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Departamento de Matemática, Instituto Superior Técnico
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Poincaré compactification; Poincaré disc.
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1. Introduction and Statement of Main Results

Let R[x, y] (respectively, C[x, y]) be the ring of the polynomials in the variables x

and y with coefficients in R (respectively, C). We consider a system of polynomial
differential equations or simply a polynomial differential system in R2 defined by

ẋ = P (x, y), ẏ = Q(x, y), (1)

where P, Q ∈ R[x, y] and the dot denotes derivative with respect to the independent
variable t usually called the time. We say that the maximum of the degrees of the
polynomials P and Q is the degree of system (1). Usually a quadratic polynomial
differential system of degree 2 is called simply a quadratic system.
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Sometimes we shall talk about the quadratic vector field

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y
(2)

associated to the quadratic system (1). A non-locally constant real function H of
class C1 defined on an open set U is a first integral of the polynomial vector field X
if H(x(t), y(t)) is constant for all value of t for which the solution (x(t), y(t)) of X
is defined on U . We observe that H is a first integral of X if and only if XH = 0
on U .

Let f ∈ C[x, y]\{0}. The algebraic curve f(x, y) = 0 is an invariant algebraic
curve of the polynomial system (1) if for some polynomial k∈C[x, y] we have

Xf = P
∂f

∂x
+ Q

∂f

∂y
= kf.

The polynomial k is called the cofactor of the invariant algebraic curve f = 0.
Let g, h ∈ C[x, y] and assume that g and h are relatively prime in the ring

C[x, y] or that h = 1. Then the function exp(g/h) is called an exponential factor of
system (1) if for some polynomial k ∈ C[x, y] of degree at most 1 we have that

X
(

exp
( g

h

) )
= k exp

(
g

h

)
.

A non-constant function I = I(x, y, t) is an invariant of X if

dI

dt
=

∂I

∂x
ẋ +

∂I

∂y
ẏ +

∂I

∂t
= 0.

That is, I is an invariant of X if it is a first integral depending on the time t.
Moreover we say that I is a Darboux invariant if it is an invariant which can be
written as

I = fλ1
1 · · · fλp

p Fµ1
1 · · ·Fµq

q exp(st),

where f1 = 0, . . . , fp = 0 are invariant algebraic curves of X , F1, . . . , Fq are expo-
nential factors of X , λ1, . . . , λp, µ1, . . . , µq ∈ C and s ∈ R\{0}.

The quadratic Lotka–Volterra systems are of the form

ẋ = x(ax + by + c), ẏ = y(Ax + By + C), (3)

where a, b, c, A, B, C are constants. In this paper we study the quadratic systems (3)
that possess a Darboux invariant.

System (3) and its generalization to dimension n, since were originally studied
by Lotka and Volterra in [12, 18], are called Lotka–Volterra systems. Later on these
differential systems were studied by Kolmogorov [9], and after his work some authors
called them Kolmogorov systems. There are many natural phenomena that can
be modeled by these differential systems such as the time evolution of conflicting
species in biology [15], chemical reactions, plasma physics [10], hydrodynamics [2],
economics.

1350041-2



October 30, 2014 9:31 WSPC/S0219-1997 152-CCM 1350041

Lotka–Volterra systems with a Darboux invariant

The knowledge of a first integral is of special interest for a differential system in
the plane because it allows to compute the explicit expressions of the trajectories
of the system. However, when we cannot compute a first integral of the system
it is interesting to know if the system has an invariant. Roughly speaking, with a
first integral we can describe completely the phase portrait of a planar differential
system, while with an invariant we only can describe its asymptotic behavior, i.e.
the ω- and α-limit sets of its trajectories.

Our first result is the characterization of the quadratic Lotka–Volterra sys-
tems (3) having a Darboux invariant.

Theorem 1. The quadratic Lotka–Volterra systems (3) having a Darboux invariant
are either

ẋ = x(ax + by + c), ẏ = Cy (4)

with C �= 0 and a2 + b2 �= 0, or

ẋ = x

(
−A

l2
l1

x − B
l2
l1

y + c

)
, ẏ = y(Ax + By + C) (5)

with l1l2 �= 0, c2 + C2 �= 0 and A2 + B2 �= 0. Their Darboux invariants are e−C t y

and e(−c l1−C l2) txl1yl2 respectively, where l1 and l2 are constants.

Theorem 1 will be proved in Sec. 2. Theorem 1 improves some preliminary
results on the Darboux invariants of the quadratic Lotka–Volterra systems given
in [3, Theorem 1].

Note that if l2 = 0 then system (5) becomes system (4) after the change of
variables and parameters (x, y, A, B, C, c) → (y, x, b, a, c, C). Hence, in system (5)
we have excluded the case l2 = 0.

We remark that in Theorem 1 we do not consider the differential systems (4)
and (5) which become linear differential systems, i.e. we only consider quadratic
differential systems (4) and (5). This is obtained with the conditions a2 + b2 �= 0
and A2 + B2 �= 0 in the systems (4) and (5), respectively.

We observe that the conditions C �= 0 and c2 + C2 �= 0, in the systems (4)
and (5) respectively, are necessary in order that such systems really have a Darboux
invariant.

Our next results provide the global phase portraits of systems (4) and (5) in the
Poincaré disc, see Theorems 2 and 3, respectively.

Theorem 2. The phase portrait of any quadratic Lotka–Volterra system (4) is
topologically equivalent to one of the 7 configurations of Figs. 1–4.

Theorem 3. The phase portrait of any quadratic Lotka–Volterra system (5) is
topologically equivalent either to one of the 24 configurations of Figs. 5–10, or to
the configuration b = 0 of Fig. 2, or to the configuration b = 0 of Fig. 4.

In Secs. 5 and 6 we shall prove Theorems 2 and 3, respectively. But before that
we recall the notions of the Poincaré compactification (Sec. 3), the definitions of
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separatrices and of canonical regions (Sec. 4) that we will need later on for drawing
the global phase portraits of systems (4) and (5).

2. Proof of Theorem 1

In order to prove Theorem 1 first we recall a result from the Darboux theory of
integrability that we will use, for a proof see [6, Theorem 8.7].

Proposition 4. Suppose that a polynomial system (1) of degree n admits p irre-
ducible invariant algebraic curves fi = 0 with cofactors ki for i = 1, . . . , p, q expo-
nential factors Fj = exp(gj/hj) with cofactors lj for j = 1, . . . , q. If there exist
λi, µj ∈ C not all zero such that

p∑
i=1

λiki +
q∑

j=1

µj lj = −s (6)

for some s ∈ R\{0}, then the (multi-valued) function

fλ1
1 · · · fλp

p Fµ1
1 · · ·Fµq

q exp(st) (7)

is a Darboux invariant of X .

Proof of Theorem 1. It is easy to verify that the straight lines x = 0 and y = 0
are invariant algebraic curves of the quadratic Lotka–Volterra systems (3) with
cofactors k1 = ax + by + c and k2 = Ax + By + C, respectively. So solving Eq. (6)
with k1 and k2 we obtain two solutions which are either

s = −Cl2, A = 0, B = 0, l1 = 0, (8)

or

s = −cl1 − Cl2, a = −Al2/l1, b = −Bl2/l1, l1 �= 0. (9)

From (8) we arrive to the family of quadratic Lotka–Volterra systems (4) hav-
ing the Darboux invariant e−C t y when C �= 0. Similarly from (9) we obtain the
family (5) with the Darboux invariant e−(c l1+C l2) txl1yl2 when −c l1 −C l2 �= 0, as
it is stated in the theorem.

3. Poincaré Compactification

Let X be a planar vector field of degree n. The Poincaré compactified vector field
p(X ) corresponding to X is an analytic vector field induced on S

2 as follows (see,
for instance, [8], or [6, Chap. 5]). Let S2 = {y = (y1, y2, y3) ∈ R3 : y2

1 + y2
2 + y2

3 = 1}
(the Poincaré sphere) and TyS2 be the tangent space to S2 at point y. Consider
the central projection f : T(0,0,1)S

2 → S2. This map defines two copies of X , one in
the northern hemisphere and the other in the southern hemisphere. Denote by X ′

the vector field Df ◦ X defined on S2 except on its equator S1 = {y ∈ S2 : y3 = 0}.
Clearly S1 is identified to the infinity of R2. In order to extend X ′ to a vector field
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on S2 (including S1) it is necessary that X satisfies suitable conditions. In the case
that X is a planar vector field of degree n then p(X ) is the only analytic extension
of yn−1

3 X ′ to S2. On S2\S1 there are two symmetric copies of X , and knowing the
behavior of p(X ) around S1, we know the behavior of X at infinity. The projection
of the closed northern hemisphere of S2 on y3 = 0 under (y1, y2, y3) �→ (y1, y2) is
called the Poincaré disc, and it is denoted by D. The Poincaré compactification has
the property that S

1 is invariant under the flow of p(X ).
In this paper we say that two polynomial vector fields X and Y on R2 are

topologically equivalent if there exists a homeomorphism on S2 preserving the infinity
S1 carrying orbits of the flow induced by p(X ) into orbits of the flow induced by
p(Y), preserving or reversing simultaneously the sense of all orbits.

As S2 is a differentiable manifold, for computing the expression for p(X ), we
can consider the six local charts Ui = {y ∈ S2 : yi > 0}, and Vi = {y ∈ S2 : yi < 0}
where i = 1, 2, 3; and the diffeomorphisms Fi : Ui → R2 and Gi : Vi → R2 for
i = 1, 2, 3 are the inverses of the central projections from the planes tangent at the
points (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1), respectively. We
denote by (u, v) the value of Fi(y) or Gi(y) for any i = 1, 2, 3 (so (u, v) represents
different things according to the local charts under consideration).

The expression for p(X ) in the local chart (U1, F1) is given by

u̇ = vn

[
−uP

(
1
v
,
u

v

)
+ Q

(
1
v
,
u

v

)]
, v̇ = −vn+1P

(
1
v
,
u

v

)
.

The expression for p(X ) in local chart (U2, F2) is

u̇ = vn

[
P

(
u

v
,
1
v

)
− uQ

(
u

v
,
1
v

)]
, v̇ = −vn+1Q

(
u

v
,
1
v

)

and for (U3, F3) is

u̇ = P (u, v), v̇ = Q(u, v).

The expression for p(X ) in the charts (Vi, Gi) is the same as for (Ui, Fi) multi-
plied by (−1)n−1 for i = 1, 2, 3. The points of S1 in any chart have v = 0. Thus we
obtain a polynomial vector field in each local chart.

4. Separatrices and Canonical Regions

Let p(X ) be the Poincaré compactification in the Poincaré disc D of the polynomial
differential system (1) defined in R2, and let Φ be its analytic flow. Following [13, 16]
we denote by (U, Φ) the flow of a differential system on an invariant set U ⊂ D under
the flow Φ. The flow (U, Φ) is said to be parallel if it is topologically equivalent to
one of the following flows:

(i) The flow defined in R2 by the differential system ẋ = 1, ẏ = 0, called strip
flow.
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(ii) The flow defined in R2\{0} by the differential system in polar coordinates
ṙ = 0, θ̇ = 1, called annular flow.

(iii) The flow defined in R2\{0} by the differential system in polar coordinates
ṙ = r, θ̇ = 0, called spiral or radial flow.

It is known that the separatrices of a polynomial vector field p(X ) in the Poincaré
disc D are:

(I) all the orbits of p(X ) which are in the boundary S1 of the Poincaré disc (i.e.
at the infinity of R2),

(II) all the finite singular points of p(X ),
(III) all the limit cycles of p(X ), and
(IV) all the separatrices of the hyperbolic sectors of the finite and infinite singular

points of p(X ).

Let S be the union of the separatrices of the flow (D, Φ) defined by p(X ) in
the Poincaré disc D. It is easy to check that S is an invariant closed set. If N is a
connected component of D\S, then N is also an invariant set under the flow Φ of
p(X ), and the flow (N, Φ|N ) is called a canonical region of the flow (D, Φ).

Proposition 5. If the number of separatrices of the flow (D, Φ) is finite, then every
canonical region of the flow (D, Φ) is parallel.

For a proof of this proposition see [16] or [11].
The separatrix configuration Sc of a flow (D, Φ) is the union of all the separa-

trices S of the flow together with an orbit belonging to each canonical region. The
separatrix configuration Sc of the flow (D, Φ) is said to be topologically equivalent to
the separatrix configuration S∗

c of the flow (D, Φ∗) if there exists a homeomorphism
from D to D which transforms orbits of Sc into orbits of S∗

c preserving or reversing
the sense of all orbits.

Theorem 6 (Markus–Neumann–Peixoto). Let (D, Φ) and (D, Φ∗) be two com-
pactified Poincaré flows with finitely many separatrices coming from two polynomial
vector fields (2). Then they are topologically equivalent if and only if their separatrix
configurations are topologically equivalent.

For a proof of this result we refer the reader to [13, 14, 16, 17].
It follows from the previous theorem that in order to classify the phase por-

traits in the Poincaré disc of a planar polynomial differential system having finitely
many separatrices finite and infinite, it is enough to describe their separatrix
configuration.

Finally, Bautin [1] showed that the Lotka–Volterra systems cannot have a limit
cycle, therefore we only look for the other types of separatrices.

1350041-6
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5. Proof of Theorem 2

We consider the family of quadratic Lotka–Volterra systems (4). First, we calculate
its finite singularities and we find that if ac �= 0 then there are two singular points
(0, 0) and (−c/a, 0). In the cases a = 0 and c �= 0, or a �= 0 and c = 0, we have only
the singular point (0, 0); and if a = 0 and c = 0 there exist infinitely many singular
points of the form (x, 0) with x ∈ R. Recall that C �= 0 in order to guarantee the
existence of a Darboux invariant.

As we are interested in classifying the phase portraits in the Poincaré disc of
system (4), we introduce a rescaling of the variables and of the time to reduce
the number of its parameters as much as possible, and hence the phase portraits
obtained for the new system will be topologically equivalent to the corresponding
phase portraits of system (4). Let

x = αX, y = βY and t = γT, (10)

where α, β, and γ are parameters.

Case 1: a = c = 0. Then system (4) becomes

ẋ = bxy, ẏ = Cy, (11)

whose singularities (x, 0) are not isolated points. System (11) written in the new
variables X and Y is

X ′ = γbβXY, Y ′ = γCY, (12)

where ′ denotes the derivative with respect to the variable T . Taking γC = 1 and
γbβ = 1 it follows that γ = 1/C and, moreover β = C/b when b �= 0.

If b = 0, system (12) is X ′ = 0, Y ′ = Y , since it is a linear differential system
we do not consider it.

Let b �= 0; then system (12) is

X ′ = XY , Y ′ = Y. (13)

Therefore system (13) possesses infinitely many finite singularities, the points
(X, 0). Resolving this quadratic system we obtain solutions Y = ln |X | + k with
k ∈ R and X �= 0. The expression for p(X ) in the local chart U1 is u′ = −u2 + uv,
v′ = −uv which possesses a unique singularity on U1, the origin.

On U2 the expression for p(X ) is u′ = u−uv, v′ = −v2. So the origin is a singular
point on U2. By [6, Theorem 2.19], it is a semi-hyperbolic saddle-node with stable
separatrix tangent at (0, 0) to the positive v-axis. The two unstable separatrices are
tangent to the u-axis in (0, 0). Therefore, by joining all the previous information
we obtain the phase portrait of quadratic system (11) on the Poincaré disc when
b �= 0, which is topologically equivalent to the one shown in Fig. 1.

In the figures we shall use the following notation. The singular points are denoted
by dots, the separatrices which are non-singular points are denoted by thicker lines,
and an orbit inside a canonical region is represented by a thinner line.

1350041-7
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Fig. 1. Phase portrait of system (11) when b �= 0. It has infinitely many separatrices.

Case 2: a �= 0 and c = 0. Hence system (4) is

ẋ = x(ax + by), ẏ = Cy. (14)

System (14) written in the variables X and Y , according to (10), becomes

X ′ = X(γaαX + γbβY ), Y ′ = γCY. (15)

Taking γC = 1, γaα = 1 and γbβ = 1 it follows that γ = 1/C and α = C/a.
Moreover β = C/b when b �= 0.

If b = 0, system (15) is

X ′ = X2, Y ′ = Y. (16)

This system has only a finite singularity, the origin, which is a semi-hyperbolic
saddle-node with stable separatrix tangent at (0, 0) to the negative X-axis and
two unstable separatrices tangent at (0, 0) to the Y -axis. The expression for the
Poincaré compactification p(X ) in the local chart U1 is u′ = −u + uv, v′ = −v.
Therefore on U1 the origin is the unique singular point, which is a hyperbolic stable
node at infinity. Since on U1 the degree of p(X ) is 2, the diametrically opposite
point is a hyperbolic unstable node in V1.

The expression for p(X ) in the local chart U2 is

u′ = u2 − uv, v′ = −v2. (17)

So the origin of U2 is a singular point linearly zero. Since system (17) is homogeneous
we apply the classification due to Date [4], see the appendix. Using the definitions
given at the appendix, we have that D = 0, [hκλ] =

[0 0
0 −1/9

] �= 0 and H = −1/4 �= 0.
So system (17) belongs to the type II(1). Moreover the value of the covariant K2 is
27/8 > 0. Therefore we obtain that system (17) is of type II(1-1). In consequence
the phase portrait in the Poincaré disc of system (14) if b = 0 is topologically
equivalent to the one showed in Fig. 2 with b = 0.

If b �= 0 we have that system (15) is X ′ = X(X + Y ), Y ′ = Y . This system
possesses only a finite singularity, the origin which is a semi-hyperbolic saddle-
node with stable separatrix tangent at (0, 0) to the negative X-axis and unstable
separatrices tangent to the Y -axis at (0, 0). The expression for p(X ) in the local
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Fig. 2. Phase portraits of system (14). S is the number of all separatrices and CR is the number
of all canonical regions.

chart U1 is u′ = −u−u2+uv, v′ = −v−uv. Thus there are two infinite singularities
on U1, (0, 0) and (−1, 0). The origin is a hyperbolic stable node. The singular point
(−1, 0) is a hyperbolic saddle-node whose stable separatrix is tangent at (−1, 0) to
the positive v-axis. The unstable separatrices are tangent at (−1, 0) to the u-axis.

The expression for p(X ) in the local chart U2 is u′ = u + u2 − uv, v′ = −v2.
Therefore the origin is the unique singularity on U2 which is a semi-hyperbolic
saddle-node, its stable separatrix is tangent at origin to the positive v-axis and the
unstable separatrices to the u-axis. So we get the phase portrait of system (14) if
b �= 0, which is topologically equivalent to the one shown in Fig. 2 with b �= 0.

Case 3: a = 0 and c �= 0. In this case system (4) is

ẋ = x(by + c), ẏ = Cy. (18)

Again from (10) we obtain that system (18) is transformed into X ′ = X(bβγY +
cγ), Y ′ = CγY , and hence we obtain the two systems X ′ = c

C X , Y ′ = Y if b = 0,
and X ′ = X(Y + c/C), Y ′ = Y when b �= 0.

We only consider the case b �= 0 because for b = 0 the system is linear, then the
previous system is topologically equivalent to the system X ′ = X(Y +m), Y ′ = Y ,
respectively, with m = c/C a non-zero constant. The only finite singular point is
(0, 0) which is a hyperbolic unstable node if m > 0, or a hyperbolic saddle if m < 0.
The expression for p(X ) in U1 is u′ = −u2 + (1 − m)uv, v′ = −uv − mv2. This
system is homogeneous and it possesses a unique singular point, the origin, which
is linearly zero. We apply the appendix in order to study this singularity. Thus we
obtain D = 0, [hκλ] =

[−1/9 0
0 0

] �= 0 and H = −1/4 �= 0. So the system belongs to
the type II(1). Moreover K2 = 27m/8, in consequence if m > 0, the system is of
the type II(1-1), and it is of type II(1-2) if m < 0.

In U2 the expression for p(X ) is u′ = u+(m−1)uv, v′ = −v2. So U2 contains only
a singularity, the origin, which is a semi-hyperbolic saddle-node with stable separa-
trix tangent at the origin to the positive v-axis. The two unstable separatrices are

1350041-9
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Fig. 3. Phase portraits of system (18) with m = c/C and b �= 0.

tangent at (0, 0) to the u-axis. In Fig. 3 are shown the phase portraits topologically
equivalent to the ones of system (18) for b �= 0.

Case 4: a �= 0 and c �= 0. Hence system (4) becomes

ẋ = ax2 + bxy + cx, ẏ = Cy. (19)

From (10) we have that system (19) is topologically equivalent to one of the two
systems X ′ = X2 + c/CX , Y ′ = Y if b = 0 or X ′ = X2 + XY + c/CX , Y ′ = Y if
b �= 0.

We analyze first the case b = 0. Consider the system X ′ = X2 + mX , Y ′ = Y

with m �= 0. Finite singularities are (0, 0) and (−m, 0). The singular point (0, 0) is
a hyperbolic unstable node if m > 0 and it is a hyperbolic saddle if m < 0. Also
(−m, 0) is a hyperbolic saddle if m > 0 and it is a hyperbolic unstable node if
m < 0. The expression of p(X ) in U1 is u′ = −u+(1−m)uv, v′ = −v−mv2. There
is a unique singularity on U1, the origin, which is a hyperbolic stable node.

In local chart U2, p(X ) is u′ = u2 + (m − 1)uv, v′ = −v2. So the origin is a
singular point on U2 linearly zero. Since this system is homogeneous we can use the
appendix for its classification. Hence D = −m2/27 < 0 and so the system belongs
to the type I�. Moreover since K2 = 27/8 > 0, the system is of type I�(1).

Joining all the above information we get the two phase portraits of the sys-
tem (19) when b = 0 corresponding to the cases m < 0 or m > 0. However, it is
not difficult to verify that these two configurations are topologically equivalent. In
Fig. 4 with b = 0 is presented a phase portrait topologically equivalent to the one
of system (19) when b = 0.

If b �= 0, we consider the system X ′ = X2 + XY + mX , Y ′ = Y with m �= 0.
There are two finite singularities, (0, 0) and (−m, 0). The origin is a hyperbolic
unstable node if m > 0, and it is a hyperbolic saddle if m < 0. The singular point
(−m, 0) is a hyperbolic saddle if m > 0 and it is a hyperbolic unstable node if m < 0.
The expression of p(X ) on U1 is u′ = −u − u2 + (1 − m)uv, v′ = −v − uv − mv2.
So the singular points on U1 are (0, 0) and (−1, 0). The origin is a stable node

1350041-10
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Fig. 4. Phase portraits of system (19).

and (−1, 0) is a semi-hyperbolic saddle-node, its stable separatrix is tangent to the
v-axis at (−1, 0) and the unstable separatrices are tangent to the u-axis at (−1, 0).

In U2 the expression for p(X ) is u′ = u+u2+(m−1)uv, v′ = −v2. Therefore the
origin of U2 is a singular point which is a semi-hyperbolic saddle-node with stable
separatrix tangent at (0, 0) to the positive v-axis. The two unstable separatrices are
tangent at (0, 0) to the u-axis. So we obtain the two phase portraits for m < 0 and
m > 0. It is easy to see that these two configurations are topologically equivalent.
Figure 4 with b �= 0 shows a phase portrait topologically equivalent to the one of
system (4) in this case. This completes the proof of Theorem 2.

6. Proof of Theorem 3

We will find the phase portraits in the Poincaré disc of any quadratic Lotka–Volterra
system (5). For doing this we introduce a rescaling of the variables and of the time
in order to reduce the number of parameters of this system as much as possible.
Obtaining the phase portraits for each of the new systems we shall get the phase
portraits of the corresponding systems (5). Let x = αX , y = βY and t = γT , where
α, β and γ are parameters. In the new variables X , Y and T system (5) becomes

X ′ = X

(
− l2

l1
AαγX − l2

l1
BβγY + cγ

)
,

Y ′ = Y (AαγX + BβγY + γC),

(20)

here ′ denotes the derivative with respect to the variable T . We recall that l1l2 �= 0
and c2 + C2 �= 0.

We consider the following cases. Note that A = B = 0 provides a linear differ-
ential system, and consequently it is not considered here.

Case 1: A �= 0, B = 0. Then system (20) is

X ′ = X

(
− l2

l1
AαγX + cγ

)
, Y ′ = Y (AαγX + Cγ). (21)

In order to study system (20) we consider three subcases.
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Subcase 1.1: C = 0, c �= 0. Therefore system (21) is X ′ = X(−l2AαγX/l1 + cγ),
Y ′ = AαγXY . Taking γ = 1/c and α = c/A, the previous system is converted into

X ′ = X + mX2, Y ′ = XY, (22)

where m = l2/l1. System (22) has infinitely many finite singularities, the points
(0, Y ). Doing ds = XdT , system (22) becomes

dX/ds = mX + 1, dY/ds = Y (23)

with m �= 0. System (23) has only a unique singularity, (−1/m, 0). It is a hyperbolic
saddle when m < 0, and it is a hyperbolic unstable node if m > 0. The expression
of p(X ) in the local chart U1 is u′ = (1−m)u − uv, v′ = −mv − v2. Then only the
origin is a singular point if m �= 1. However, there are infinitely many singularities
if m = 1, the points (u, 0). If m �= 1, (0, 0) is a hyperbolic unstable node if m < 0,
it is a hyperbolic saddle if 0 < m < 1, and a hyperbolic stable node when m > 1.

In U2 the expression of p(X ) is u′ = (m − 1)u + v, v′ = −v. So the origin is
a singular point. If m > 1, it is a hyperbolic saddle, and a hyperbolic stable node
if m < 1. Since the rescaling ds = XdT changes the orientation of orbits where
X is negative, we obtain that the phase portraits of system (22) are topologically
equivalent to the ones shown in Fig. 5.

Subcase 1.2: C �= 0, c = 0. So system (21) is X ′ = −l2Aαγ/l1 X2, Y ′ =
Y (AαγX + γC). Taking γ = 1/C and α = C/A we obtain

X ′ = mX2, Y ′ = XY + Y, (24)

with m = −l2/l1 �= 0. The origin is the unique finite singularity of system (24),
which is a semi-hyperbolic saddle-node. If m > 0, its stable separatrix is tangent
at (0, 0) to the negative X-axis, and to the positive X-axis when m < 0. The
expression of p(X ) in the local chart U1 is u′ = (1 − m)u + uv, v′ = −mv. If
m �= 1, on U1 there is only one singular point, the origin; if m < 0, then (0, 0)
is a hyperbolic unstable node, or it is a hyperbolic saddle when 0 < m < 1, or a
hyperbolic stable node if m > 1. If m = 1, the system becomes u′ = uv, v′ = −v

which possesses infinitely many singularities, the points (u, 0).

Fig. 5. Phase portraits of system (22). They have infinitely many separatrices.
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The expression of p(X ) in U2 is u′ = −uv+(m−1)u2, v′ = −uv−v2. Therefore,
if m �= 1 we have that (0, 0) is a linearly zero singular point and the system is
homogeneous. Applying the appendix we obtain that D = 0, [hκλ] =

[0 0
0 −m2/9

] �= 0
and H = −m2/4 �= 0. In consequence the system belongs to the type II(1). As
K2 = 27m(m− 1)/8, then the system is of the type II(1-1) if K2 > 0, i.e. if m < 0
or m > 1. If 0 < m < 1 then K2 < 0 and so the system is of type II(1-2). If m = 1,
then the system belongs to the type II(1-3).

Therefore we obtain the phase portraits of system (24), which are topologically
equivalent to the phase portrait for b = 0 of Fig. 2 when m < 0 or m > 1, and the
others are topologically equivalent to the ones represented in Fig. 6.

Subcase 1.3: C �= 0, c �= 0. Hence taking γ = 1/C and α = C/A in system (21)
we obtain

X ′ = m1X
2 + m2X, Y ′ = Y + XY, (25)

where m1 = −l2/l1 �= 0 and m2 = c/C �= 0. So if m1 �= m2, system (25) has only
two finite singular points, the points (0, 0) and (−m2/m1, 0), and it has infinitely
many singularities when m1 = m2, all the points of the straight line X = −1 and
(0, 0).

The origin is a hyperbolic saddle if m2 < 0, and it is a hyperbolic unstable node
if m2 > 0. If m1 �= m2, the Jacobian matrix at (−m2/m1, 0) is

(−m2 0
0 1 − m2/m1

)
.

The point (−m2/m1, 0) is a hyperbolic singularity. It is an unstable node if m1 <

m2 < 0, or if m1 > 0 and m2 < 0. It is a saddle when m1 < 0 and m2 > 0, or if
m2 < m1 < 0, or if m1 > m2 > 0. Moreover if 0 < m1 < m2, it is a stable node.

Now we study system (25) at infinity. The expression of p(X ) in the local chart
U1 is u′ = (1−m1)u+(1−m2)uv, v′ = −m1v−m2v

2. Therefore when m1 �= 1, there
is a unique singular point at U1, the origin, which is hyperbolic. If m1 < 0, then
(0, 0) is an unstable node. If 0 < m1 < 1, the origin is a saddle, (0, 0) is a hyperbolic
stable node when m1 > 1. However, there are infinitely many singularities at U1

when m1 = 1, the points (u, 0).

Fig. 6. Phase portraits of system (24).
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On U2 the Poincaré compactification p(X ) is

u′ = (m1 − 1)u2 + (m2 − 1)uv, v′ = −uv − v2. (26)

So (0, 0) is a linearly zero singularity. Since system (26) is homogeneous we use
the appendix for its classification. Then, since D = −m2

1m
2
2/27 < 0 we get that

system (26) belongs to the type I�. Computing the values of the covariants K2 =
27(m1 − 1)(m1 −m2)/8 and K3 = 27(m2 − 1)(m1 −m2 + m1m2)/8, we obtain the
following classification for system (26).

Condition Sign of K2 and K3 Type Phase portrait

m1 < 0, m1 < m2; m1 > 1, m1 > m2 K2 > 0 I � (1) b = 0 of Fig. 4

0 < m1 < 1, m1 < m2 (1) of Fig. 7

m1 > 1, m1 < m2, m2 > 1 K2 < 0, K3 > 0 I � (2) (2) of Fig. 7

m1 < 0, m1 > m2, m2 < 0 K2 < 0, K3 < 0 I � (3) (3) of Fig. 7

0 < m1 < 1, m1 > m2, m2 < 1 (4) of Fig. 7

m1 = 1, m2 > 1 K2 = 0, K3 > 0 I � (4) (6) of Fig. 7

m1 = m2, m2 > 1 m > 1 of Fig. 5

m1 = 1, m2 < 1 K2 = 0, K3 < 0 I � (5) (5) of Fig. 7

m1 = m2, m2 < 1 m < 0, 0 < m < 1 of Fig. 5

m1 = 1, m2 = 1 K2 = 0 = K3 I � (6) m = 1 of Fig. 5

In consequence we obtain the phase portraits of system (25), which are topologically
equivalent to the phase portrait for b = 0 of Fig. 4 when m1 < 0 and m1 < m2 or
when m1 > 1 and m1 > m2. Or to the phase portrait for m < 0 of Fig. 5 when
m1 = m2 < 0, to the phase portrait for 0 < m < 1 of Fig. 5 when 0 < m1 = m2 < 1,
to the phase portrait for m = 1 of Fig. 5 when m1 = m2 = 1, and to the phase
portrait for m > 1 of Fig. 5 when m1 = m2 > 1 and the others are topologically
equivalent to the ones of Fig. 7.

Case 2: A = 0, B �= 0. So system (20) becomes

X ′ = X

(
− l2

l1
BβγY + cγ

)
, Y ′ = Y (BβγY + γC). (27)

Subcase 2.1: C = 0, c �= 0. System (27) for these values becomes X ′ =
X(−l2/l1BβγY + cγ), Y ′ = BβγY 2. Taking γ = 1/c and β = −l1/(Bγl2) we
obtain

X ′ = XY + X, Y ′ = −l1/l2Y
2. (28)

Interchanging the variables X and Y we get the system (24) now with m =
−l1/l2. Then the phase portraits of system (28) are the phase portrait for b = 0
of Fig. 2 when m > −1, and the phase portraits of Fig. 6 but from the left to the
right they correspond to the values m < −1 and m = −1.
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Fig. 7. Phase portraits of system (25).

Subcase 2.2: C �= 0, c = 0. So system (27) is X ′ = −l2/l1BβγXY , Y ′ = γCY +
BβγY 2. Taking γ = 1/C and β = C/B it becomes

X ′ = −mXY, Y ′ = Y 2 + 1, (29)

where m = l2/l1 �= 0. System (29) does not possess real finite singularities.
On the local chart U1 the expression of p(X ) is u′ = (m + 1)u2 + v2, v′ = muv.

So if m �= −1 the origin is the unique singular point and it is linearly zero. Since this
system is homogeneous, we use the appendix for its classification. Thus we obtain
D = 4/27 > 0, and so the system is of type I⊕. Moreover since K2 = 27m2(m+1)/8
we have that if m > −1, then K2 > 0 and so the system is of type I ⊕ (1). In the
case m < −1 we obtain K2 < 0, therefore the system is of type I⊕ (2). If m = −1,
then K2 = 0, and the system is of type I ⊕ (3).

The expression of p(X ) in U2 is u′ = −(m+1)u−uv2, v′ = −v− v3. So (0, 0) is
a singular point which is a hyperbolic saddle if m < −1 and it is a hyperbolic stable
node when m > −1. In consequence, we obtain the phase portraits of system (29),
which are topologically equivalent to the ones shown in Fig. 8.

Subcase 2.3: C �= 0, c �= 0. So from system (27) and taking γ = 1/c and β = c/B

we obtain

X ′ = X − m1XY, Y ′ = m2Y + Y 2, (30)
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Fig. 8. Phase portraits of system (29).

where m1 = l2/l1 �= 0 and m2 = C/c �= 0. The finite singularities of system (30)
are the hyperbolic singular points (0, 0) and (0,−m2). The point (0, 0) is a saddle
if m2 < 0, and it is an unstable node when m2 > 0.

Since DX (0,−m2) =
[1 + m1m2 0

0 −m2

]
, first we study the case 1 + m1m2 = 0.

Then m1 = −1/m2 and system (30) becomes

X ′ = X(m2 + Y )/m2, Y ′ = Y (m2 + Y ). (31)

We analyze the reduced system X ′ = X/m2, Y ′ = Y whose unique singular point is
the origin. If m2 > 0, then (0, 0) is a hyperbolic unstable node, and if m2 < 0, it is a
hyperbolic saddle. On the local chart U1, the expression of p(X ) is u′ = (1−1/m2)u,
v′ = −v/m2 then (0, 0) is the unique singularity on U1, which is a hyperbolic
unstable node if m2 < 0, or it is a hyperbolic stable node if 0 < m2 < 1, or a
hyperbolic saddle when m2 > 1.

The expression of p(X ) on U2 is u′ = (1/m2 − 1)u, v′ = −v. Therefore (0, 0)
is a singular point, and it is hyperbolic. Moreover (0, 0) is a stable node if m2 < 0
or m2 > 1, and it is a saddle if 0 < m2 < 1. In consequence we obtain the phase
portraits of X ′ = X/m2, Y ′ = Y . And so changing the orientation of orbits when
Y < −m2 we get the phase portraits of system (31).

If 1 + m1m2 �= 0, then we obtain that (0,−m2) is a stable node if m2 > 0
and m1 < −1/m2, or it is a saddle if m2 > 0 and m1 > −1/m2, or m2 < 0 and
m1 > −1/m2, or an unstable node when m2 < 0 and m1 < −1/m2.

On the local chart U1, the expression of p(X ) is

u′ = (m2 − 1)uv + (m1 + 1)u2, v′ = m1uv − v2, (32)

which is a homogeneous system. So we can apply the classification of Date to
system (32) (see the appendix). Realizing the calculations we obtain D = −m2

2/27 <

0, thus system (32) belongs to the type I�. Since K2 = 27(m1 + 1)(m1m2 + 1)/8
and K3 = −27m1(m2 − 1)(1 + m2 + m1m2)/8 the classification is given in the
following table.
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Condition Sign of K2 Type P. portrait
and K3

m1 < −1, m2 > 0, m1 < −1/m2 (1) of Fig. 7

m1 > −1, m2 > 0, m1 > −1/m2 K2 > 0 I � (1) b = 0 of Fig. 4

m1 > −1, m2 < 0, m1 < −1/m2

m1 < −1, 0 < m2 < 1, m1 > −1/m2 K2 < 0, K3 < 0 I � (3) (4) of Fig. 7

m1 < −1, m2 < 0, m1 < −1/m2

−1 < m1 < 0, m2 > 1, m1 < −1/m2 K2 < 0, K3 > 0 I � (2) (2) of Fig. 7

m1 > 0, m2 < 0, m1 > −1/m2 K2 < 0, K3 < 0 I � (3) (3) of Fig. 7

m1 = −1, m2 > 1 K2 = 0, K3 > 0 I � (4) (6) of Fig. 7

m1 = −1/m2, m2 > 1 0 < m < 1 of Fig. 5

m1 = −1, m2 < 1 K2 = 0, K3 < 0 I � (5) (5) of Fig. 7

m1 = −1/m2, m2 < 1 0 < m < 1 of Fig. 5

m1 = −1, m2 = 1 K2 = 0 = K3 I � (6) m = 1 of Fig. 5

The expression for p(X ) in the local chart U2 is u′ = (1 − m2)uv − (m1 + 1)u,
v′ = −v − m2v

2. Therefore (0, 0) is a singular point, which is a hyperbolic saddle
if m1 < −1, and it is a hyperbolic stable node if m1 > −1. If m1 = −1 then
system becomes u′ = (1 − m2)uv, v′ = −v − m2v

2, which possesses infinitely
many singularities, all the points (u, 0). Consequently, we get the phase portraits
in the Poincaré disc of system (30) for each one of cases that occur and they are
topologically equivalent to the ones described in the previous table.

Case 3: AB �= 0.

Subcase 3.1: C = 0, c �= 0. Hence system (20) is X ′ = X(−l2/l1AαγX −
l2/l1BβγY + cγ), Y ′ = Y (AαγX + BβγY ). Taking γ = 1/c, α = c/A and β = c/B

we obtain

X ′ = X(1 − mX − mY ), Y ′ = Y (X + Y ), (33)

with m = −l2/l1 �= 0. The finite singularities of system (33) are the points (0, 0)
and (1/m, 0). If m > 0, then (1/m, 0) is a hyperbolic saddle, and it is a hyperbolic
stable node when m < 0. The origin is a semi-hyperbolic saddle-node with stable
separatrix tangent to the negative Y -axis.

The expression of the Poincaré compactification p(X ) on the local chart U1 is

u′ = (m + 1)u + (m + 1)u2 − uv, v′ = mv + muv − v2. (34)

So if m �= −1, there are two singularities on U1, the points (0, 0) and (−1, 0), which
are hyperbolic. Moreover (0, 0) is a stable node if m < −1, it is a saddle when
−1 < m < 0, and an unstable node if m > 0. The point (−1, 0) is a semi-hyperbolic
saddle-node.

1350041-17



October 30, 2014 9:31 WSPC/S0219-1997 152-CCM 1350041

Y. Bolaños, J. Llibre & C. Valls

If m = −1, then system (34) is u′ = −uv, v′ = −v − uv − v2 which possesses
infinitely many singularities (u, 0) for all u.

On the local chart U2, p(X ) is u′ = −(m + 1)u− (m + 1)u2 + uv, v′ = −v − uv.
Then (0, 0) is a hyperbolic singular point. If m < −1, then (0, 0) is a saddle, and it
is a stable node if m > −1. Therefore we obtain the phase portraits of system (33)
which are topologically equivalent to the ones depicted in Fig. 9.

Subcase 3.2: C �= 0, c = 0. Hence system (20) is X ′ = X(−l2/l1AαγX −
l2/l1BβγY ), Y ′ = Y (AαγX + BβγY + γC). Let γ = 1

C , α = − l1C
l2A and β = − l1C

l2B ;
then

X ′ = X(X + Y ), Y ′ = Y (1 − mX − mY ), (35)

where m = l1/l2 �= 0. So system (35) by interchanging the variables X and Y

coincides with system (33).

Subcase 3.3: C �= 0, c �= 0. So taking γ = 1/c, α = c/A and β = c/B, system (20)
is transformed into

X ′ = X − m1XY − m1X
2, Y ′ = m2Y + XY + Y 2, (36)

where m1 = l2/l1 �= 0 and m2 = C/c �= 0. The finite singular points are (0, 0),
(1/m1, 0) and (0,−m2). The origin is a hyperbolic saddle if m2 < 0, and it is a
hyperbolic unstable node if m2 > 0. We know that m2 �= −1/m1, because otherwise,
according to Theorem 1, system (36) would not possess a Darboux invariant. Thus
the point (1/m1, 0) is a hyperbolic singular point. It is a stable node if m2 < −1/m1,
and it is a saddle if m2 > −1/m1. Also (0,−m2) is a hyperbolic singularity. It is
an unstable node if m2 < 0 and m1 < −1/m2, or it is a saddle when m2 < 0 and
m1 > −1/m2. If m2 > 0 and m1 < −1/m2, then (0,−m2) is a stable node, and it
is a saddle when m2 > 0 and m1 > −1/m2.

The expression of p(X ) on U1 is

u′ = (1 + m1)u + (m2 − 1)uv + (1 + m1)u2, v′ = m1v + m1uv − v2. (37)

Fig. 9. Phase portraits of system (33).
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Fig. 10. Phase portraits of system (36).

The singularities on U1 are (0, 0) and (−1, 0) if m1 �= −1. In this case, the origin
is a hyperbolic singular point, it is a stable node if m1 < −1, or a saddle when
−1 < m1 < 0, or an unstable node if m1 > 0. The point (−1, 0) is a semi-hyperbolic
saddle-node.

If m1 = −1, then system (37) becomes u′ = (m2 − 1)uv, v′ = −v − uv − v2

and so there are infinitely many singularities on U1, all the points (u, 0). Thus we
obtain the phase portraits of system (36) when m1 = −1, which are topologically
equivalent to the one depicted in Fig. 10(5). Note that m1 = −1 and m2 = 1 does
not occur because in this case m2 = −1/m1.

The expression of p(X ) on U2 is u′ = −(1 + m1)u + (1 − m2)uv − (1 + m1)u2,
v′ = −v − uv − m2v

2. Then (0, 0) is a hyperbolic singularity, which is a sad-
dle if m1 < −1, and it is a stable node if m1 > −1. Therefore we obtain
the phase portraits of system (36) of the remaining cases, these are topologi-
cally equivalent to the ones represented in Fig. 10. This completes the proof of
Theorem 3.
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Appendix A. On the Classification of Two-Dimensional Real
Homogeneous Quadratic Differential Systems

We present some results on the classification of the phase portraits of two-
dimensional real homogeneous quadratic differential systems due to Date [4].

A two-dimensional real homogeneous quadratic differential system is defined by

ẋ = P 1
11x

2 + 2P 1
12xy + P 1

22y
2, ẏ = P 2

11x
2 + 2P 2

12xy + P 2
22y

2.

We first decompose P k
λµ into the “tensor part” Qκ

λµ and the “vector part” pλ as

pλ = P 1
λ1 + P 2

λ2, Qk
λµ = P k

λµ − 1
3
(δk

λpµ + δk
µpλ),

where δκ
λ is the Kronecker delta and k, λ, µ = 1, 2. Moreover Qκ

λµ = Qκ
µλ and

Q1
λ1 + Q2

λ2 = 0.

Theorem A.1. A two-dimensional real homogeneous quadratic differential system
is affine-equivalent to one and only one of the following ten canonical forms:

Type I� ẋ = −2xy + 2x(p̂1x + p̂2y)/3
ẏ = −x2 + y2 + 2y(p̂1x + p̂2y)/3

Type I⊕ ẋ = −2xy + 2x(p̂1x + p̂2y)/3
ẏ = x2 + y2 + 2y(p̂1x + p̂2y)/3

Type II(1)
ẋ = (2p̂1/3 − 1)x2 + xy

ẏ = 2(p̂1 + 3)xy/3 + y2

Type II(2)
ẋ = (2p̂1/3 − 1)x2

ẏ = 2(p̂1 + 3)xy/3
Type III(1) ẋ = xy, ẏ = x2 + y2

Type III(2) ẋ = −xy, ẏ = x2 − y2

Type III(3) ẋ = x2, ẏ = x2 + xy

Type III(4) ẋ = 0, ẏ = x2

Type IV(1) ẋ = xy, ẏ = y2

Type IV(2) ẋ = 0, ẏ = 0

The parameters p̂1 and p̂2 in the canonical form of type I� are six-valued; i.e. two
systems with (p̂1, p̂2) and (p̂′1, p̂

′
2) respectively are affine-equivalent if and only if

the vectors (p̂1, p̂2) and (p̂′1, p̂
′
2) are connected with each other through a rotation by

±2π/3 and/or an inversion of the sign of p̂1.

A.1. Some fundamental invariants of a two-dimensional

quadratic differential system

The following invariants and covariants known in classical invariant theory [7] are
useful for our purpose:

Hessian hκλ = 1
2

∑2
µ,ν,ρ,σ=1 εµνερσQκ

µρQ
λ
νσ, where εκλ is the unit contravariant

2-vector of weight 1 with ε12 = −ε21 = −1, ε11 = ε22 = 0.
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Discriminant D = −2
∑2

κ,λ,µ,ν=1 εκλεµνhκµhλν .
Invariants H =

∑2
κ,λ=1 hκλpκpλ and F =

∑2
κ,λ,µ,ρ,σ=1 εµκερλQσ

κλpµpρpσ.
Covariant Tκλ =

∑2
µ,ν=1(2εκµελνhµν + Qµ

κλpµ/3 + pκpλ/9).
Given a quadratic differential system by means of these invariants and covariants

we can characterize to which of the 10 types given in Theorem A.1 it belongs. More
precisely,

D < 0 type I�,

D > 0 type I⊕,

D = 0




[hκλ] �= 0




H �= 0 type II(1),

H = 0 type II(2),

[hκλ] = 0




[Qκ
λµ] �= 0




F > 0 type III(1),

F < 0 type III(2),

F = 0




[Tκλ] �= 0 type III(3),

[Tκλ] = 0 type III(4),

[Qκ
λµ] = 0




[pλ] �= 0 type IV(1),

[pλ] = 0 type IV(2).

Among an infinite number of invariants of P κ
λµ which can be derived through com-

bination of these fundamental invariants, the following sequence of invariants are
particularly useful

Km = F + 9(−2)m−3H − 27(−8)m−3D, m = 1, 2, . . . ,

for more details see [5]. This sequence of invariants play a substantial role in the
classification of the two-dimensional quadratic homogeneous polynomial differential
systems as we show now.

The next table provides a classification of a quadratic homogeneous polynomial
differential system according to the type of system that it belongs and that we
shall use. In Fig. A.1 are shown the phase portraits that appear in this paper cor-
responding to the different kinds of quadratic homogeneous polynomial differential
systems described in the following table.

K2 > 0 Type I � (1)
K2 < 0 K3 > 0 Type I � (2)

Type I� K3 < 0 Type I � (3)
K3 > 0 Type I � (4)

K2 = 0 K3 < 0 Type I � (5)
K3 = 0 Type I � (6)

K2 > 0 or K2 = K3 = 0 Type I ⊕ (1)
(Continued)
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(Continued )

Type I⊕ K2 < 0 Type I ⊕ (2)
K2 = 0 or K3 �= 0 Type I ⊕ (3)

K2 > 0 Type II(1-1)
Type II(1) K2 < 0 Type II(1-2)

K2 = 0 Type II(1-3)

Fig. A.1. Phase portraits for quadratic homogeneous vector fields.
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