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Abstract

We study the class of entire transcendental maps of finite order with
one critical point and one asymptotic value, which has exactly one finite
pre-image, and having a persistent Siegel disk. After normalization
this is a one parameter family fa with a ∈ C∗ which includes the semi-
standard map λzez at a = 1, approaches the exponential map when
a → 0 and a quadratic polynomial when a → ∞. We investigate the
stable components of the parameter plane (capture components and
semi-hyperbolic components) and also some topological properties of
the Siegel disk in terms of the parameter.

1 Introduction

Given a holomorphic endomorphism f : S → S on a Riemann surface S we
consider the dynamical system generated by the iterates of f , denoted by

fn = f◦
n)
· · · ◦f . The orbit of an initial condition z0 ∈ S is the sequence

O+(z0) = {fn(z0)}n∈N and we are interested in classifying the initial condi-
tions in the phase space or dynamical plane S, according to the asymptotic
behaviour of their orbits when n tends to infinity.

There is a dynamically natural partition of the phase space S into the
Fatou set F (f) (open) where the iterates of f form a normal family and the
Julia set J (f) = S\F (f) which is its complement (closed).

If S = Ĉ = C ∪ ∞ then f is a rational map. If S = C and f does
not extend to the point at infinity, then f is an entire transcendental map,
that is, infinity is an essential singularity. Entire transcendental functions
present many differences with respect to rational maps.

One of them concerns the singularities of the inverse function. For a
rational map, all branches of the inverse function are well defined except at
a finite number of points called the critical values, points w = f(c) where
f ′(c) = 0. The point c is then called a critical point. If f is an entire
transcendental map, there is another possible obstruction for a branch of
the inverse to be well defined, namely its asymptotic values. A point v ∈ C
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is called an asymptotic value if there exists a path γ(t) → ∞ when t → ∞,
such that f(γ(t)) → v as t→ ∞. An example is v = 0 for f(z) = ez, where
γ(t) can be choosen to be the negative real axis.

In any case, the set of singularities of the inverse function, also called
singular values, plays a very important role in the theory of iteration of
holomorphic functions. This statement is motivated by the non-trivial fact
that most connected components of the Fatou set (or stable set) are somehow
associated to a singular value. Therefore, knowing the behaviour of the
singular orbits provides information about the nature of the stable orbits in
the phase space.

The dynamics of rational maps are fairly well understood, given the fact
that they possess a finite number of critical points and hence of singular
values. This motivated the definition and study of special classes of entire
transcendental functions like, for example, the class S of functions of finite
type which are those with a finite number of singular values. These functions
share many properties with rational maps, one of the most important is the
fact that every connected component of the Fatou set is eventually periodic
(see e.g. [EL92] or [GK86]). There is a classification of all possible periodic
connected components of the Fatou set for rational maps or for entire tran-
scendental maps in class S. Such a component can only be part of a cycle
of rotation domains (Siegel disks) or part of the basin of attraction of an
attracting, superattracting or parabolic periodic orbit.

We are specially interested in the case of rotation domains. We say
that ∆ is an invariant Siegel disk if there exists a conformal isomorphism
ϕ : ∆ → D which conjugates f to Rθ(z) = e2πiθz (and ϕ can not be extended
further), with θ ∈ R \ Q ∩ (0, 1) called the rotation number of ∆. Therefore
a Siegel disk is foliated by invariant closed simple curves, where orbits are
dense. The existence of such Fatou components was first settled by Siegel
[Sie42] who showed that if z0 is a fixed point of multiplier ρ = f ′(z0) = e2πiθ

and θ satisfies a Diophantine condition, then z0 is analitically linearizable
in a neighborhood or, equivalently, z0 is the center of a Siegel disk. The
Diophantine condition was relaxed later by Brjuno and Rüssman (for an
account of these proofs see e.g. [Mil06]), who showed that the same is true
if θ belonged to the set of Brjuno numbers B. The relation of Siegel disks
with singular orbits is as follows. Clearly ∆ cannot contain critical points
since the map is univalent in the disk. Instead, the boundary of ∆ must be
contained in the postcritical set ∪c∈Sing(f−1)O

+(c) i.e., the accumulation set
of all singular orbits. In fact something stronger is true, namely that ∂∆ is
contained in the accumulation set of the orbit of at least one singular value
(see [Mañ93]).

Our goal in this paper is to describe the dynamics of the one parameter
family of entire transcendental maps

fa(z) = λa(ez/a(z + 1 − a) − 1 + a),
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where a ∈ C \ {0} = C∗ and λ = e2πiθ with θ being a fixed irrational Brjuno
number. Observe that 0 is a fixed point of multiplier λ and therefore, for all
values of the parameter a, there is a persistent Siegel disk ∆a around z = 0.
The functions fa have two singular values: the image of the only critical
point w = −1 and an asymptotic value at va = λa(a− 1) which has one and
only one finite preimage at the point pa = a− 1.

The motivation for studying this family of maps is manifold. On one
hand this is the simplest family of entire transcendental maps having one
simple critical point and one asymptotic value with a finite preimage (see
Theorem 3.1 for the actual characterization of fa). The persistent Siegel
disk makes it into a one-parameter family, since one of the two singular
orbits must be accumulating on the boundary of ∆a. We will see that the
situation is very different, depending on which of the two singular values is
doing that. Therefore, these maps could be viewed as the transcendental
version of cubic polynomials with a persistent invariant Siegel disk, studied
by Zakeri in [Zak99]. In our case, many new phenomena are possible with
respect to the cubic situation, like unbounded Siegel disks for example; but
still the two parameter planes share many features like the existence of
capture components or semi-hyperbolic ones.

There is a second motivation for studying the maps fa, namely that this
one parameter family includes in some sense three emblematic examples.
For a = 1 we have the function f1(z) = λzez, for large values of a we will
see that fa is polynomial-like of degree 2 in a neighborhood of the origin (see
Theorem 3.2); finally when a→ 0, the dynamics of fa are approaching those
of the exponential map u 7→ λ(eu − 1), as it can be seen changing variables
to u = z/a. Thus the parameter plane of fa can be thought of as containing

the polynomial λ(z+ z2

2 ) at infinity, its transcendental analogue f1 at a = 1,
and the exponential map at a = 0. The maps z 7→ λzez have been widely
studied (see [Gey01] and [FG03]), among other reasons, because they share
many properties with quadratic polynomials: in particular it is known that
when θ is of constant type, the boundary of the Siegel disk is a quasi-circle
that contains the critical point. It is not known however whether there exist
values of θ for which the Siegel disk of f1 is unbounded. In the long term we
hope that this family fa can throw some light into this and other problems
about f1.

For the maps at hand we prove the following.

Theorem A. a) There exists R,M > 0 such that if θ is of constant type
and |a| > M then the boundary of ∆a is a quasi-circle which contains
the critical point. Moreover ∆a ⊂ D(0, R).

b) If θ is Diophantine and c = −1 belongs to a periodic basin or fna (−1)
n→∞
−→

∞, then the Siegel disk ∆a is unbounded.

The first part follows from Theorem 3.2 (see Corollary 3.3). The second
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part (Theorem 3.4) is based on Herman’s proof [Her85] of the fact that
Siegel disks of the exponential map are unbounded, if the rotation number
is Diophantine, although in this case there are some extra difficulties given
by the free critical point and the finite pre-image of the asymptotic value.
We expect, as it happens for the exponential, that when ∆a is unbounded,
the asymptotic value is on ∂∆a. This fact should follow from arguments as
those in [Rem04].

In this paper we are also interested in studying the parameter plane of
fa, which is C∗, and in particular the connected components of its stable
set, i.e., the parameter values for which the iterates of both singular values
form a normal family in some neighborhood. We denote this set as S (not
to be confused with the class of finite type functions). These connected
components are either capture components, where an iterate of the free sin-
gular value falls into the Siegel disk; or semi-hyperbolic, when there exists an
attracting periodic orbit (which must then attract the free singular value);
otherwise they are called queer.

The following theorem summarizes the properties of semi-hyperbolic
components, and is proved in Section 4 (see Proposition 4.3, Theorems 4.6,
4.7 and Proposition 4.8). By a component of a set we mean a connected
component.

Theorem B. Define

Hc = {a ∈ C|O+(−1) is attracted to an attracting periodic orbit},

Hv = {a ∈ C|O+(va) is attracted to an attracting periodic orbit}.

a) Every component of Hv ∪Hc is simply connected.

b) If W is a component of Hv then W is unbounded and the multiplier map
χ : W → D∗ is the universal covering map.

c) There is one componentHv
1 ofHv for which O+(va) tends to an attracting

fixed point. Hv
1 contains the segment [r,∞) for r large enough.

d) If W is a component of Hc, then W is bounded and the multiplier map
χ : W → D is a conformal isomorphism.

Indeed, when the critical point is attracted by a cycle, we naturally
see copies of the Mandelbrot set in parameter space. Instead, when it is
the asymptotic value that acts in a hyperbolic fashion, we find unbounded
exponential-like components, which can be parametrized using quasi-conformal
surgery.

A dicothomy also occurs with capture components. Numerically we can
observe copies of quadratic Siegel disks in parameter space, which corre-
spond to components for which the asymptotic value is being captured.
There is in fact a main capture component Cv0 , the one containing a = 1,
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which corresponds to parameters for which the asymptotic value va, belongs
itself to the Siegel disk. This is possible because of the existence of a finite
preimage of va. The center of Cv0 is the semi-standard map f1(z) = λzez,
for which zero itself is the asymptotic value.

The properties we show for capture components are summarized in the
following theorem (see Section 5: Theorem 5.3 and Proposition 5.5).

Theorem C. Let us define

Cc = {a ∈ C|fna (−1) ∈ ∆a for some n ≥ 1},

Cv = {a ∈ C|fna (va) ∈ ∆a for some n ≥ 0}.

Then

a) Cc and Cv are open sets.

b) Every component W of Cc ∪ Cv is simply connected.

c) Every component W of Cc is bounded.

d) There is only one component of Cv0 = {a ∈ C|va ∈ ∆a} and it is bounded.

Numerical experiments show that if θ is of constant type, the boundary
of Cv0 is a Jordan curve, corresponding to those parameter values for which
both singular values lie on the boundary of the Siegel disk (see Figure 1).
This is true for the slice of cubic polynomials having a Siegel disk of rotation
number θ, as shown by Zakeri in [Zak99], but his techniques do not apply
to this transcendental case.

As we already mentioned, we are also interested in parameter values for
which fa is Julia stable, i.e. where both families of iterates {fna (−1)}n∈N

and {fna (va)}n∈N are normal in a neighborhood of a (see Section 6). We
first show that any parameter in a capture component or a semi-hyperbolic
component is J-stable.

Proposition D. If a ∈ H ∪C then fa is J-stable, where H = Hc ∪Hv and
C = Cc ∪ Cv.

By using holomorphic motions and the proposition above, it is enough
to have certain properties for one parameter value a0, to be able to “extend”
them to all parameters belonging to the same stable component. More pre-
cisely we obtain the following corollaries (see Proposition 5.6 and Corollary
6.2).

Proposition E. a) If θ is of constant type and a ∈ Cv0 (i.e. the asymptotic
value lies inside the Siegel disk) then ∂∆a is a quasi-circle that contains
the critical point.
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Figure 1: Left: Simple escape time plot of the parameter plane. Light grey:
asymptotic orbit escapes, dark grey critical orbit escapes, white neither escapes.
Regions labeled H1 and H2 correspond to parameters for which the asymptotic
value is attracted to an attracting cycle. Right: The same plot, using a different
algorithm which emphasizes the capture zones. Upper left: (−2, 2), Lower right:
(4,−4).

b) Let W ⊂ Hv ∪Cv be a component intersecting {|z| > M} where M is as
in Theorem A. Then,

i) if θ is of constant type, for all a ∈ W the boundary ∂∆a is a quasi-
circle containing the critical point.

ii) There exist values of θ ∈ R\Q ∩ (0, 1) such that if a ∈ W ⊂ Cv ∪
Hv intersects {|z| > M} for all a ∈ W , the boundary of ∆a is a
quasicircle not containing the critical point.

The paper is organized as follows. Section 2 contains statements and
references of some of the results used throughout the paper. Section 3
contains the characterization of the family fa, together with descriptions
and images of the possible scenarios in dynamical plane. It also contains the
proof of Theorem A. Section 4 deals with semi-hyperbolic components and
contains the proof of Theorem B, split in several parts, and not necessarily in
order. In the same fashion, capture components and Theorem C are treated
in Section 5. Finally Section 6 investigates Julia stability and contains the
proofs of Propositions D and E.

2 Preliminary results

In this section we state results and definitions which will be useful in the
sections to follow.
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Quasi-conformal mappings and holomorphic motions

First we introduce the concept of quasi-conformal mapping. Quasi-conformal
mappings are a very useful tool in complex dynamical systems as they pro-
vide a bridge between a geometric construction for a system and its analytic
information. They are also a fundamental pillar for the framework of quasi-
conformal surgery, the other one being the measurable Riemann mapping
theorem. For the groundwork on quasi-conformal mappings see for example
[Ahl06], and for an exhaustive account on quasi-conformal surgery, see [BF].

Definition 2.1. Let µ : U ⊆ C → C be a measurable function. Then it
is a k-Beltrami form (or Beltrami coefficient, or complex dilatation) of U if
‖µ(z)‖∞ ≤ k < 1.

Definition 2.2. Let f : U ⊆ C → V ⊆ C be a homeomorphism. We call it
k-quasi-conformal if locally it has distributional derivatives in L2 and

µf (z) =
∂f
∂z̄ (z)
∂f
∂z (z)

(1)

is a k-Beltrami coefficient. Then µf is called the complex dilatation of f(z)
(or the Beltrami coefficient of f(z)).

Given f(z) satisfying all above except being an homeomorphism, we call
it k-quasi-regular.

The following technical theorem will be used when we have compositions
of quasi-conformal mappings and finite order mappings.

Theorem 2.3. ([FSV04, p. 750]) A k-quasi-conformal mapping in a domain
U ⊂ C is uniformly Hölder continuous with exponent (1−k)/(1+k) in every
compact subset of U .

Theorem 2.4 (measurable Riemann mapping, MRMT). Let µ be a Bel-
trami form over C. Then there exists a quasi-conformal homeomorphism f
integrating µ (i.e. the Beltrami coefficient of f is µ), unique up to compo-
sition with an affine transformation.

Theorem 2.5 (MRMT with dependence of parameters). Let Λ be an open
set of C and let {µλ}λ∈Λ be a family of Beltrami forms on Ĉ. Suppose
λ→ µλ(z) is holomorphic for each fixed z ∈ C and ‖µλ‖∞ ≤ k < 1 for all λ.
Let fλ be the unique quasi-conformal homeomorphism which integrates µλ
and fixes three given points in Ĉ. Then for each z ∈ Ĉ the map λ → fλ(z)
is holomorphic.

The concept of holomorphic motion was introduced along with the (first)
λ-lemma in [MSS83].
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Definition 2.6. Let h : Λ ×X0 → Ĉ, where Λ is a complex manifold and
X0 an arbitrary subset of Ĉ, such that

• h(0, z) = z,

• h(λ, ·) is an injection from X0 to Ĉ,

• For all z ∈ X0, z 7→ h(λ, z) is holomorphic.

Then hλ(z) = h(λ, z) is called an holomorphic motion of X.

The following two fundamental results can be found in [MSS83] and
[Slo91] respectively.

Lemma 2.7 (First λ-lemma). A holomorphic motion hλ of any set X ⊂ Ĉ

extends to a jointly continuous holomorphic motion of X̄.

Lemma 2.8 (Second λ-lemma). Let U ⊂ C be a set and hλ a holomorphic
motion of U . This motion extends to a quasi-conformal map of C.

Hadamard’s factorization theorem

We will need the notion of rank and order to be able to state Hadamard’s
factorization theorem, which we will use in the proof of Theorem 3.1. All
these results can be found in [Con78].

Definition 2.9. Given f : C → C an entire function we say it is of finite
order if there are positive constants a > 0, r0 > 0 such that

|f(z)| < e|z|
a

, for |z| > r0.

Otherwise, we say f(z) is of infinite order. We define

λ = inf{a | |f(z)| < exp(|z|a) for |z| large enough}

as the order of f(z).

Definition 2.10. Let f : C → C be an entire function with zeroes {a1, a2, . . .}
counted according to multiplicity. We say f is of finite rank if there is an
integer p such that

∞∑

n=1

|an|
p+1 <∞. (2)

We say it is of rank p if p is the smallest integer verifying (2). If f has a
finite number of zeroes then it has rank 0 by definition.
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Definition 2.11. An entire function f : C → C is said to be of finite genus
if it has finite rank p and it factorizes as:

f(z) = zmeg(z) ·
∞∏

n=1

Ep(z/an), (3)

where g(z) is a polynomial, an are the zeroes of f(z) as in the previous
definition and

Ep(z) = (1 − z)ez+
z2

2
+...+ zp

p .

We define the genus of f(z) as µ = max{deg g, rankf}

Theorem 2.12. If f is an entire function of finite genus µ then f is of finite
order λ < µ+ 1.

The converse of this theorem is also true, as we see below.

Theorem 2.13 (Hadamard’s factorization). Let f be an entire function of
finite order λ. Then f is of finite genus µ ≤ λ.

Observe that Hadamard’s factorization theorem implies that every entire
function of finite order can be factorized as in (3).

Siegel disks

The following theorem (which is an extension of the original theorem by C.L.
Siegel) gives arithmetic conditions on the rotation number of a fixed point
to ensure the existence of a Siegel disk around it. J-C. Yoccoz proved that
this condition is sharp in the quadratic family. The proof of this theorem
can be found in [Mil06].

Theorem 2.14 (Brjuno-Rüssmann). Let f(z) = λz + O(z2). If pn

qn
=

[a1; a2, . . . , an] is the n-th convergent of the continued fraction expansion
of θ, where λ = e2πiθ, and

∞∑

n=0

log(qn+1)

qn
<∞, (4)

then f is locally linearizable.

Irrational numbers with this property are called of Brjuno type.
We define the notion of conformal capacity as a measure of the “size” of

Siegel disks.

Definition 2.15. Consider the Siegel disk ∆ the unique linearizing map
h : D(0, r)

∼
→ ∆, with h(0) and h′(0) = 1. The radius r > 0 of the domain

of h is called the conformal capacity of ∆ and is denoted by κ(∆).
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A Siegel disk of capacity r contains a disk of radius r
4 by Koebe 1/4

Theorem.
The following theorem (see [Yoc95] for a proof) shows that Siegel disks

can not shrink indefinitely.

Theorem 2.16. Let 0 < θ < 1 be an irrational number of Brjuno type,
and set W (θ) =

∑∞
n=1(log qn+1/qn) < ∞. Let S(θ) be the space of all

univalent functions f : D → C with f(0) = 0 and f ′(0) = e2πiθ. Finally,
define κ(θ) = inff∈S(θ) κ(∆f ), where κ(∆) is the conformal capacity of ∆.
Then, there is a universal constant C > 0 such that | log(κ(θ)) + Φ(θ)| < C,
where Φ is Brjuno’s function.

We will also need a well-known theorem about the regularity of the
boundary of Siegel disks of quadratic polynomials. Its proof can be found
in [Dou87].

Theorem 2.17 (Douady-Ghys). Let θ be of bounded type, and p(z) =
e2πiθz + z2. Then the boundary of the Siegel disk around 0 is a quasi-circle
containing the critical point.

Finally, a theorem by M. Herman concerning critical points on the
boundary of Siegel disks. Its proof can be found in [Her85, p. 601]

Theorem 2.18 (Herman). Let g(z) be an entire function such that g(0) = 0
and g′(0) = e2πiα with αDiophantine. Let ∆ be the Siegel disk around z = 0.
If ∆ has compact closure in C and g|∆̄ is injective then g(z) has a critical
point in ∂∆.

In fact, the set of Diophantine numbers could be replaced by the set H

of Herman numbers, where D ( H ( B, as shown in [Yoc02].

3 The (entire transcendental) family fa

In this section we describe the dynamical plane of the family of entire tran-
scendental maps

fa(z) = λa(ez/a(z + 1 − a) − 1 + a),

for different values of a ∈ C∗, and for λ = e2πiθ, with θ being a fixed
irrational Brjuno number (unless otherwise specified). For these values of λ,
in view of Theorem 2.14 there exists an invariant Siegel disk around z = 0,
for any value of a ∈ C∗.

We start by showing that this family contains all possible entire tran-
scendental maps with the properties we require.

Theorem 3.1. Let g(z) be an entire transcendental function having the
following properties
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1. finite order,

2. one asymptotic value v, with exactly one finite preimage p of v,

3. a fixed point (normalized to be at 0) of multiplier λ ∈ C,

4. a simple critical point (normalized to be at z = −1) and no other
critical points.

Then g(z) = fa(z) for some a ∈ C with v = λa(a − 1) and p = a − 1.
Moreover no two members of this family are conformally conjugate.

Proof. As g(z) − v = 0 has one solution at z = p, we can write:

g(z) = (z − p)meh(z) + v,

where, by Hadamard’s factorization theorem (Theorem 2.13, h(z) must be
a polynomial, as g(z) has finite order. The derivative of this function is

g′(z) = eh(z)(z − p)m−1(m+ (z − p)h′(z)),

whose zeroes are the solutions of z − p = 0 (if m > 1) and the solutions of
m+ (z − p)h′(z) = 0. But as the critical point must be simple and unique,
m = 1 and deg h′(z) = 0. Therefore

g(z) = (z − p)eαz+β + v,

and from the expression for the critical points,

α =
1

p+ 1
.

Moreover from the fact that g(0) = 0 we can deduce that v = peβ, and from
condition 3, i.e. g′(0) = λ, we obtain eβ = λ(1 + p). All together yields

g(z) = λ(z − p)(1 + p)ez/(1+p) + λp(1 + p).

Writing a = p+ 1 we arrive to

g(z) = λa(z − a+ 1)ez/a + λa(a− 1) = fa(z),

as we wanted.
Finally, if fa(z) and fa′(z) are conformally conjugate, the conjugacy must

fix 0,-1 and ∞ and therefore is the identity map.
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3.1 Dynamical planes

For any parameter value a ∈ C∗, the Fatou set always contains the Siegel
disk ∆a and all its preimages. Moreover, one of the singular orbits must be
accumulating on the boundary of ∆a. The other singular orbit may then
either eventually fall in ∆a, or accumulate in ∂∆a, or have some independent
behaviour. In the first case we say that the singular value is captured by
the Siegel disk. More precisely we define the capture parameters as

C = {a ∈ C∗ | fna (−1) ∈ ∆a for some n ≥ 1 or

fna (va) ∈ ∆a for some n ≥ 0}

Naturally C splits into two sets C = Cc∪Cv depending on whether the cap-
tured orbit is the critical orbit (Cc) or the orbit of the asymptotic value (Cv).
We will follow this convention, superscript c for critical and superscript v
for asymptotic, throughout this paper.

In the second case, that is, when the free singular value has an indepen-
dent behaviour, it may happen that it is attracted to an attracting periodic
orbit. We define the semi-hyperbolic parameters H as

H = {a ∈ C∗ | fa has an attracting periodic orbit}.

Again this set splits into two sets, H = Hc ∪Hv depending on whether the
basin contains the critical point or the asymptotic value.

Notice that these four sets Cc, Cv, Hc, Hv are pairwise disjoint, since
a singular value must always belong to the Julia set, as its orbit has to
accumulate on the boundary of the Siegel disk.

In the following sections we will describe in detail these regions of pa-
rameter space, but let us first show some numerical experiments. For all

figures we have chosen θ = 1+
√

5
2 , the golden mean number.

Figure 1 (in the Introduction) shows the parameter plane, where the left
side is made with a simple escaping algorithm. The component containing
a = 1 is the main capture component for which va itself belongs to the
Siegel disk. On the right side we see the same parameters, drawn with a
different algorithm. Also in Figure 1, we can partially see the sets Hv

1 and
Hv

2 (and infinitely many others), where the sub-indices denote the period of
the attracting orbit.

In Figure 2 we can see the dynamical plane for a chosen in one of the semi-
hyperbolic components of Figure 1, where the Siegel disk and the attracting
orbit and corresponding basin are shown in different colors.

Figure 3 shows the dynamical plane of f1(z) = λzez , the semi-standard
map. In this case the asymptotic value v1 = 0 is actually the center of the
Siegel disk. It is still an open question whether, for some exotic rotation
number, this Siegel disk can be unbounded. For bounded type rotation
numbers, as the one in the figure, the boundary is a quasi-circle and contains
the critical point [Gey01].
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Figure 4, left side, shows a close-up view of the parameter region around
a = 0, and in the right side, we can see a closer view of one of the branches,
in particular a region in Hc, that is, parameters for which the critical orbit
is attracted to a cycle.

One of these dynamical planes is shown in Figure 5. Observe that the
orbit of the asymptotic value is now accumulating on ∂∆a and we may have
unbounded Siegel disks.

Figure 2: Julia set for a parameter in a semi-hyperbolic component (for the asymp-
totic value). Details: a = (−0.62099, 0.0100973), upper left: (−4, 3), lower right:
(2,−3). In light gray we see the attracting basin of the attracting cycle, and in
white the Siegel disk and its preimages.

We start by considering large values of a ∈ C∗. By expanding fa(z) into
a power series it is easy to check that as a → ∞ the function approaches
the quadratic polynomial λz(1 + z/2). It is therefore not surprising that we
have the following theorem, which we shall prove at the end of this section.

Theorem 3.2. There exists M > 0 such that the entire transcendental
family fa(z) is polynomial-like of degree two for |a| > M . Moreover, the
Siegel disk ∆a (and in fact, the full small filled Julia set) is contained in a
disk of radius R where R is a constant independent of a.

Figure 6 shows the dynamical plane for a = 15 + 15i, λ = e2π( 1+
√

5
2

)i

where we clearly see the Julia set of the quadratic polynomial λz(1 + z/2),
shown on the right side.

An immediate consequence of Theorem 3.2 follows from Theorem 2.17.
This is Part a) of Theorem A in the Introduction.

Corollary 3.3. For |a| > M , and θ of constant type the boundary of ∆a is
a quasi-circle that contains the critical point.
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Figure 3: Julia set of the semi-standard map, corresponding to f1(z) = λzez.
Upper left: (−3, 3), lower right: (3,−3). The boundary of the Siegel disk around
0 is shown, together with some of the invariant curves. The Fatou set consists
exclusively of the Siegel disk and its pre-images.

0

Figure 4: Left: “Crab”-like structure corresponding to escaping critical orbits
(dark gray). Upper left: (−0.6, 0.6), lower right: (0.6,−0.6). In light gray we
see parameters for which the orbit of va escapes. Right: Baby Mandelbrot set
buried in the “crab like” structure. Upper left: (−0.336933, 0.1128), lower right:
(−0.322933, 0.08828).

In fact we will prove in Section 5 (Proposition 5.6) that the same occurs
in many other situations like, for example, when the asymptotic value lies
itself inside the Siegel disk or when it is attracted to an attracting periodic
orbit. See Figures 2 and 6.

In fact we believe that this family provides examples of Siegel disks with
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Figure 5: Left: Julia set for a parameter in a semi-hyperbolic component for
the critical value. By Theorem 3.4 this Siegel disk is unbounded. Details: a =
(−0.330897, 0.101867), upper left: (−1.5, 1.5)., lower right: [3,−3]. Right: Close-
up of a basin of attraction of the attracting periodic orbit. Upper left: (−1.1, 0.12),
lower right: (−0.85,−0.13).

Figure 6: Left: Julia set corresponding to a polynomial-like mapping. Details: a =
(15,−15), upper left: (−4, 3), lower right: (2,−3). Right: Julia set corresponding
to the related polynomial. Upper left: (−4, 3), lower right: (−2, 3)

an asymptotic value on the boundary, but such that the boundary is a quasi-
circle containing also the critical point. A parameter value with this property

could be given by a0 ≈ 1.544913893 + 0.32322773i ∈ ∂Cv0 , λ = e2π( 1+
√

5
2

)i

(see Figure 7) where the asymptotic value and the critical point coincide.
The opposite case, that is, the Siegel disk being unbounded and its

boundary non-locally connected also takes place for certain values of the
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Figure 7: Julia set for the parameter a ≈ 1.544913893 + 0.32322773i. The pa-
rameter is chosen so that the critical point and the asymptotic value are at the
same point, hence both singular orbits accumulate on the boundary. Upper left:
(−1.5, 1.5), lower right: (3,−3).

parameter a, as we show in the following theorem, which is Part b) of The-
orem A.

Theorem 3.4. Let θ be Diophantine1 and a ∈ Hc or fna (−1) → ∞. Then
∆a is unbounded.

Proof. The proof is similar to Herman’s proof for the exponential map (see
[Her85]). The difference is given by the fact that the asymptotic value of
fa(z) is not an omitted value, and by the existence of a second singular
value. More precisely, suppose that ∆ := ∆a is bounded and let ∆i denote
the bounded components of C\∂∆. Let ∆∞ be the unbounded component.
Since ∆ and ∆i are simply connected, then ∆̂ := C\∆∞ is compact and
simply connected. By the Maximum Modulus Principle and Montel’s theo-
rem, {fna |∆i

}n∈N form a normal family and hence ∆i is a Fatou component.
We also have that ∂∆ = ∂∆∞, although this does not imply a priori that
∆i = ∅ (see Wada lakes and similar examples [Rog98]).

Now suppose the critical orbit is unbounded or belongs to a basin of
attraction. In both cases, the critical point is not in ∆̂. In the first case,
c ∈ J(fa), but ∆̂ ∩ J(fa) is bounded and invariant. In the second case, the
critical point is in the Fatou set, so c /∈ ∆̄. Hence if c ∈ ∆̂, it follows that
c ∈ ∆i for some i. But then ∆i is part of a basin of attraction, so ∂∆i

contains a periodic point. But ∂∆i ⊂ ∂∆, and the boundary of a Siegel disk
cannot contain a periodic point. Hence c /∈ ∆̂.

1Diophantine numbers can actually be replaced by the larger class of irrational numbers
H (see [Yoc02], [PM97])
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We claim that there exists U a simply connected neighborhood of ∆̂ such
that U contains no singular values. Indeed, suppose that the asymptotic
value va belongs to ∆̂. Since va ∈ J(f), then va ∈ ∂∆. But ∆ is bounded,
and f |∂∆ is injective, hence the only finite pre-image of va, namely a − 1,
also belongs to ∂∆. This means that va is not acting as an asymptotic value
but as a regular point, since f(z) is a local homeomorphism from a − 1 to
va.

Hence there are no singular values in U . It follows that

f |f−1(U) : f−1(U) → U

is a covering and f−1 : ∆ → ∆ extends to a continuous map h(z) from ∆̄ to
∆̄. Since hf = fh = id, it follows that f |∂∆ is injective and thus a homeo-
morphism. We now apply Herman’s main theorem in [Her85] (see Theorem
2.18) to conclude that ∂∆ must have a critical point, which contradicts our
assumptions.

Remark. It does not follow from the proof that va ∈ ∂∆a, as it does not
follow either in the exponential case. However, using the geometry of the
exponential map, it has been shown that for e2πiθ(ez − 1) all unbounded
Siegel disks contain the asymptotic values on their boundaries, see [Rem04].
Presumably, similar methods could apply in our setting.

Remark. It is not unreasonable to think that if c ∈ Cc, i.e. if the critical
orbit is captured by the Siegel disk, the disk is also unbounded (see Figure
8). To prove it, one needs to show that the components of ∆i (which are
conjectured not to exist, even for polynomials) cannot be preimages of ∆
itself.

3.2 Large values of |a|: Proof of theorem 3.2

Let D := {w ∈ C | |w| < R}, γ = ∂D, g(z) = λz(z/2 + 1). If we are able to
find some R and S such that

|g(z) − w| z∈γ
w∈D

≥ S,

|f(z) − g(z)|z∈γ < S, (5)

then we will have proved that D ⊂ f(D) and deg f = deg g = 2 by Rouché’s
theorem. Indeed, given w ∈ D f(z)−w = 0 has the same number of solutions
as g(z) − w = 0, which is exactly 2 counted according with multiplicity.
Clearly,

|g(z) − w| z∈γ
w∈D

≥ |g(z)|z∈γ − |w|w∈D ≥ (R2/2 −R) −R.
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Figure 8: Point in a capture component for the critical value, so that the Siegel
disk is conjectured to be unbounded . Details: a = (−0.33258, 0.10324), upper left:
(−1.5, 1.5), lower right: (−3,−3).

< S

f(z)

g(z)
R

> S

Figure 9: Sketch of inequalities

Define S := R2/2 − 2R. Since we want S > R > 0, we require that R > 4.
Now expand exp(z/a) as a power series and let |a| = b > R. Then

|f(z) − g(z)| =

∣∣∣∣∣∣
z3

2a
+
z2

2a
− a(z + 1 − a)

∞∑

j=3

zj

j!aj

∣∣∣∣∣∣
≤

≤
R3

2b
+
R2

2b
+
R3

6b3
(3b2eR/b) =

R2

2b
(1 + (1 + eR/b)R).

This last expression can be bounded by R2

2b (1+4R) as b > R. Now we would

like to find some R such that for b > R, R
2

2b (1 + 4R) < S. It follows that

R+ 4R2

R− 4
< b,
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and this function of R has a local minimum at R ≈ 8.12311. We then
conclude that given R = 8.12311 b must be larger than 65.9848.

This way the triple (fa,D(0, R), f(D(0, R))) is polynomial-like of degree
two for |a| ≥ 66.

Remark. Numerical experiments suggest that |a| > 10 would be enough.

4 Semi-hyperbolic components: Proof of Theorem

B

In this section we deal with the set of parameters a such that the free
singular value is attracted to a periodic orbit. We denote this set by H and
it naturally splits into the pairwise disjoint subsets

Hv
p = {a ∈ C |O+(va) is attracted to a periodic orbit of period p}

Hc
p = {a ∈ C |O+(−1) is attracted to a periodic orbit of period p}.

where p ≥ 1. We will call these sets semi-hyperbolic components.
It is immediate from the definition that semi-hyperbolic components are

open. Also connecting with the definition in the previous section we have
Hc = ∪p≥1H

c
p and Hv = ∪p≥1H

v
p .

As a first observation note that, by Theorem 3.2, every connected com-
ponent of Hc

p for every p ≥ 1 is bounded. Indeed, for large values of a
the function fa(z) is polynomial-like and hence the critical orbit cannot be
converging to any periodic cycle, which partially proves Theorem B, Part
d). We shall see that, opposite to this fact, all components of Hv

p are un-
bounded. We start by showing that no semi-hyperbolic component in Hc

p

can surround a = 0, by showing the existence of continuous curves of pa-
rameter values, leading to a = 0, for which the critical orbit tends to ∞.
These curves can be observed numerically in Figure 4.

Proposition 4.1. If γ is a closed curve contained in a component W of
Hc ∪ Cc, then ind(γ, 0) = 0.

Proof. We shall show that there exists a continuous curve a(t) such that
fna(t)(−1)

n→∞
−→ ∞ for all t. It then follows that a(t) would intersect any

curve γ surrounding a = 0. But if γ ⊂ Hc ∪ Cc, this is impossible. For
a 6= 0 we conjugate fa by u = z/a and obtain the family ga(u) = λ(eu(au+
1 − a) − 1 + a). Observe that g0(u) = λ(eu − 1). The idea of the proof is
the following. As a approaches 0, the dynamics of ga converge to those of
g0. In particular we find continuous invariant curves {Γak(t), k ∈ Z}t∈(0,∞)

(Devaney hairs or dynamic rays) such that ReΓak(t)
t→∞
−→ ∞ and if z ∈ Γak(t)

then Re gna (z) → ∞. These invariant curves move continuously with respect
to the parameter a, and they change less and less as a approaches 0, since
ga converges uniformly to g0.
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On the other hand, the critical point of ga is now located at ca = −1/a.
Hence, when a runs along a half circle around 0, say ηt = {teiα, π/2 ≤
α ≤ 3π/2}, ca runs along a half circle with positive real part, of modulus
|ca| = 1/t.

a(t)

0 0
Γa

0

Γa

1

Γa

−1

Figure 10: Right: Parameter plane Left: Dynamical plane of ga(z).

If t is small enough, this circle must intersect, say, Γa0 in at least one point.

This means that there exists at least one a(t) ∈ ηt such that gna(t)(ca(t)
n→∞
−→

∞). Using standard arguments (see for example [Fag95]) it is easy to see

that we can choose a(t) in a continuous way so that a(t)
t→0
−→ 0. Undoing

the change of variables, the conclusion follows.

We would like to show now that all semi-hyperbolic components are
simply connected. We first prove a preliminary lemma.

Lemma 4.2. Let U ⊆ Hv
p with Ū compact. Then there is a constant C > 0

such that for all a ∈ U the elements of the attracting hyperbolic orbit, zj(a),
satisfy |zj(a)| ≤ C, j = 1, . . . , p.

Proof. If this is not the case, then for some 1 ≤ j ≤ p, zj(a) → ∞ as
a → a0 ∈ ∂U with a ∈ U . But as long as a ∈ U , zj(a) is well defined, and
its multiplier bounded (by 1). Therefore,

p∏

j=1

|f ′a(zj(a))| =

p∏

j=1

|λezj(a)/a||zj(a) + 1| < 1.

Now, we claim that zj(a) + 1 does not converge to 0 for any 1 ≤ j ≤ p as a
goes to a0. Indeed, if this was the case, zj(a) would converge to -1, which
has a dense orbit around the Siegel disk, but as the period of the periodic
orbit is fixed, this contradicts the assumption. Hence

∏p
j=1 |zj(a) + 1| → ∞

and necessarily
∏p
j=1 |e

zj(a)/a| → 0 as a goes to a0. This implies that at
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least one of these elements goes to 0, say |ezj(a)/a| → 0. But this means
that zj+1(a) → λa0(a0 − 1) = va0 as a → a0. Now the first p − 1 iterates
of the orbit of va0 by fa0 are finite. Since fa is continuous with respect to
a in Ū , these elements cannot be the limit of a periodic orbit, with one of
its points going to infinity. In particular we would have fp−1

a (zj+1(a)) =

zj(a) → fp−1
a0 (va0) which contradicts the assumption.

With these preliminaries, the proof of simple connectedness is standard
(see [BR84] or [BDH+99]).

Proposition 4.3. (Theorem B, Part a) For all p ≥ 1 every connected
component W of Hv

p or Hc
p is simply connected.

Proof. Let γ ⊂W a simple curve bounding a domain D. We will show that
D ⊂ W . Let gn(a) = fnpa (va) (resp. fnpa (−1)). We claim that {gn}n∈N

is a family of entire functions for a ∈ D. Indeed, fa(va) has no essential
singularity at a = 0 (resp. fa(−1) has no essential singularity as 0 /∈ D),
neither do fna (fa(va)), n ≥ 1 (resp. fna (fa(−1)), n ≥ 1) as the denominator
of the exponential term simplifies.

By definition W is an open set, therefore there is a neighbourhood
γ ⊂ U ⊂ W . By Lemma 4.2 |zj(a)| < C, j = 1, . . . , p and it follows
that {gn(a)}n∈N is uniformly bounded in U , since it must converge to one
point of the attracting cycle as n goes to ∞. So by Montel’s theorem and
the Maximum Modulus Principle, this family is normal, and it has a sub-
sequence convergent in D. If we denote by G(a) the limit function, G(a)
is analytic and the mapping H(a) = fpa (G(a)) − G(a) is also analytic. By
definition of Hp, H(a) is identically zero in U , and by analytic continuation
it is also identically zero in D. Therefore G(a) = z(a) is a periodic point of
period p.

Now let χ(a) be the multiplier of this periodic point of period p. This
multiplier is an analytic function which satisfies |χ(a)| < 1 in U , and by the
Maximum Modulus Principle the same holds in D. Hence D ⊂ Hv

p (resp.
D ⊂ Hc

p).

The following lemma shows that the asymptotic value itself can not be
part of an attracting orbit.

Lemma 4.4. There are neither a nor p such that fp(va) = va and the cycle
is attracting.

Proof. It cannot be a superattracting cycle since such orbit must contain the
critical point and its forward orbit, but the critical orbit is accumulating on
the boundary of the Siegel disk and hence its orbit cannot be periodic.
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It cannot be attracting either, as the attracting basin must contain a
singular value different from the attracting periodic point itself, and this
could only be the critical point. But, as before, the critical point cannot be
there. The conclusion then follows.

We can now show that all components in Hv
p are unbounded, which is

part of Part b) of Theorem B. The proof is also analogous to the exponential
case (see [BR84] or [BDH+99]).

Theorem 4.5. Every connected component W of Hv
p is unbounded for

p ≥ 1.

Proof. From Lemma 4.2, the attracting periodic orbit z(a) of Proposition
4.3 is not only analytic in W but as lim sup|χ(a)| ≤ 1 for a ∈ W , z(a)
has only algebraic singularities at b ∈ ∂W . These singularities are in fact
points where χ(b) = 1 by the implicit function theorem. This entails that
the boundary of W is comprised of arcs of curves such that |χ(a)| = 1.

The multiplier in W is never 0 by Lemma 4.4, thus if W is bounded, it
is a compact simply-connected domain bounded by arcs |χ(a)| = 1. Now
∂χ(W ) ⊂ χ(∂W ) ⊂ {χ | |χ| = 1} but by the minimum principle this implies
0 ∈ χ(W ) against assumption.

To end this section we show the existence of the largest semi-hyperbolic
component, the one containing a segment [r,∞) for r large, which is Theo-
rem B, Part c).

Theorem 4.6. The parameter plane of fa(z) has a semi-hyperbolic compo-
nent Hv

1 of period 1 which is unbounded and contains an infinite segment.

Proof. The idea of the proof is to show that for a = r > 0 large enough
there is a region R in dynamical plane such that fa(R) ⊂ R. By Schwartz’s
lemma it follows that R contains an attracting fixed point. By Theorem 3.2
the orbit of va must converge to it. Not to break the flow of exposition, the
detailed estimates of this proof can be found in the Appendix.

Remark. The proof can be adapted to the case λ = ±i showing that Hv
1

contains an infinite segment in iR. Observe that this case is not in the
assumptions of this paper since z = 0 would be a parabolic point.

4.1 Parametrization of Hv
p : Proof of Theorem B, Part b

In this section we will parametrize connected components W ⊂ Hv
p by means

of quasi-conformal surgery. In particular we will prove that the multiplier
map χ : W → D∗ is a universal covering map by constructing a local inverse
of χ. The proof is standard.
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Theorem 4.7. Let W ⊂ Hv
p be a connected component of Hv

p and D∗ be
the punctured disk. Then χ : W → D∗ is the universal covering map.

Proof. For simplicity we will consider W ⊂ Hv
1 in the proof. Take a0 ∈ W ,

and observe that fna (va) converges to z(a) as n goes to ∞, where z(a) is an
attracting fixed point of multiplier ρ0 < 1. By Königs theorem there is a
holomorphic change of variables

ϕa0 : Ua0 → D

conjugating fa0(z) to mρ0(z) = ρ0z where Ua0 is a neighborhood of z(a0).
Now choose an open, simply connected neighborhood Ω of ρ0, such that

Ω̄ ⊂ D∗, and for ρ ∈ Ω consider the map

ψρ : Aρ0 // Aρ

reiζ
� // rαei(ζ+β log r),

where Ar denotes the standard straight annulus Ar = {z | r < |z| < 1} and

α =
log |ρ|

log |ρ0|
, β =

arg ρ− arg ρ0

log |ρ0|
.

This mapping verifies ψρ(mρ0(z)) = mρ(ψρ(z)) = ρψρ(z). With this
equation we can extend ψρ to mρ(Aρ),m

2
ρ(Aρ), . . . and then to the whole

disk D by setting ψ(0) = 0. Therefore, the mapping ψρ maps the annuli
mk
ρ(Aρ) homeomorphically onto the annuli {z | |ρk+1| ≤ |z| ≤ ρk}.

This mapping has bounded dilatation, as its Beltrami coefficient is

µψρ
=
α+ iβ − 1

α+ iβ + 1
e2iζ .

Now define Ψρ = ψρϕa0 , which is a function conjugating fa0 quasi-conformally
to ρz in D.

Let σρ = Ψ∗
ρ(σ0) be the pull-back by Ψρ of the standard complex struc-

ture σ0 in D. We extend this complex structure over Ua0 to f−na0 (Ua0) pulling
back by fa0 , and prolong it to C by setting the standard complex structure
on those points whose orbit never falls in Ua0 . This complex structure has
bounded dilatation, as it has the same dilatation as ψρ. Observe that the
resulting complex structure is the standard complex structure around 0,
because no pre-image of Ua0 can intersect the Siegel disk.

Now apply the Measurable Riemann Mapping Theorem (with depen-
dence upon parameters, in particular with respect to ρ) so we have a quasi-
conformal integrating map hρ (which is conformal where the structure was
the standard one) so that h∗ρσ0 = σρ. Then the mapping gρ = h ◦ f ◦ h−1 is
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holomorphic as shown in the following diagram:

(C, σρ′)
ψfaψ−1

//

hρ′

��

(C, σρ′)

hρ′

��

(C, σ0)
gρ′

// (C, σ0)

Moreover, the map ρ 7→ hρ(z) is holomorphic for any given z ∈ C since the
almost complex structure σρ depends holomorphically on ρ. We normalize
the solution given by the Measurable Riemann Mapping Theorem requiring
that -1, 0 and ∞ are mapped to themselves. This guarantees that gρ(z)
satisfies the following properties:

• gρ(z) has 0 as a fixed point with rotation number λ, so it has a Siegel
disk around it,

• gρ(z) has only one critical point, at -1 which is a simple critical point,

• gρ(z) has an essential singularity at ∞,

• gρ(z) has only one asymptotic value with one finite pre-image.

Moreover gρ(z) has finite order by Theorem 2.3. Then Theorem 3.1 implies
that gρ(z) = fb(z) for some b ∈ C∗. Now let’s summarize what we have
done.

Given ρ in Ω ⊂ D∗ we have a b(ρ) ∈ W ⊂ Hv
1 such that fb(ρ)(z) has a

periodic point with multiplier ρ. We claim that the dependence of b(ρ) with
respect to ρ is holomorphic. Indeed, recall that va has one finite pre-image,
a− 1. Hence hρ(a− 1) = b(ρ) − 1 which implies a holomorphic dependence
on ρ.

We have then constructed a holomorphic local inverse for the multiplier.
As a consequence, χ : H → D∗ is a covering map and as W is simply
connected by Proposition 4.3 and unbounded by Theorem 4.5, χ is the
universal covering map.

4.2 Parametrization of Hc
p: Proof of Theorem B, Part d

Let W be a connected component of Hc
p which is bounded and simply con-

nected by Theorem 3.2. The proof of the following proposition is analogous
to the case of the quadratic family but we sketch it for completeness.

Proposition 4.8. The multiplier χ : W → D is a conformal isomorphism.

Proof. Let W ∗ = W\χ−1(0). Using the same surgery construction of the
previous section we see that there exists a holomorphic local inverse of χ
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around any point ρ = χ(z(a)) ∈ D∗, a ∈ W ∗. It then follows that χ is a
branched covering, ramified at most over one point. This shows that χ−1(0)
consists of at most one point by Hurwitz’s formula.

To show that the degree of χ is exactly one, we may perform a different
surgery construction to obtain a local inverse around ρ = 0. This surgery
uses an auxiliary family of Blaschke products. For details see [Dou87] or
[BF].

5 Capture components: Proof of Theorem C

A different scenario for the dynamical plane is the situation where one of the
singular orbits is eventually captured by the Siegel disk. The parameters for
which this occurs are called capture parameters and, as it was the case with
semi-hyperbolic parameters, they are naturally classified into two disjoint
sets depending whether it is the critical or the asymptotic orbit the one
which eventually falls in ∆a. More precisely, for each p ≥ 0 we define

C =
⋃

p≥0

Cvp ∪
⋃

p≥0

Ccp,

where

Cvp = {a ∈ C | fpa (va) ∈ ∆a, p ≥ 0 minimal},

Ccp = {a ∈ C | fpa (−1) ∈ ∆a, p ≥ 0 minimal},

Observe that the asymptotic value may belong itself to ∆a since it has
a finite pre-image, but the critical point cannot. Hence Cc0 is empty.

We now show that being a capture parameter is an open condition. The
argument is standard, but we first need to estimate the minimum size of the
Siegel disk in terms of the parameter a. We do so in the following lemma.

Lemma 5.1. For all a0 6= 0 exists a neighborhood a0 ∈ V such that fa(z)
is univalent in D(0, R).

Proof. The existence of a Siegel disk around z = 0 implies that there is a
radius R′ such that fa0(z) is univalent in D(0, R′). By continuity of the
family fa(z) with respect to the parameter a, there are R > 0, ε > 0 such
that fa(z) is univalent in D(0, R) for all a in the set {a| |a− a0| < ε}.

Corollary 5.2. For all a0 6= 0 exists a neighborhood a0 ∈ V such that ∆a

contains a disk of radius
C

4R

where C is a constant that only depends on θ and R only depends on a0.
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Proof. For any value of a the maps fa(z) and f̃a(z) = 1
Rλa(e

Rz/a(Rz + 1 −
a) − 1 + a) are affine conjugate through h(z) = R · z. For |a − a0| < ε,
f̃a(z) is univalent on D, thus we can apply Theorem 2.16 to deduce that
the conformal capacity κ̃a of the Siegel disk ∆̃a is bounded from below by a
constant C = C(θ). Undoing the change of variables we obtain

Rκ = κ̃a ≥ C(θ)

and therefore, by Koebe’s 1/4 Theorem, ∆a contains a disk of radius C(θ)
4R .

Theorem 5.3. (Theorem C, Part a) Let a ∈ Cvp (resp. a ∈ Ccp) for some
p ≥ 0 (resp. p ≥ 1) which is minimal. Then there exists δ > 0 such that
D(a, δ) ⊂ Cvp (resp. Ccp)

Proof. Let b = fpa (va) ∈ ∆a (resp. b = fpa (−1) ∈ ∆a). Assume b 6= 0, (the
case b = 0 is easier and will be done afterwards). Define the annulus A as
the region comprised between O(b) and ∂∆a as shown in Figure 11.

∂∆a

O(b)

A

Figure 11: The annulus A.

Define ψ̃ as the restriction of the linearizing coordinates conjugating
fa(z) to the rotation Rθ in ∆a, taking A to the straight annulus A(1, ε),
where ε is determined by the modulus of A. Also define a quasi-conformal
mapping φ̃ : A(1, ε) → A(1, ε2) conjugating the rotation Rθ to itself. Let φ
be the composition φ̃ ◦ ψ̃.

Let µ be the fa invariant Beltrami form defined as the pull-back µ = φ̃∗µ0

in A and spread this structure to ∪nf
−n
a (A) by the dynamics of fa(z). Fi-

nally define µ = µ0 in C\∪nf
−n(A). Observe that µ = µ0 in a neighborhood

of 0. Also φ has bounded dilatation, say k < 1, which is also the dilatation
of µ.

Now let µt = t · µ be a family of Beltrami forms with t ∈ D(0, 1/k).
These new Beltrami forms are integrable, since ‖µt‖∞ = t‖µ‖ < 1

kk = 1.
Thus by the Measurable Riemann Mapping Theorem we get an integrating
map φt fixing 0,-1 and ∞, such that φ∗tµ0 = µt. Let f t = φt ◦ fa ◦ φ

−1
t ,
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(C, µt)

φt

��

fa
// (C, µt)

φt

��

(C, µ0)
ft

//___ (C, µ0)

Since µt is fa-invariant, it follows that f t(z) preserves the standard com-
plex structure and hence it is holomorphic by Weyl’s lemma.

Notice also that by Theorem 2.3 f t(z) has finite order. Furthermore by
the properties of the integrating map and topological considerations, it has
an essential singularity at ∞, a fixed point 0 with multiplier λ and a simple
critical point in -1. Finally, it has one asymptotic value φt(a) with one finite
pre-image, φt(a − 1). Hence by Theorem 3.1 f t(z) = fa(t)(z) for some a(t).
Now we want to prove that a(t) is analytic. First observe that for any fixed
z ∈ C, the almost complex structure µt is analytic with respect to t. Hence,
by the MRMT, it follows that t 7→ φt(z) is analytic with respect to t. Now,
a− 1 is the finite pre-image of va, so φt(a− 1) = a(t) − 1, and this implies
a(t) = 1 + φt(a− 1), which implies that a(t) is also analytic.

It follows that a(t) is either open or constant. But fa(0) = fa and f1

are different mappings since the annuli φ0(A) = A and φ1(A) have different
moduli. Then a(t) is open and therefore {a(t), t ∈ D(0, 1/k)} is an open
neighborhood of a which belongs to Cvp (resp. Ccp).

If fpa0(va0) = 0 (resp. fpa0(−1) = 0), by Lemma 5.1 and Corollary 5.2
there exists an ε > 0 such that for all a close to a0, ∆a0 ⊃ D(0, ε). Hence a
small perturbation of fa0 will still capture the orbit of va0 (resp. -1) as we
wanted.

The theorem above shows that capture parameters form an open set.
We call the connected components of this set, capture components, which
may be asymptotic or critical depending on whether it is the asymptotic or
the critical orbit which falls into ∆a.

As in the case of semi-hyperbolic components, capture components are
simply connected. Before showing that, we also need to prove that no critical
capture component may surround a = 0. We just state this fact, since the
proof is a reproduction of the proof of Proposition 4.1

Proposition 5.4. Let γ be a closed curve in W ⊂ Cv. Then ind(γ, 0) = 0.

Proposition 5.5. (Theorem C, Part b) All connected components W of Cv

or Cc are simply connected.

Proof. Let W be a connected component of Cv or Cc and γ ⊂ W a simple
closed curve. Let D be the bounded component of C\γ. Let U be a neigh-
borhood of γ such that U ⊂W . Then, for all a ∈ U , fna (va) (resp. fna (−1))
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belongs to ∆a for n ≥ n0, and even more it remains on an invariant curve.
It follows that Gvn(a) = fna (va) (resp. Gcn(a) = fna (−1)) is bounded in U for
all n ≥ n0.

Since Gvn(a) is holomorphic in all of C (resp. in C∗), we have that
Gvn(a) (resp. Gcn(a)) is holomorphic and bounded on D, and hence it is a
normal family in D. By analytic continuation the partial limit functions
must coincide, so there are no bifurcation parameters in D. Hence D ⊂W .

As it was the case with semi-hyperbolic components, it follows from
Theorem 3.2 that all critical capture components must be bounded, since
for |a| large, the critical orbit must accumulate on ∂∆a. This proves Part c)
if Theorem C. Among all asymptotic capture components, there is one that
stands out in all computer drawings, precisely the main component in Cv0 .
That is, the set of parameters for which va itself belongs to the Siegel disk.

We first observe that this component must also be bounded. Indeed, if
va ∈ ∆a then its finite pre-image a− 1 must also be contained in the Siegel
disk. But for |a| large enough, the disk is contained in D(0, R), with R
independent of a (see Theorem 3.2). Clearly Cv0 has a unique component,
since va = 0 only for a = 0 or a = 1. This proves Part d) of Theorem C.

The “center” of Cv0 is a = 1, or the map fa(z) = λzez , for which the
asymptotic value v1 = 0 is the center of the Siegel disk. This map is quite
well-known, as it is, in many aspects, the transcendental analogue of the
quadratic family. It is known, for example that if θ is of constant type then
∂∆a is a quasi-circle and contains the critical point. This type of properties
can be extended to the whole component Cv0 as shown by the following
proposition.

Proposition 5.6. (Proposition E, Part a) If θ is of constant type then for
every a ∈ Cv0 the boundary of the Siegel disk is a quasicircle that contains
the critical point.

Proof. For a = 1, f1(z) = λzez and we know that ∂∆a is a quasicircle that
contains the critical point (see [Gey01]). Define cn = fn1 (−1), denote by
Oa(−1) the orbit of -1 by fa(z) and

H : {cn}n≥0 × Cv0
// C

(cn , a) // fna (−1)

Then this mapping is a holomorphic motion, as it verifies

• H(cn, 1) = cn,

• it is injective for every a, as if va ∈ Cv0 , then Oa(−1) must accumulate
on ∂∆a. Hence fna (−1) 6= fma (−1) for all n 6= m.
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• It is holomorphic with respect to a for all cn, an obvious assertion as
long as 0 /∈ Cv0 which is always true.

Now by the second λ-lemma (Lemma 2.8), it extends quasi-conformally to
the closure of {cn}n∈N, which contains ∂∆a. It follows that for all a ∈ Cv0 ,
the boundary of ∆a satisfies ∂∆a = Ha(∂∆a) with Ha quasi-conformal, and
hence ∂∆a is a quasi-circle. Since −1 ∈ ∂∆1, we have that −1 ∈ ∂∆a.

We shall see in the next section that this same argument can be gener-
alized to other regions of parameter space.

6 Julia stability

The maps in our family are of finite type, hence fa0(z) is J-stable if both
sequences {fna (−1)}n∈Z and {fna (va)}n∈Z are normal for a in a neighborhood
of a0 (see [McM94] or [EL92]).

We define the critical and asymptotic stable components as

Sc = {a ∈ C |Gcn(a) = fna (−1) is normal in a neighborhood of a},

Sv = {a ∈ C |Gvn(a) = fna (va) is normal in a neighborhood of a},

respectively. Accordingly we define critical and asymptotic unstable compo-
nents Uc, Uv as their complements, respectively. These stable components
are by definition open, its complements closed. With this notation the set
of J-stable parameters is then S = Sc ∩ Sv.

Capture parameters and semi-hyperbolic parameters clearly belong to
Sc or Sv. Next, we show that, because of the persistent Siegel disk, they
actually belong to both sets.

Proposition D. Hc,v, Cc,v ⊂ S

Proof. Suppose, say, that a0 ∈ Hv. The orbit of va0 tends to an attracting
cycle, and hence a0 ∈ Sv. In fact, since Hv is open, we have that a ∈ Sv for
all a in a neighborhood U of a0. For all these values of a, the critical orbit
is forced to accumulate on ∂∆a, hence {fna (−1)}n∈N avoids, for example, all
points in ∆a. It follows that {fna (−1)}n∈N is also normal on U and therefore
a0 ∈ Sc. The three remaining cases are analogous.

Any other component of S not inH or C will be called a queer component,
in analogy to the terminology used for the Mandelbrot set. We denote by
Q the set of queer components, so that S = H ∪ C ∪Q.

At this point we want to return to the proof of Proposition 5.6, where
we showed that, for parameters inside Cv0 , the boundary of the Siegel disk
was moving holomorphically with the parameter. In fact, this is a general
fact for parameters in any non-queer component of the J-stable set.
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Proposition 6.1. Let W be a non-queer component of S = Sc ∪ Sv, and
a0 ∈ W . Then there exists a function H : W × ∂∆a0 → ∂∆a which is a
holomorphic motion of ∂∆a0 .

Proof. Since W is not queer, we have that W ⊂ H ∪ C. Let sa denote
the singular value whose orbits accumulates on ∂∆a for a ∈ W , so that
sa ∈ {−1, va}. Let sna = fna (sa), and denote the orbit of sa by Oa(sa). Then
the function

H : Oa0(sa0) ×W // C

(sna0 , a) // sna

is a holomorphic motion, since Oa(sa) must be infinite for all n, and fna (sa)
is holomorphic on a, because 0 /∈W . By the second λ-lemma, H extends to
the closure of Oa0(sa0) which contains ∂∆0.

Combined with the fact that fa(z) is a polynomial-like map of degree 2
for |a| > R (see Theorem 3.2) we have the following immediate corollary.

Corollary 6.2. (Proposition E, Part b) Let W ⊂ Hv ∪Cv be a component
intersecting {|z| > R} where R is given by Theorem 3.2 (in particular this
is satisfied by any component of Hv). Then,

a) if θ is of constant type, for all a ∈W , the boundary ∂∆a is a quasi-circle
containing the critical point.

b) Depending on θ ∈ R\Q, other possibilities may occur: ∂∆a might be a
quasi-circle not containing the critical point, or a C n, n ∈ N Jordan curve
not being a quasi-circle containing the critical point, or a C n, n ∈ N Jor-
dan curve not containing the critical point and not being a quasi-circle.
In general, any possibility realized by a quadratic polynomial for some
rotation number and which persists under quasi-conformal conjugacy, is
realized for some fa = e2πθia(ez/a(z + 1 − a) + a− 1).

Remark. In general, for any W ⊂ Hv ∪ Cv we only need one parameter
a0 ∈W for which one of such properties is satisfied, to have it for all a ∈W .

A Proof of Theorem 4.6 and numerical bounds

We may suppose λ 6= ±i since θ 6= ±1/2. Let λ = λ1 + iλ2, σ = Sign (λ1)
and ρ = Sign (λ2). We define:

C1 : = {σs + ti | |t| ≤ y}

C2 : = {σt+ iρy | t ≥ s}

C3 : = {σt− iρy | t ≥ s}
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Figure 12: Sketch of the construction in Thm. 4.6 for the case λ1, λ2 > 0.

with y > 0, s > 0, see Figure 12 for a sketch of this curves. Let R be the
region bounded by C1, C2, C3. Recall that va = λ(a2 − a) is the asymptotic
value. Note that we will consider a real, furthermore following Figure 12, we
will set a := −σb with b > 0, as hinted by numerical experiments. Defined
this way, the curves that are closer to va are C1 and C2. We choose y and
s in such a way that d(va, C1) = d(va, C2), as in Figure 12. More precisely,

d(va, C1,2) = |λ1|
(
b2 + σb

)
− s = |λ2|(b

2 + σb) − y

and hence
y = (|λ1| + |λ2|)

(
b2 + σb

)
− s.

To ease notation, define L = (|λ1| + |λ2|). We would like some conditions
over s assuring that if b > b∗, d(va, f(∂R)) ≤ d(va, ∂R), as this would imply
f(R) ⊂ R and thus the existence of an attracting fixed point. We write
fa(z) = va + ga(z) where ga(z) = a · λez/a · (z + 1 − a). Then

d(va, f(∂R)) = d(0, ga(∂R)) = |ga(∂R)|.

Therefore we need to find values such that the following three inequalities
hold

|ga(C1)| < |λ1|
(
b2 + σb

)
− s, (6)

|ga(C2)| < |λ1|
(
b2 + σb

)
− s, (7)

|ga(C3)| < |λ1|
(
b2 + σb

)
− s. (8)

For (6) to hold the following inequality needs to be satisfied

b · e−s/b
√

((σs + σb+ 1) + t2)
?
≤ |λ1|

(
b2 + σb

)
− s.
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Observe that

b · e−s/b
√

(σs+ σb+ 1)2 + t2 ≤ b · e−s/b (|σ(s+ b) + 1| + y) =

= b · e−s/b (s+ b+ σ + y) =

= b · e−s/b
(
b+ σ + L(b2 + σb)

)
,

so we define the following function

h(s) = b · e−s/b
(
b+ σ + L(b2 + σb)

)
− |λ1|

(
b2 + σb

)
+ s,

and we will find an argument which makes it negative. We need to find s
such that h(s) < 0 and 0 < s < |λ1|(b

2 + σb)|. It is easy to check that h(s)
has a local minimum at s∗ := b log

(
b+ σ + L(b2 + σb)

)
and furthermore

h(s∗) = b+ b log
(
b+ σ + L(b2 + σb)

)
− |λ1|

(
b2 + σb

)
,

which is negative for some b∗ big enough (in Appendix A we will give some
estimates on how big this b∗ must be as a function of λ). This s∗ is again
in our target interval, for a big enough b (note that if h(s∗) < 0 then s∗ <
|λ1|(b

2 + σb)|).
From now on, let s = s∗, and check if (7) holds, where we will put s = s∗

at the end of the calculations.

b · e−σt/σb
√

((σt+ σb+ 1) + y2)
?
≤ |λ1|

(
b2 + σb

)
− s.

As we have done before, expand

b · e−σt/σb
√

((σt+ σb+ 1) + y2) ≤ b · e−t/b · (|σt+ σb+ 1| + y) =

= b · e−t/b · (t+ b+ σ + y) =

= b · e−t/b ·
(
t+ b+ σ + L

(
b2 + σb

)
− s∗

)
.

It is easy to check that b · e−t/b · (b + σ + y) is a decreasing function in
t, and b · e−t/bt has a local maximum at t = b and is a decreasing function
for t > b. Then, we can bound both terms by setting t = s∗, as s∗ ≥ b
whenever b+ σ+L(b2 + σb) is bigger than e, but this inequality holds if all
other conditions are fulfilled. Now we must only check if

|λ1|
(
b2 + σb

)
− s∗

?
≥ b · e−s

∗/b ·
(
s∗ + b+ σ| + L

(
b2 + σb

)
− s∗

)
=

= b ·
b+ σ + L

(
b2 + σb

)

b+ σ + L (b2 + σb)
= b,

which is the same inequality we have for h(s), thus it is also satisfied. In-
equality (8) is equivalent to (6), hence the result follows.

Now we give numerical bounds for how big b must be in Theorem 4.6.
We will consider only the general case λ1 6= 0, as the other is equivalent.
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Consider the inequality

b log
(
b+ σ + L(b2 + σb

)
) ≤ −b+ |λ1|

(
b2 + σb

)

If this inequality holds and b + σ + L(b2 + σb) > 0, we have the required
estimates to guarantee that all required inequalities in Theorem 4.6 hold.
The second inequality is clearly trivial, as it holds when b > 1. Now, we
must find a suitable b for the first.

Simplifying a b factor and exponentiating both sides, we must check
which b verify

b+ σ + L(b2 + σb) ≤ e−1+|λ1|σe|λ1|b. (9)

We can get a lower bound of ex:

e|λ1|b ≥ 1 + |λ1|b+
|λ1|

2b2

2
+

|λ1|
3b3

6
.

And this way if

b+ σ + L(b2 + σb) ≤ e−1+|λ1|σ
(

1 + |λ1|b+
|λ1|

2b2

2
+

|λ1|
3b3

6

)
,

then is also true (9). Now we must check when a degree 3 polynomial with
negative dominant term has negative values. This will be true as long as
b > 0 is greater than the root with bigger modulus. It is well-known (see
[HM97]) that a monic polynomial zn +

∑n−1
i aiz

i has its roots in a disk of
radius max(1,

∑n−1
i |ai|), so every b > 1 and bigger than

6

eσ|λ1|−1|λ1|3
·

(
|L− eσ|λ1|−1 |λ1|

2

2
| + |1 − eσ|λ1|−1|λ1|b+ Lσb| + |b+ σ − 1|

)

satisfies our claims.
Finer estimates for b depending on λ can be obtained with a more careful

splitting of λ space, for instance

{λ |λ ∈ S1} = {λ ∈ [7π/4, π/4]} ∪ {λ ∈ [π/4, 3π/4]} ∪ {λ ∈ [3π/4, 5π/4]}

∪ {λ ∈ [5π/4, 7π/4]} = B1 ∪B2 ∪B3 ∪B4.

The proof can be adapted with very minor changes to this partition, al-
though the exposition and calculations are more cumbersome.
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Astérisque, (152-153):4, 151–172 (1988), 1987. Séminaire Bour-
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[EL92] A. È. Erëmenko and M. Yu. Lyubich. Dynamical properties of
some classes of entire functions. Ann. Inst. Fourier (Grenoble),
42(4):989–1020, 1992.
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