.6743..(−12x− 38.6..)y − 1706.28..x
−1843.48..) + 128(−9x− 29.2..)y2 − 9.56636..(−3x− 10.4..)(−6x
−19.8..)(−9.56636..y − 1.95208..) + 512y3),

ẏ = 0.0348443..(162x3 − 54x2(12y − 29.2..) + 9x(96y2 − 16y − 37.6.(12y
−1) + 531.16..)− 3(128y3 − 842.885..y2 + 2312.39..y − 1843.48..))y,

of type (5) with the first integral

H4(x, y) =
1

(x− 1.33333..y + 3.3..)2
(2.25..(x− 1.33333..y + 3.46667..)2(x(6.26667..

−2.66667..y) + x2 + y(11.9461..y − 4.2057..) + 10.2412..)).

The seven real solutions of system (27) are (−0.296563.., 0.601718..), (−0.234605..,
0.542436..), (−0.183628.., 0.492431..), (−0.13516.., 0.444505..), (−0.0852419.., 0.394945..),
(−0.0293624.., 0.339323..) and (0.044055.., 0.266104..). Then the seven crossing
limit cycles of the discontinuous piecewise differential systems (28)–(29) associated
to the seven solutions are shown in Figure 8. �

Proof of statement (f) of Theorem 2. In the half-planeR1 we consider an isochronous
cubic differential system (5) with its first integral H4(x, y). By changing the param-
eters (a1, a2, b1, b2, c1, c2, R1, R2) by the parameters (α1, α2, β1, β2, γ1, γ2, S1, S2) in
system (5) and in its first integral, we get a second isochronous cubic differential

system of type (5) with the first integral H̃4(x, y).

For a crossing limit cycle of this discontinuous piecewise differential system (5)–
(5) which has two intersecting points (0, y) and (0, Y ) with the line of discontinuity
x = 0, its coordinates y and Y must satisfy the system

(30)

H4(0, y)−H4(0, Y ) =
(y − Y )Q5(y, Y )

(2c1 − 1 + 2b1y)2(2c1 − 1 + 2b1Y )2
= 0,

H̃4(0, y)− H̃4(0, Y ) =
(y − Y )P5(y, Y )

(2γ1 − 1 + 2β1y)2(2γ1 − 1 + 2β1Y )2
= 0,

where Q5(y, Y ) and P5(y, Y ) are polynomials of degree five.

By using Bézout Theorem we obtain that the number of solutions of system
Q5(y, Y ) = 0, P5(y, Y ) = 0, is at most twenty five. Due to the usual symmetries
we get that the number of solutions (y, Y ) with y < Y of system (30) is at most
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twelve, which is an upper bound for the maximum number of crossing limit cycles
that can have the discontinuous piecewise differential systems (5)–(5). �

This completes the proof of Theorem 2.
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