ON THE NUMBER OF N-DIMENSIONAL INVARIANT SPHERES IN POLYNOMIAL VECTOR FIELDS OF \mathbb{C}^{N+1}

Yudy Bolaños ${ }^{a}$ and Jaume Llibre ${ }^{a, \dagger}$

Abstract We study the polynomial vector fields $\mathcal{X}=\sum_{i=1}^{n+1} P_{i}\left(x_{1}, \ldots, x_{n+1}\right) \frac{\partial}{\partial x_{i}}$ in \mathbb{C}^{n+1} with $n \geq 1$. Let m_{i} be the degree of the polynomial P_{i}. We call $\left(m_{1}, \ldots, m_{n+1}\right)$ the degree of \mathcal{X}. For these polynomial vector fields \mathcal{X} and in function of their degree we provide upper bounds, first for the maximal number of invariant n-dimensional spheres, and second for the maximal number of n-dimensional concentric invariant spheres.

Keywords polynomial vector fields, invariant spheres, invariant circles, extactic algebraic hypersurface.

MSC(2000) 58F14, 58F22, 34C05.

1. Introduction and statement of the main results

Let \mathcal{X} be the polynomial vector field in \mathbb{C}^{n+1} defined by

$$
\mathcal{X}=\sum_{i=1}^{n+1} P_{i}\left(x_{1}, \ldots, x_{n+1}\right) \frac{\partial}{\partial x_{i}}
$$

where every P_{i} is a polynomial of degree m_{i} in the variables x_{1}, \ldots, x_{n+1} with coefficients in \mathbb{C}. We say that $\mathbf{m}=\left(m_{1}, \ldots, m_{n+1}\right)$ is the degree of the polynomial field, we assume without loss of generality that $m_{1} \geq \cdots \geq m_{n+1}$. We recall that the polynomial differential system in \mathbb{C}^{n+1} of degree \mathbf{m} associated with the vector field \mathcal{X} is written as

$$
\frac{d x_{i}}{d t}=P_{i}\left(x_{1}, \ldots, x_{n+1}\right), \quad i=1, \ldots, n+1
$$

By the Darboux theory of integrability we know that the existence of a sufficiently large number of invariant algebraic hypersurfaces guarantees the existence of a first integral for the polynomial vector field \mathcal{X} which can be calculated explicitly, see for instance $[4,6]$. As usual $\mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]$ denotes the ring of all polynomials in the variables x_{1}, \ldots, x_{n+1} and coefficients in \mathbb{C}. We recall that an invariant algebraic

[^0]
[^0]: \dagger the corresponding author. Email addresses:
 ymbolanos@gmail.com(Y. Bolaños), jllibre@mat.uab.cat(J.Llibre)
 ${ }^{a}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
 *The second author is supported by the grants MCYT/FEDER MTM 200803437, Generalitat de Catalunya 2009SGR410, and is partially supported by ICREA Academia.

