ON THE NUMBER OF N-DIMENSIONAL INVARIANT SPHERES IN POLYNOMIAL VECTOR FIELDS OF \mathbb{C}^{N+1}

Yudy Bolaños^a and Jaume Llibre^{a,†}

Abstract We study the polynomial vector fields $\mathcal{X} = \sum_{i=1}^{n+1} P_i(x_1, \dots, x_{n+1}) \frac{\partial}{\partial x_i}$

in \mathbb{C}^{n+1} with $n \geq 1$. Let m_i be the degree of the polynomial P_i . We call (m_1, \ldots, m_{n+1}) the degree of \mathcal{X} . For these polynomial vector fields \mathcal{X} and in function of their degree we provide upper bounds, first for the maximal number of invariant n-dimensional spheres, and second for the maximal number of n-dimensional concentric invariant spheres.

Keywords polynomial vector fields, invariant spheres, invariant circles, extactic algebraic hypersurface.

MSC(2000) 58F14, 58F22, 34C05.

1. Introduction and statement of the main results

Let \mathcal{X} be the polynomial vector field in \mathbb{C}^{n+1} defined by

$$\mathcal{X} = \sum_{i=1}^{n+1} P_i(x_1, \dots, x_{n+1}) \frac{\partial}{\partial x_i},$$

where every P_i is a polynomial of degree m_i in the variables x_1, \ldots, x_{n+1} with coefficients in \mathbb{C} . We say that $\mathbf{m} = (m_1, \ldots, m_{n+1})$ is the *degree* of the polynomial field, we assume without loss of generality that $m_1 \geq \cdots \geq m_{n+1}$. We recall that the *polynomial differential system* in \mathbb{C}^{n+1} of degree \mathbf{m} associated with the vector field \mathcal{X} is written as

$$\frac{dx_i}{dt} = P_i(x_1, \dots, x_{n+1}), \qquad i = 1, \dots, n+1.$$

By the Darboux theory of integrability we know that the existence of a sufficiently large number of invariant algebraic hypersurfaces guarantees the existence of a first integral for the polynomial vector field \mathcal{X} which can be calculated explicitly, see for instance [4, 6]. As usual $\mathbb{C}[x_1, \ldots, x_{n+1}]$ denotes the ring of all polynomials in the variables x_1, \ldots, x_{n+1} and coefficients in \mathbb{C} . We recall that an *invariant algebraic*

[†]the corresponding author. Email addresses:

ymbolanos@gmail.com(Y. Bolaños), jllibre@mat.uab.cat(J.Llibre)

 $[^]a {\rm Departament}$ de Matemàtiques, Universitat Autònoma de Barcelona, 08
193 Bellaterra, Barcelona, Spain.

^{*}The second author is supported by the grants MCYT/FEDER MTM 2008–03437, Generalitat de Catalunya 2009SGR410, and is partially supported by ICREA Academia.