International Journal of Bifurcation and Chaos, Vol. 18, No. 8 (2008) 2309–2318

© World Scientific Publishing Company

A GENERALIZED VERSION OF THE MCMULLEN DOMAIN

PAUL BLANCHARD, ROBERT L. DEVANEY,

ANTONIO GARIJO^{*} and ELIZABETH D. RUSSELL[†] Department of Mathematics and Science, Boston University, Boston, MA 02215, USA

*Dep. d'Eng. Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain [†]erussell@bu.edu

Received August 16, 2007; Revised October 8, 2007

We study the family of complex maps given by $F_{\lambda}(z) = z^n + \lambda/z^n + c$ where $n \geq 3$ is an integer, λ is an arbitrarily small complex parameter, and c is chosen to be the center of a hyperbolic component of the corresponding Multibrot set. We focus on the structure of the Julia set for a map of this form generalizing a result of McMullen. We prove that it consists of a countable collection of Cantor sets of closed curves and an uncountable number of point components.

Keywords: Complex dynamics; Julia set; Mandelbrot set; Cantor set of circles; McMullen domain; symbolic dynamics.

1. Introduction

In this paper we consider complex rational maps of the form

$$F_{\lambda}(z) = z^n + \frac{\lambda}{z^n} + c \tag{1}$$

where $\lambda, c \in \mathbb{C}$ are parameters. For this family of maps, we fix c to be the center of a hyperbolic component of the corresponding Multibrot set, i.e. a parameter such that, for the map

$$F_0(z) = z^n + c, (2)$$

0 lies in a superattracting cycle. For reasons explained below, we shall assume that $n \geq 3$ and that c is chosen so that this superattracting cycle has period k > 1. The maps F_{λ} are obtained by replacing the only finite critical point of F_0 with a pole of order n. For these maps, ∞ is always a superattracting fixed point, so there is an immediate basin of ∞ that we denote by B_{λ} . Since 0 is the only pole of F_{λ} when $\lambda \neq 0$, there is a preimage of B_{λ} that contains 0. If this preimage of B_{λ} is disjoint from B_{λ} , this set is called the trap door and denoted T_{λ} . In this paper, we shall only consider cases where B_{λ} and T_{λ} are disjoint, which always happens when $|\lambda|$ is sufficiently small.

For the special case c = 0, the origin is a superattracting fixed point of F_0 . The maps F_{λ} in this case have been extensively studied; see [Devaney *et al.*, 2007b; Devaney *et al.*, 2005; Devaney & Look, 2006]. When $\lambda = 0$, the Julia set for this family is the unit circle. When $\lambda \neq 0$, there are 2n"free" critical points for F_{λ} , i.e. critical points not equal to 0 or ∞ . Each of the free critical points maps to one of two critical values. When n is even, these critical values then map to the same point so there is really only one free critical orbit in this case.

^{*}The author would like to thank to Department of Mathematics at Boston University for their hospitality while this work was in progress. He was supported by MTM2005-02139/Consolider (including a FEDER contribution) and CIRIT 2005 SGR01028. [†]Author for correspondence