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We study the number of periodic solutions of linear, Riccati and Abel dynamic 
equations in the time scales setting. In this way, we recover known results for 
corresponding differential equations and obtain new results for associated difference 
equations. In particular, we prove that there is no upper bound for the number 
of isolated periodic solutions of Abel difference equations. One of the main tools 
introduced to get our results is a suitable Melnikov function. This is the first time 
that Melnikov functions are used for dynamic equations on time scales.
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1. Introduction and main results

Consider the polynomial periodic differential equations

dx
dt = x′ = a0(t) + a1(t)x + · · · + an−1(t)xn−1 + an(t)xn, (1.1)

where x, t ∈ R and a0, a1, . . . , an : R → R are smooth ω-periodic functions. The question of studying its 
number of ω-periodic solutions in terms of n was proposed by N. G. Lloyd (see [20]) and C. Pugh (see 
[19]). Notice that (1.1) with n = 1 (resp. n = 2) is a linear equation (resp. a Riccati equation), and it is 
well known that linear (resp. Riccati) equations have either a continuum of periodic solutions or at most 
1 (resp. 2) periodic solutions, see for instance [19,21]. When n = 3, (1.1) is called Abel equation, and the 
more relevant result on it was proved in [19]: For any k, there exist equations of the form (1.1), with ai
trigonometric ω-periodic polynomials, having at least k isolated ω-periodic solutions. A similar result holds 
for n > 3. The results for n = 3 have interest by themselves, but also because Abel equations appear when 
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