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Existence of limit cycles in a tritrophic food
chain model with Holling functional
responses of type Il and 1ll

Gamaliel BIé?, Victor Castellanos®* and Jaume LlibreP

We are interested in the coexistence of three species forming a tritrophic food chain model. Considering a linear grow for
the lowest trophic species, Holling 111 and Holling Il functional response for the predator and the top-predator, respectively.
We prove that this model has stable periodic orbits for adequate values of its parameters.
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1. Introduction

The dynamic relationship between predators and their prey has long been studied and will continue being one of the dominant
topics in both ecology and mathematical ecology due to its universality and importance, see for instance [8, 4]. These problems
may appear to be simple mathematically at first sight. In fact they are often very challenging and complicated.

Although the predator—prey theory has seen much progress in the last 40 years, there are still mathematical and ecological
problems unsolved. In [3], the authors considered a model for three species that compete for three resources and they proved
that the existence of two limit cycles evolves the coexistence equilibrium points. In [4] it is studied a model representing a
tritrophic food chain composed of a logistic prey, a Holling type |l predator and a Holling type Il top-predator. They proved using
the averaging theory the existence of a stable periodic orbit contained in the domain of interest. In [2] the authors analyzed a
model representing a tritrophic food chain composed by a prey with linear grow and a functional response Holling type Il for the
predator and the top-predator. They proved using the averaging theory the existence of three-dimensional parameter families for
which the model has two equilibrium points of zero-Hopf type contained in the domain of interest and also prove the existence
of a simultaneously double zero—Hopf bifurcation.

In this paper we analyze a tritrophic food chain model considering Holling functional response of type Il for the predator,
Holling type |l for the top-predator and linear grow for the prey.
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A tritrophic food chain model with functional response f(x) and g(y) for the middle and the highest trophic species,
respectively, has the form
= px—f(x)y,
= coyf(x)—gly)z—dy, (1)
z = z(eg(y) - ),

where x represents the prey, that gets eaten by a species of density y (mesopredator) that feeds the species with density z
(super-predator). The parameters p, ¢, d, d» and e are positive constants.

The functional responses of the mesopredator f(x), and the super-predator g(x) satisfy
dg(y) o

df (x)
> EAS A > 0.
I > 0 and dy >0 Vx,y>0

f(0) =9(0) =0,

There are many functions that satisfy the above conditions, for example the functional responses of predation include the
usual functions found in the literature (see, e.g., [5]). In this paper we will consider that f is Holling type Ill and g is Holling

type Il, more precisely

2
aix Yy
f(x) = ———— and = ,
() = 2 and () = 2
where a1, a», by and by are positive constants.
Consequently the tritrophic food chain model that we will study is
o - axy
erost2m).
2
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For ecological considerations the domain of interest Q is the positive octant of R3, i.e. Q is the region x > 0, y > 0 and z > 0.

We give necessary and sufficient conditions on the parameters to guarantee the existence of equilibrium points of the differential
system (2) in the region of interest Q. Our main result shows that system (2) can exhibit Hopf bifurcations in one of their
equilibria, and for any convenient values of the parameters the Hopf periodic orbit is stable.

To simply the expressions thought the paper we define
K> = aibsds — 4bi(db — axe)’p’, k> 0. (3)

Solving this equation (3) for by, we write by in terms of k

a2b3d? — k>

by = 1272~ % 4
! 4(6/2 — 326)2[)2 ( )
Also we do
Bl :dz — ape,
BQ :aledQ — k,

83 =a1b26d2 — 2b2dd2 — ck.

Theorem 1 If the parameters involved in system (2) satisfy the hypothesis
H1 ae —d> >0,

H2 aibodr — k >0,

H3 aib5d5 — 4bi(do — ae)’p” > 0,

H4 a1brcd> — 2brddr — ck >0



then we have an equilibrium point py in the positive octant of R®. If additionally the hypothesis
H5 —a3b3e’*kB3(a1arbodhe — Bik) + 4dxBSp°w? > 0,

is satisfied and the first Lyapunov coefficient £(p1) (see Appendix) at p1 is not zero, then we have a Hopf bifurcation in ps.

Theorem 2 |f the parameters involved in system (2) satisfy the hypothesis H1, H3 and
H4' a;b,cd, — 2boddr + ck > 0,

then we have an equilibrium point p- in the positive octant of R®. But the standard sufficient conditions which guarantee the

existence of a Hopf bifurcation in p> do not hold.

2. Equilibrium points in the positive octant of R3

Doing a rescaling of the time, we get that the differential system (2) is equivalent to the following differential system,

= x(b2+y)(—aixy + bip + x°p),
—y(bibad — arbacx® + bodx® + bidy — a1cx®y + dx*y + a2b1z + 2x°2), (5)
z = —(bi+ XZ)(b2d2 + dhy — azey)z.

The equilibrium points of differential systems (5) in the region of interest €2, are the solution of the equations

—aixy + bip+x°p =0,
b1b2d — é?;[bQCX2 + deX2 + b1dy — a1CX2y + dXQ)/ + agblZ + azXZZ = O,
bado + doy — azey = 0,

whose solutions are

p ( albgdz—k b2d2 6(31b26d2—2b2dd2—6k))
=

2(226 — dz)p’ are — dzl 2d2(226 — dQ) (6)
- aib>d> + k b>d» e(a1b2Cd2—2b2dd2+Ck)
P2 = 2(326 — dz)p' are — er 2d2(826 — dz) '

So the following result guarantee the existence of two non trivial equilibrium points in .

Lemma 3 The equilibrium point py of differential system (5) is in the positive octant of R® if and only if the parameters satisfy
the conditions H1, H2, H3 and H4. The equillibrium point p, of the differential system (5) is in the positive octant of R® if and
only if the parameters satisfy the conditions H1, H2 and H4’

Proof. The proof is a direct consequence of the expression of p; and p>. [J

We note that always that p; is in the positive octant of R® also p, is there.

Now our goal is to determine when the equilibrium points p1 and p> exhibits a Hopf bifurcation. In this sense we show the
existence of parameters where the equilibrium points have a pair of pure imaginary eigenvalues and a nonzero real eigenvalue and
using a Kuznetsov's Theorem we shall prove the existence of a Hopf bifurcation. The tool provided by the Kuznetsov Theorem
is a good theory for studying the Hopf bifurcation, in particular in [1] it is applied in the repressilator equation of dimension six

for proving the existence of a supercritical Hopf bifurcation.



3. First Lyapunov coefficient and Hopf bifurcation

3.1. Kuznetsov theorem

When a differential system
x = F(x,u),

in R” has an equilibrium point p having eigenvalues +w/, it is a candidate to exhibit a Hopf bifurcation, that is a local bifurcation
in which an equilibrium point of a differential system loses stability as a pair of complex conjugate eigenvalues of the linearization,
around the equilibrium point, cross the imaginary axis of the complex plane.

In order to show that this bifurcation takes place it is necessary to compute the first Lyapunov coefficient £1(p) of the
differential system at the equilibrium p. When £1(p) < 0 the point p is a weak focus of the differential system restricted to
the central surface of p, associated to the pair of complex eigenvalues which cross the imaginary axis, and the limit cycle that
emerges from p is stable. In this case the Hopf bifurcation is called supercritical. When £1(p1) > O the point p is also a weak
focus of the differential system restricted to the central surface of p but the limit cycle that born from p is unstable. In this
second case we say that the Hopf bifurcation is subcritical. For more details on the Hopf bifurcation see for instance the book
of Kuznetsov [7].

In this work we use the following result presented on page 180 of the book [7] for computing the first Lyapunov constant
£1(p1) at the equilibrium p;.

Theorem 4 (Kuznetsov, 2004) Let x = F(x) be a differential system having po as an equilibrium point. Consider the third order
Taylor approximation of F around po given by

FOx) = Ax 4 2:8(x, )+ 3 Cxx,3) + O()

Assume that A has a pair of purely imaginary eigenvalues +wi. Let g be the eigenvector of A corresponding to the eigenvalue
wi, normalized so that qg = 1, where § is the conjugate vector of q. Let p be the adjoint eigenvector such that AT p = —wip
and p-q = 1. If | denotes the identity matrix, then the first Liapunov constant l1(po) of the system x = F(x) at the equilibrium
point po Is

SoRe(p- C(q,0.9) ~ 25+ B(a. A B(q.9)) + P+ B(3, (2uil — A)*B(q,9))).

3.2. Hopf bifurcation at equilibrium point py

In the next two results we characterize when the equilibrium points p; and p> have complex eigenvalues with real part zero.

Hence system (5) will be a candidate to exhibit a Hopf bifurcation.

Proposition 5 /f the parameters satisfy the hypothesis H1,H2, H3, Hj and Hb5, then there exists a parameter set such that the
equilibrium points py is in the positive octant of R® and have a pair of pure imaginary eigenvalues and the other eigenvalue is a

non zero real.

Proof. The characteristic polynomial of the linear approximation of the tritropic system (5) at the equilibrium point p; is

p(A) = =X + A% + A1) + Ao,

where,
Ao — — a2asbsd?e®B3kBs
(16B8%p° '
A :a1a2b5e85 (a1b2d3B1Bs + (—aiaxbscdie + bo(arc — 2d)ds k — cB1k?) p)
8B%p* ’
b282(31d283 — 2226kp)
A = .

4B3p?



|
Now imposing the condition that p(A) = —(A — a)(A + wi)(\ — wi), we obtain a system of three polynomial equations, that
correspond to the coefficients of the terms of degree 0, 1 and 2 in A. Since the variables ¢, d and a are of degree one in this

system, then we have a linear system in this variables whose solution is

Bip*w? (a5b3°k* B3 + 4BY p°w?)
T a@2b2e?Bi(a1bads + k) (a1 22b3d,e2k B2 — 4B2p3w?)’
4Bip*w’ (—a3b3e’ kB3 (a1azbadoe — Bik) + 4d:BS p°w?)
a1a3b3d2e?B3(a1badh + k) (a123b3doe2kB3 — 4B%p3w?) '
arasbidre3 B3K?
T T 2mabidhe(—dy + a€)?kB2p + 8Biptw?

d=—

From the hypotheses of the proposition, we have that B; < 0, B> > 0 and B3z > 0. Thus c is positive. On the other hand,
the denominator of d is positive, so, we only verify the sign of numerator to know the sign of d. As B; < 0 then B} < 0, and
so —4B3p*w? > 0 in the expression of d, therefore the sign of d is determined by the sign of the expression in the parenthesis
of numerator,

—a3bse’kB3(a1arbadhe — B1k) + 4d-BSp*w?,

that is positive by hypothesis H5. Hypothesis H5 is realizable because this is a polynomial equation of degree two in the variable
w of the form ty + tiw? with to < 0 and t; > 0.
With these values of the parameters the equilibrium point p; takes the form

" 2Bip' B ' a1d? (a122b3dhe?kB2 — 4BSpPw?)

By b 4a,e° Bt kp*w?
b= ( 1kp , (&)
and the linear approximation at this point has a pair of pure imaginary eigenvalues wi, —wi and one real, a. It is clear that p; is

in the positive octant. [J

4. Proof of main results

4.1. Proof of Theorem 1

Lemma 3 guarantees the existence of parameter families for which the equilibrium points p; and p» are in the positive octant of
R3 and Proposition 5 establishes that also there is a family of parameters for which the equilibrium point p; has a pair of pure
imaginary eigenvalues and one real eigenvalues. Theorem 1 is our main result, which guarantees the existence of Hopf bifurcation
at the point p; and for convenient values of the parameters it will be stable. Example 6 shows that these last claims are satisfied
for some values of the parameters.

In order that this bifurcation takes place we compute the first Lyapunov coefficient £1(p1) of the differential system at the
equilibrium p;. This calculation is done using the formula of the Kuznetsov's Theorem.

Let p1 be as in (8) and consider a linear change of variable to translate p; to at the origin of coordinates, after that change
we obtain a differential system

X = F(X), 9)

with X = (x, y, z) and F(0) = 0. Denote the vector field
F(x.y,z) = (fi(x.y.2), A(x,y. 2), fi(x.y,2)),

associated to this differential system. Then we compute the linear part A, the bilinear B and trilinear C forms of the Taylor

expanssion of the function F.
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The linear part of system (9) at 0 is

2byeBok a132bpeb) 0
2B3p 4B3p?
A= 4pr3w2(agbgezk2b§+48?p2w2) 2a2erB§szp2w2 alagbgdzng
a1aybyeB3By By 28302
0 222b2e2Bi’ngp2w2 0
—dpBa

where
Bs = a1a3bscbe’ kB3 — 4BTp w’.
The eigenvalues of A are
B a1a3bsdoe’ B3k*
8B%p*w? — 2a1a3b3dre? B3k B12p”

—iw, W,

The eigenvector g = (g1, 12, g13) of A corresponding to eigenvalue jw normalized such that g-§ =1, where § is the
conjugate vector of q is presented in the Appendix. The normalized adjoint eigenvector p = (p11, p12, p13) of transpose matrix
A corresponding to the eigenvalue —iw, with the property that p- g = 1 is also in the Appendix.

The calculus of the bilinear B and trilinar C forms, are provided in the Appendix because they have large expressions. So we
have all the elements to compute the first Lyapunov coefficient £(p1) at pi. The expression of £(p1) is given in the Appendix.

This conclude, the proof of the theorem.

4.2. Proof of Theorem 2

To proof this theorem we do an equivalent procedure as the one done in the proof of Theorem 1. From the expression of p
establish in (6) we have that it is in the positive octant of R3. The characteristic polynomial of the linear approximation of
system (5) at the equilibrium p, is

p(A) = =A% + CoX* + G + Co,

where,
Com - acasbidie’kD3 D3
16B%p°
o _aimbieD] (—ai1hd3B1Ds + (aiabicdie + bo(aic — 2d)dik + cBik?) p)
8B7p* '
C, = b2D1(ald2D2 + 2226/(,0)

4B3p? '
Dy =aibydo + k,
D> =a1bocd> — 2bodds> + ck.

Similarly imposing the condition that p(A) = —(A — a)(A + w/)(A — wl), we obtain a system of three polynomial equations,

that are linear in the parameters ¢, d and a. The solution of this system in terms of these variables is

_ 8Bip'w? (a3b3e’k*(arbadh + k) 4 4BFp*w?)
;M a3b3e2Bo D3 (aa3b3dre?kD? + 4BSp3w?) '
_ 4Bip'w? (a3b3e’kDi(a1axbache + Bik) + 4dhBYp°w?)
T aab3d3e?B,D? (a1a3b3dhe?kD? + 4BSp3w?)
a1a3b3dhe’k’ D3
2a1a5b3d,e2B}kD3p + 8B%pw?”

d (10)

o =

The equilibrium point p> with the values of parameters given in (10) takes the form

_(_ D1 b 42,6 Brkptw?
2=\ 2B1p' Bi ' a1l (a1 b3chekD? + 4B pPw?)
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The linear approximation at this point has a pair of pure imaginary eigenvalues wi, —wi and one real, a as we need for apply
the Kuznetsov Theorem. With these values of the parameters ¢ and d, the equillibrium point p> remains in the positive octant
of R® if the condition

arasbidre’kD? + 4B pw? > 0

is satisfied. But in this case the parameter c is negative and this is not possible because in our model all parameter are positive.

This complete the proof of the theorem.

4.3. Examples

Theorem 1 is our main result, which guarantees the existence of Hopf bifurcation at the point p;. Example 6 shows that this

theorem is not empty.

Example 6 We show a concrete example where Theorem 1 holds and where the Hopf periodic orbit is stable. Consider the

parameters values a; =1, aa =2, bo =2, do =1, e =2, k = 1. Then, from (4) and (7) we have

1
b1 :?,02'
81p*w’ (64 + 2916p°w?)
T 8(128 + 9720%w?)
8lp*w’ (=704 + 2916p°w?)
T 32(128 + 9720%w2)
o 1024

"~ 6912p + 52488p%w?’

Note that by and c are always positive reals numbers and if

4
pw > f\/ll’ (11)

then d is positive too. The eigenvalue o is always negative.

All the hypothesis of Theorem 1 hold for these values of parameters, indeed
Hl ae—d» =3>0,
H2 aibydo —k=1>0,
H3 a?b3d3 — 4b1(dr — axe)?p®> =1 >0,

32
H4 aibscds — 2bsdds — ck =8p (—14 ———= ) >0
Ab2cdz = 2hadd: = ¢ p( +32+243p3w2>>

H5 —a3b3e’kB3(a1arhboche — Bik) + 4d2 B p%w? = —704 + 2916p%w? > 0.

And the first Lyapunov coefficient £(p1) is

la
Lp) = W

Where

lo = — (8192(—1356 + 22295p) + 5120° (4076159 + 4054698p)w” + 510183360°(285 + 101p)w* + 34867844010 °w®) .
I, =648w (4096 + p” (16384 + 243pw” (256 (14 4p (3+ p+3p°)) + 9720° (1 + 4p(12 + 37p))w” + 177147p"w"))) .
We have that I, > 0 for any p and w. Note that I, < 0 if

1356
22295°



Figure 1. We show an orbit tending to the local attractor definided by a stable Hopf periodic orbit.

- . 2229511
Then condition (11) holds if w > %

previous values of p and w. In the particular case that p = w = 1 the value of £(p1) is

, and then we obtain that the first Lyapunov coefficient £(p1) is negative for all the

o(py) — _ 21514393169
PY) = T59228395560°

Recall that when £(p1) is negative we have a subcritical Hopf bifurcation and then the periodic orbit obtained of the bifurcation
is stable in the planar central surface, and since the real eigenvalue a is negative, then the limit cycle living in the central surface

is a local attractor.

In Figure 1 we exhibit the local attractor defined by the stable limit cycle of differential systems (2) with parameters
valuesas =1, ap =2, b =2, cbh=1,e=2, k=1,p=1,w=1ande = 0.1. The singular points are p1 = (1/6,2/3,648/275)
and p» = (1/2,2/3,22707/1100). The eigenvalues of linear approximation of system at p» are {1.8292 + 3.82836/, 1.8292 —
3.82836/, 0.226503} then it is a repellor.

Appendix

The bilinear function B at vector (x, y, z) is given by
B((x.y.z).(x,y,z)) = (B, Bi2, Bi13),

where

a1B3y? + 2B (2a1a2bse + k)xyp — 2axbae(arbads — 3k)x?p?

B =— 28207
B =— ﬂ;
S2
5 Boy (alasb3ds e2kBsz — 4B3p® (a1 bod3z + 2a267kxp”) w?)
13 = — ;

a1 diB1p? (a123b3d-e?kB3 — 4B3p3w?)



sy =artasby’dsetkyz — 6abasbyt diet kPyz + 15al a3’ i e* K3y 2
- 2Oafagbgd§364k4y2 + 15a§a§’b§d§’e4k5y2 — 6a‘fa§’b£d§e4k6y2
+ afagbgd§e4k7yz + 2a?agb§2d§e4kxzp — 12azagb§1d§e4kzxzp
+ 3Oa?a§b;0d2764 k3xzp — 40afag bg d26 e4k4xz,0 + 3Oa‘11ag bg d25 e4k5xzp
— 12af agbz d§e4k6xzp + 2afa§ bg d23 e4k7xzp — 4a§b§ e2BfB§p353w2
+32Bi'x0" ((da + axe) Boy + apbochexp)w”;

s =a1a3b5che’ BIB3p” (a1a5b3che’ kB3 — 4BTp°w?) ;

S3 =araxbods Boyz + 212285 (—eky® + 2bydsxz) p — 2doBok Dixyp
- 222b2d2€k2X2p3.

The trilinear function C at vector (x, y, z) is given by

C((x,y.2). (x.y,2),(x,¥.2)) = (Ci1, C12, C13),
where

3x (2a1(—B2)y” + (a1b2(dh — 2a2€) — 3k)xyp + 2a2bex’p”)

Ci=—
11 Bip
Cip=— E;
S5
c _6xy (afasb3die’Bikz — 4B7p’ (@105 Boz + are’kxp?) w?)
i ard3p (a1a3b3dhe?k B3 — 4B2p3w?) '
sS4 =6x57;

ss = (aasb3d;e’B1Bip (—a1as by cb e’k B; + 4B p°w?) ) ;

ss =ara2bads Biyz + Bo (k(—a1axbadhoe — dok + acek)y® + araxbsd5xz) p
— badik(aranbre + k)xyp?;

s; =atasby’dyetkyz — 6alasbyt die*kPyz + 158 a5h 0 dl e* kP y 2
- 20a§a§’b§d§e4k4y2 + 153‘11a§b§d25e4k5yz — 6afagb§d§e4k6y2
+ afagbgdg’eAWyZ + azagbfdge“kxzp — Sa?agbéldgge“kzxzp
+ 10a§ agbéo d276‘4 k3xzp — 10a‘fag bg d26 et k4xzp + Safag bg d; e4k5xzp
— alasbids e kPxzp + 4asbie’ (—B1)° Bs pPssw?

+ 16d25%1yp6(81b2d2y — ky + b2(d2 -+ aze)xp)cf'.
The eigenvector g = (g1, ¢12, q13) of A corresponding to eigenvalue iw have the coordinates
_ 31d282r3 E
eBlkpdwr \ i’
2/d2l”3 rn
G2=— " op3p 2.\ 7
arbre Blngp w r

r
qi13 = \/ n

a1
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n =aila3ha’dr?ek? — BartaShy’date®k® 4 28a1labbat dy’eCk* — 56asas by ds e®k®
+ 70a§agb52d§e6k6 — 56azagb§1dgeﬁk7 + 28afagb§0d§e6k8 — SaTaSbngSeGkg
+ a‘fag bg dgefjklo + 4a§a§ b;4 d21066 k4p2 — 24az agbfdzg e6l<5,02 + 60a?ag b%zdzs e® k6,o2
— 80asaSh3tdi ek p? + 60a3ashldSe®kBp? — 2423 5b3d3 e’k p?

+ 4aiaSbidse®k'®p® + 8ashse’ (—B1) kB3 p ra;

ri1 = (aybad5 B3 — 2a1b5d5 Bikp + 4a1bads k2 p° + 2% (—B1)k*p°) w?
+16a5b56°B1°B5p° (a7 d3 BS — 8a1bads Bikp + 4 (—2axche® + a3e’
+d5 (1+€%)) K*p”) w* + 25605 B1°p"w®;
ro = — iarab3dhek — 2d5 pw — 633 b€’ pw + 23’ pw + aze (ibak® + 65 pw) ;
r :a§b§e48fk285p6w2 (agbgezszg + 4pr2w2) ;

s =aasbydie’k — 2a%acbadse?k® + a1asbrdhe’k® — 4B pPw?:

The adjoint eigenvector p = (p11, p12, p13) of transpose matrix A corresponding to the eigenvalue —iw have the coordinates

_ 16eBYkB3p°w’go (iaxbreBak 4+ 2B3pw) [qr
P b B3 (1 2b3dhe?k B2 — 4B50%w?) g5 \ g2

_ 2iabe®BikB3p’wg (g1
pr2 rBags (7%

13 :alagbﬁdgerngo g1,
g3 Vo'

go =iaxbreBok — 2(B1)pw;

g1 :a%zagb§6d§2e6k2 - Sailagb§5d2lle6k3 + 282%Oagb§4d21°e6k4
— 56a$agb§3d2966k5 + 7Oa§agb§2d566k6 — 56azagb§ld2766k7
+ 283?agb§0d§e6k8 — Sa‘;’agbgdgeejkg + a‘l‘agbgdﬁeﬁiklo
+428a5h2 di0e®k*p® — 242l 5K 5 % kP p? + 60a8 a5 b3 dSe® K p?
—80ajashy' dse®k’p? + 60a7 aSb3’ ds e®k®p® — 24a3a5h5ds ek p?
+4a1a5b3ds k0 p” + 8asbye’ (—B1) kBip® (aibads B3
—2a1b3d5 (B1)kp + 4arbods kP p” + 2€° (= B1)k*p’) w®
+ 16a3b656%(B1)'*(—B2)?p° (a1 d5 (— B2)” — Baybod5 (B1) kp
+4 (—2axche’ + ase* + d5 (1 +€%)) kK*p”) w'
+256d5(B1)"°p"w®;

g2 =a3b3e*(B1)°k*(— B2)*p°w’ (a5 b5k (— B2)” + 4(B1)°p°w?) ;

g3 =8iarasbsdre® B3k? + 16a1a3bsdoe®(—B1) k(—B2)?pw
+64(B1)%p* .

The expression of the first Lyapunov coefficient £(p1), at the equillibrium point p;.

(o) = 7. (12)



The expression of numerator of £(p1), is /a

lh =a1dh (ln + a3 305" d5 e klop + a3 a305°d5 €k las + al asbs' ds € ks
+24(dy — ape) kp*w’ls + aiasbyds €Kkl + ajasbsdie’ kPl

—ajaybids el + atasb3ds e klag + lato) -
The expression of denominator of £(p1), is Iy

Ip =6(d2 - 326)30.! (/bl + 833[)364(*(12 + 826)5/((*31[)2(12 + k)4p3/b2w2
+ 16a3b56%(db — ape)'®(—arbods + k)2 0% law®
+25605 (b — a2€)'°p"w®) .

Where,

Iy =a1%a5 b0 s’ e’ (dr — are)’k*(10da(da — ane) — 3azep)
+ alaShy’dse®(do — ape)’k* (—80dh(do — aze) + (o + 6aze)p),

lo =b>k* (a2d5e(280d> — 13p) + 3a5d2e(280ck — p) + 2d>p
—a3e*(280d> + 3p) + a5 d5 > (—876d> + 5p)) + 36(do — aze)’ p*w?,

ls =a;bse”k* (Ta2d3e(100d> — 23p) + 42dsp — 5ase*(140d> + 93p)
—a3d3 e’ (2418db + 457p) + a5d2€(2100d> + 853p)) + 4p° (2d5°
+5lardse — 444a3d5e® + 1476a3d3 e — 3024a5d5e?
+2562a5d5e° — 1176a5d5e® — 156a5d5e” + 44225 d5e®
—221a3che’ + 3625°e™ + 3aze(ch — a2e)"(10d> + 9a2€)p) W’

la =axbsek® (—14d3p + Tard5 e(—80d> + 9p) + 10a3e* (56> + 15p)
+6a5d5 €*(308c> + 23p) — 5ardoe’ (3362 + 53p))
—4p° (11d5 — 82axdSe + 260a5d; > — 504a3ds e’ + 434a3d5 e’
—196a5ds €” — 28asdse® + 72ajds e’ — 37a5dre®
+6a5e’ +3(do — a2e)' (3> + 10a2e)p) w?

ls = — a3bye’k® + dasbse” (db — a2e)’k*p” (—a3€” + are(d> — 8p)
+5dap) w? + 8(da — aze)' (dh + aze)p’w?,

ls =a3b3e’k® (a2d5e(10d> — 19p) + 6d5p — 3a3d5 e’ (12d> + 17p)
+5a3che’(6d» + 19p) — ase*(10dh + 51p)) + 4axbrek*p’ (23°
+ 55axd5e — 476a5d5e® + 1588a5dh e — 3024a3 dde*
+2842a5d2e° — 1400a5ds e® — 44a5d3e” + 44235 d2 8
10 (10

—217a3dhe” + 36a,°e'’ + 3a2e(32d — 57aze)(dh — aze)’p) w’
— 48(dh — 3a2e)(dh — aze)p’w’,



|
Iz =a3b3e>k® (—30d5p + 12a3d5 €* (240 + Tp) + 4aze’* (204> + 21p)
+axdse(—80dh + 97p) — a3de’(240d> + 131p))
— 4ayb5ek’p’ (8dh° + 111axdie — 1122a5d5 €’
+4020a3d3 e — 8568a3dse* + 8778a3d5¢” — 5796a3d; €°
+1812a5d5e” + 112a5d3e® — 257a3doe” + 54a3%e!®
+3a26(34d> — 121a2e) (b — a2e) p) W”
+ 48(do — are)>(5dh — 11ane — 4p)p°w*,

ls =asbse” k® (a2d5 e(560d> — 239p) + 68dsp — 80ase* (7> + 6p)
—2a5d3€%(996d> + 239p) + a3d-€’(1680d> + 857p))
+4b5k*p’ (2 (4d5° + 53a2d5e — 541a5d5 € + 1940a3d; €
— 4284a3d5e* 4 4214a3d5e® — 2758a5d5 €® 4 836a5d5e’
+ 56a5d5e® — 131a5che’ + 27a3 ™)
+ 3a2e(11d: — 3aze)(d2 — a2€)"p) W’
+ 144(d> — aze)p w?,
lo =a3bse’k® (a2d5 e(280d» — 207p) + 62dsp — 12a5d5 *(84d> + 17p)
—4a3e*(70d> + 51p) + 5a3d2e”(168d> + 65p))
+ 4abrek’p’ (2 (6d5° + 67axds e — 728a5d5 € + 2692a3d; €
— 6048a5d5e” 4 6370a3d5¢> — 4592a3d5e® 4 1828a5d5 e’
— 258a5d5€® — T7a3dbe’ + 24a3°e'”)
+ 3a26(16d> — 79a2e)(d2 — 22€)"p) W”
— 48(d> — a2€)"?0° (3(d2 — aze)” — (32 + 5aze)p) w’,
liio =6a1bach(d> — aze)’p (asbe’ k> — 2a3bse*(—do + a2€)°k®p” (—4d5
+2ds(ane — 5p) + aze(2aze + 29p)) w’
—8asb3e”(db — a2e)'%k*p° (d5 + 4dz(2a2e + 3p)
—ae(9aze + 25p)) w* + 32(dh — a2e)'° (3 — a2e)p°w’)

I =ala$bi0di2e" i — Bal'abi°di' e’ + 28al a5 bt 0k
— 56a7a565°d5e®k® + 70a8 aSh3° dSe®k® — 56a; aShat di ek’
+ 283?agb§0d§e6k8 — 8afagb3d25e6k9 + a‘fagbgdgeBklo
+ 4agfag b§4 d210€6 k4p2 — 24a{ag b;3d§J eﬁk5p2 + 60&1613 ag b§2 dfe6 k6p2
— SOafagb;Id;eﬁﬂpz + 6Oa§‘agb§0d§e6k8p2 — 24afagb§d25€6k9p2

4
+ 4afagb§d2 e® k%

lp =aibads (—a1bada + k)* — 2a3b5ds (do — ane)kp + 4a1bads k2 p°
+26%(—db + ae)k’p’,

lis =aids (—a1badh + k)* — 8a1bad5 (do — a2€)kp + 4 (—2a2d2€>
+aze* +d5 (1+€%)) k*p°.
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