J. Differential Equations 254 (2013) 3530-3537

Contents lists available at SciVerse ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Dynamics of the polynomial differential systems with homogeneous nonlinearities and a star node

Ahmed Bendjeddou^a, Jaume Llibre^{b,*}, Tayeb Salhi^c

^a Département de Mathématiques, Faculté des Sciences, Université de Sétif, 19000 Sétif, Algeria

^b Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

^c Département de Mathématiques, Université de Bordj Bou Arréridj, Bordj Bou Arréridj 34265, El Anasser, Algeria

ARTICLE INFO

Article history: Received 3 December 2012 Revised 21 January 2013 Available online 29 January 2013

MSC: 34C05 34A34

Keywords: Star node Cubic system Limit cycle

ABSTRACT

We consider the class of polynomial differential equations $\dot{x} = \lambda x + P^n(x, y)$, $\dot{y} = \lambda y + Q^n(x, y)$, in \mathbb{R}^2 where $P^n(x, y)$ and $Q^n(x, y)$ are homogeneous polynomials of degree n > 1 and $\lambda \neq 0$, i.e. the class of polynomial differential systems with homogeneous nonlinearities with a star node at the origin. We prove that these systems are Darboux integrable. Moreover, for these systems we study the existence and non-existence of limit cycles surrounding the equilibrium point located at the origin.

Published by Elsevier Inc.

1. Introduction and statement of the main results

By definition a two dimensional *polynomial differential system* in \mathbb{R}^2 is a differential system of the form

$$\frac{dx}{dt} = \dot{x} = P(x, y), \qquad \frac{dy}{dt} = \dot{y} = Q(x, y), \tag{1}$$

where the dependent variables *x* and *y*, and the independent one (the time) *t* are real, and P(x, y) and Q(x, y) are polynomials in the variables *x* and *y* with real coefficients. We denote by $m = \max\{\deg P, \deg Q\}$ the *degree* of the polynomial system.

* Corresponding author.

E-mail addresses: Bendjeddou@univ-setif.dz (A. Bendjeddou), jllibre@mat.uab.cat (J. Llibre), salhi3tayeb@yahoo.fr (T. Salhi).

^{0022-0396/\$ -} see front matter Published by Elsevier Inc. http://dx.doi.org/10.1016/j.jde.2013.01.032