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Abstract

The aim of this thesis is to give a geometrical meaning to the induced monodromy rep-
resentation. More precisely, given f : X — Y a continuous map, the associated functor

f I (X) — I (Y) between fundamental groupoids induces a functor Rep; (IT; (X)) m—>df
Rep, (IT;(Y)) of the corresponding categories of representations. We will define a functor
FECSH - LCSH(ky ) — LCSH(ky) from the category of locally constant sheaves on X to that
of locally constant sheaves on Y in a way that the monodromy representation of fLCSH.Z is
given by ind (1 # ), where 11z denotes the monodromy representation of a locally constant
sheaf .# on X.
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Introduction

Given H < G an inclusion of groups, classical constructions in representation theory are the
induced and restricted representations. On one hand, the restricted representation allows us
to define a representation of H given one of G. On the other hand, the induced representation
defines in a natural way a representation of G given a representation of H. This construction
can be generalized for any morphism ¢ : H — G. Even further, there is a parallel construction
in the case of groupoids: using the right Kan extension of the restricted representation we
may construct the induced representation.

A well-known result in algebraic topology is the equivalence between the representations of
the fundamental groupoid IT; (X) of a topological space X (called monodromy representa-
tions) and the category LCSH(ky ) of locally constant sheaves on X. This equivalence, given
by the monodromy functor u : LCSH(k,) — Rep,(IT; (X)), gives us a geometric interpreta-
tion of the monodromy representations, since locally constant sheaves of sets on X have a
corresponding interpretation as coverings of X.

Given a continuous map f : X — Y, it induces a functor f : IT; (X) — IT;(Y). Hence we can
consider the associated induced representation functor ind s : Rep, (IT; (X)) — Rep, (IT; (Y)).
Our aim is to give a geometrical meaning to this construction. In other words, we want to
construct a functor LCSH(ky ) — LCSH(ky ) which corresponds to the induced representation
at the level of monodromy representations.

If f 1s a Serre fibration, this functor is nothing but the direct image functor f,.. However, in
general f, need not preserve locally constant sheaves, so we will factor f as a homotopy
equivalence and a Serre fibration. Using such factorization we will be able to define the
desired functor.

In Section 1, we will recall some classical results in category theory, mainly Kan extensions
and the basics of representation of groupoids.

In Section 2, we will review the theory of locally constant sheaves on topological spaces. In
particular, how homotopy equivalences between topological spaces imply equivalences of the
categories of locally constant sheaves. Then we prove that if f: X — Y is a Serre fibration
the direct image functor f, preserves locally constant sheaves. Finally, we prove that any
continuous map f defines a functor fLCSH : LCSH(ky ) — LCSH(ky) by factorizing f as the
composition of a homotopy equivalence / and a Serre fibration f.

In Section 3, we will study the monodromy representations of a topological space. In par-
ticular, the equivalence between LCSH(kx) and the category Rep, (IT; (X)) of monodromy
representations of a locally arcwise connected and semi-locally simply connected topological
space. We will use this correspondence to give a geometrical meaning to the restricted and
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induced representations at the level of monodromy representations. More precisely, we will
prove that for a continuous map f : X — Y, the restricted representation corresponds to the
inverse image sheaf, and if f is a Serre fibration the induced representation corresponds to
the direct image sheaf. Finally, we will show that for any continuous map f : X — Y, the
functor fLC5H corresponds to the induced representation functor, namely that the following
diagram quasi-commutes

Repi(IL (¥)) 55— Repy (ITi (X))

pr | ]

LCSH(ky) S — LCSH(kx>

LCSH
S
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1 Preliminary Notions

In this section the fundamental notions for the rest of the thesis will be laid. Mainly, the Kan

extensions of functors and the representations of groupoids will be introduced.

1.1 Notation

k will denote a commutative ring unless stated otherwise. We will denote by Mod(kx ) the
category of sheaves of k-modules over a topological space X, and Mod(R) will denote the
category of R-modules for a k-algebra R.

The category of functors between ¢ and D will be denoted by Fet(C, D).

If G is a group, one can consider it as the category with only one element {x}, where
Hom(*,*) = G, and we will denote it with the same notation if it is clear by the context.

1.2 Kan extension of functors

The contents of this section are classical, and here we follow [1].

A fundamental tool that we are going to use is the Kan extension of functors, which is a way
to construct in an abstract manner left and right adjoints of a functor between categories of
functors.

Let C, I and 7 be three categories, and let ¢ : 7 — I be a functor. We define a functor

¢s : Fet(1,C) — Fet(7,0)

as follows
¢.(a) :=ao¢ fora € Fct(1,C)

Definition 1.1. (i) If the functor ¢, admits a left adjoint, we denote it by (pT
(i) If the functor ¢, admits a right adjoint, we denote it by ¢*
Theorem 1.2. Let ¢ : 9 — I be a functor with J small.

(i) Assume that C admits small inductive limits. Then @' : Fet(9, C) — Fet(I, C) exists and
forany B € Fct(7,C) we have

o'B)~ lim B(j) foriel

(p(j)—=i)ed
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(ii) Assume that C admits small inductive limits. Then @* : Fct(7,C) — Fct(1, C) exists and
forany B € Fct(7,C) we have

¢*B(i)=~ lm PB(j) foriel

(i=o(j)er

Remark 1.3. Note that, since (¢ o y), = W, o @, it follows that (¢ o )" ~ ¢ o y* and
(@ o w)# ~ @* o y* by the unicity up to isomorphism of the adjoints.

1.3 Representation of groupoids

In this section most of the results follow from [2], [3] and [4].

Recall that a groupoid is a small category in which every morphism is an isomorphism.
Note that any groupid is equivalent to a disjoint union of groups. More precisely, if we choose
a representative d; € Ob(G) for every isomorphic class of objects of G and set G; = Aut(d,),
we get the inclusion functor i : | |; G; — G, where | |; G; denotes the disjoint union category,
with objects {({*},7)|i € I} and morphisms

G, ifi=j
HomUiGi(({*}vi)7({*}aj)) =

0  otherwise

Then i is essentially surjective and it is clear that it is fully faithful. Hence, G ~ | |; G;

Definition 1.4. Let G be a groupoid. A G-representation over k is a functor from G to
Mod(k). We define the category of G-representations over k as Rep,(G) := Fct(G,Mod(k)).

If G is a group considered as a groupoid, we recover the classical definition of representa-
tion of G.
Note that since Mod(k) admits small injective and projective limits, so does Rep,(G). This
allows us to use Theorem 1.2.

Definition 1.5. (i) Let ¢ : H — G be a functor of groupoids and set

resp = s : Rep(G) — Repy(#)
F—Fog

(i) We define indy : Repy(#) — Rep,(G) as the right Kan extension of resg.

(iii) We will define coindy, : Rep; (#) — Rep,(G) as the left Kan extension of res
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Proposition 1.6. If ¢ : % — G is an equivalence of groupoids, then resy : Repi(G) —

Rep, (#H) is an equivalence of categories with indy ~ coindy as quasi-inverse.

Proof. Let y be a quasi-inverse for ¢. Then, we have that (yo @), = @, o y,. Since yo @ ~
idyr, we have that @, o W, ~ (idg). = idRep, (sr)- Similarly, we have that Y, o @, > idgey, (g)-
Hence vy, is a quasi-inverse of @,. Since a quasi-inverse is both a right and a left adjoint, by

unicity, up to isomorphism, of adjoints, it follows that y;, ~ indy ~ coindy. ]

We would like to give an explicit construction to the functors indy and coind, for
groupoids with a finite number of isomorphism classes of objects. This will be realized by

using groupoid algebras.

Definition 1.7. Let G be a groupoid. The groupoid algebra k[G] has an underlying k-module

with one generator e, for each morphism of G and algebra structure given by

egn if g and h are composable
eg . E’h — .
0  otherwise

Remark 1.8. Let ¢ : A — G be a morphism of groupoids. Then it induces an algebra

morphism

¢ - k7] — k[g]

Zkieh — Zkieqo(h)

Note that ¢ is an isomorphism if ¢ is an equivalence.

Proposition 1.9. If If G has a finite number of isomorphism classes of objects, there is an

equivalence
& : Repy(G) — Mod(k[g]) (1)

Proof. 1f G has a finite number of isomorphism classes of objects, it means that G ~
GiU...UG, = G, where Ob(G) = {cy,...,cn}, for ci,...,c, distinct representatives of the
isomorphism classes of objects and G; := Autg(c;). Hence by Proposition 1.6 we get an
equivalence Rep,(G) ~ Rep,(G) via the restriction functor. So we only need to prove that
Rep, (§) ~ Mod(k[)).

Let F € Rep,(G). It induces a k[G]-module, M as follows:

MF = @F(Ci)
i=1
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where the k[G] structure is given by eg - (my,...,m,) = (0,...,0,F(g)(m;),0...0), since
F(g) € Aut(F (c;)) if g € Gi = Autg(c;).

On the other hand M € Mod(k[G]) induces a representation Fy; by setting Fy(c;) = eiq, M
and Fy(g) = e, - —. Clearly both equivalences are inverse to one another, and hence the

result follows. O]

Proposition 1.10. Let ¢ : H — G be a functor of groupoids having finite number of iso-
morphism classes of objects. Then resq corresponds to the restriction of scalars under the

equivalence (1).
Proof. Since ¢ induces a groupoid algebra morphism @ : k[#]| — k[G], we need to check

that the following diagram quasi-commutes

Rep(G) —2— Mod(k[G))

lIES(p l(p*

Repy(#) —2— Mod(k[#])

where ¢* denotes the restriction of scalars. Let F € Rep,(G), then

m

Soresy(F) =EPF(o(d))),

J=1

where {dy,...d,} are distinct representatives of the isomorphism classes of objects of #.
On the other hand,

¢ 0 8(F) = ¢*(PF(c)) = ¢"(M),
i=1

where {c --- ¢, } are distinct representatives of the isomorphism classes of objects of G such
that ¢(d;) = cj forevery i € {1,...,m} and some j € {1,...,n}. Hence,

and the result follows ]

Proposition 1.11. Let ¢ : H — G be a functor of groupoids having finite number of isomor-
phism classes of objects, and let V be the k[#]-module associated to an H-representation

under the equivalence (1). Then indy(V') can be realized as

indy (V') =~ Homys (k[G],V)
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and coindy (V) can be realized as
coindy (V) =~ k[G] @429V

Proof. Since indy is the right adjoint of resy, by Proposition 1.10 and the unicity, up
to isomorphism, of the right adjoint, we have that indy (V) =~ Homys(k[G],V), since
Homy,/ (k[G], V) is the right adjoint of the extension of scalars.

Similarly, coindy, is the left adjoint of resy, hence since the left adjoint of restriction of
scalars is the extension of scalars, by the same argument as for the induction the results
follows. U

Proposition 1.12. Let ¢ : H — G be a functor of groupoids, where G,H are equivalent to
finite groupoids. Then indy ~ coind.

Proof. By hypothesis, G ~GL!... UG, and H ~ H|U ... UH,, with G; and H; finite groups
foralli=1,...,nand j = 1,...,m. Note that we can consider the induced representation on
G one group at a time, so we can assume that G ~ G.

Suppose first that # = H, then the induced and the coinduced representation coincide, since

we have an isomorphism

Homk[H] (k[G],V) — k[G] ®k[H]V
f= Y eo1®um f(g)

gepP

where P is a set of distinct representatives of the right ¢(H)-cosets in G.
Now, let V be a representation of # = H{ U ... UH,,. Then we have that

indy (V) ~ Homygs @e,dd @Homk[ﬂ]< [G],F(di)),

since k[G] is finitely generated. We have that Homys(k[G], F (d;)) = indy(F (c;)), hence
indy can be decomposed as the direct sum of induced representations of finite groups. Hence,

we have
indy(V @md(p @comd(p @k ®k[ﬂ] F(ci) ~k[G] Q) V
~ coindy (V)

and the result follows. L]
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2 Locally constant sheaves

In this section we will study locally constant sheaves and their behavior under continuous
maps. More precisely, we will prove that if f: X — Y is a homotopy equivalence, then
f~':LCSH(ky) — LCSH(ky) is an equivalence and that if f is a Serre fibration, then
f« : LCSH(kx) — LCSH(ky) is well defined.

Moreover, we will prove that any continuous map f can be decomposed as the composition
of a homotopy equivalence and a Serre fibration. This will allow us to define a functor
FECHS - L,CSH (kx ) — LCSH(ky) which is isomorphic to f, when f is a Serre fibration.

In this section we will follow [5], [6], [7] and [8].

2.1 Locally constant sheaves

Definition 2.1. Let X be a topological space.

(i) We call a sheaf .% on X constant if it is isomorphic to the sheaffification of a constant
presheaf on X

(ii) A sheaf.Z on X is locally constant if there exists an open cover {U;}; of X such that
Z |u, is a constant sheaf on U;

Remark 2.2. (i) We will denote the category of locally constant sheaves of k-modules on
X by LCSH(kx)

(i1) We will denote by My the constant sheaf with stalk the k-module M

Now we want to prove that every locally constant sheaf on the interval is a constant sheaf.

Firstly, we need a couple of lemmas.

Lemma 2.3. (i) Let .% be a constant sheaf on a locally connected space X. Let U C X
be a connected open subset. Then for each x € X, the natural map % (U) — F, is an

isomorphism

(ii) Let X be locally connected and let . be a locally constant sheaf on X. Then every
point x € X has a connected neighborhood V such that the natural map F (V) — Fy is

isomorphism.

Proof. For (i), assume that .% = My, and let U be a connected open neighborhood of x.
Let {V} be a system of neighborhoods of x such that each V. C U. We might assume,

moreover, that every V is connected. In this situation we have .% (U) ~ .% (V). It follows
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that #(U) ~ h_n;ﬁ(V) = %,

Vox
(i1) follows immediately from (i) O]
Lemma 2.4. Let M,N € MOd(k) Then (Homk(M,N))X ~ %mkx (Mx,Nx)

Lemma 2.5. Let X = U UU, be a covering of X by two open sets. Let ¥ be a sheaf on X

and assume that
(i) Uy NU, is connected and non empty;
(ii) F |y, is a constant sheaf.

Then ¥ is a constant sheaf.

Proof. Since .7 |y, is constant, there exists M; such that 6; : .Z |y, = (M;)|y;. Since Uy NUp #
0 and is connected, we have that M| ~ M,, hence we may assume that M| = M, = M.
We can define an isomorphism 6, = 6; o 92_1 : M|y,nu, 5 M|y,rv,- By Lemma 2.4
Horryy, (Mx,Mx)(Uy NU,) ~ Hom(M,M), hence 6, € Aut(M). Using the same corre-
spondence, we find that ), extends to an isomorphism 0 : My ~ My over X. Define
o : Fly, 5 M|y, by a; := 6 and o := 0|y, 0 ;. Hence ; and o, glue together to an
isomorphism o : . % = M. ]

Proposition 2.6. Let .7 be a locally constant sheaf on [0,1]. Then:
(i) F is a constant sheaf.
(ii) Forallt € [0, 1], the morphism I'(I;.% ) — F, is an isomorphism.

(iii) In particular, if 7 = My ) for M € Mod(k), then
M = Fy <+ F([O, 1];M[0’1}) — k=M

is the identity on M.

Proof. (i) follows from Lemma 2.5.

(11) and (ii1) follow immediately form the properties of constant sheaves. L]
From here on, all the results are taken from [6], adapted from locally constant staks to
locally constant sheaves.

Lemma 2.7. Let f: X — Y be a continuous map. If .F € LCSH(kx), then f~\.F ¢
LCSH(ky). In particular, f~'My ~ My for any M € Mod(k).
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Proof. Let {U;}; be such that .7 |y, is constant. Then, f~ 1. is constant over f~!(U;), since
iﬂ ﬁh/:glyh/:ywl‘?
f(fuy)cv vicv

which is a constant sheaf. ]

In particular, we get a functor

f~1:LCSH(ky) — LCSH(ky)

2.2 Invariance by homotopy

Proposition 2.8. Let f: X — Y be a continuous map. Let g := (id, f) : [0,1] x X — [0,1] x Y,
andlet p:[0,1] x X — X and q : [0,1] XY — Y be the projections:

0,1] xX —£— [0,1] xY

p q
f

X ——Y
Let 9 be a locally constant sheaf on [0,1] X Y. Then the natural morphism g9 —

<8~ 'Y is an isomorphism.
First we need the following result

Lemma 2.9. In the notation above, every point t € |0, 1] has a neighborhood I C [0, 1] such
that 9([0,1] xY) — 9 (I x Y) is an isomorphism.

Proof. There exists an open cover {/; x U;} of [0,1] x Y such that ¢ is constant on each
I; xU;. By fixing j, we’ve got that ¢ is locally constant over [0, 1] x U;, and hence it is
constant by Proposition 2.6. Therefore, ¢ ([0, 1] x U;) — ¢(I x U;) is an isomorphism. [

Proof of Proposition 2.8. Lety € Y,t € [0,1]. Let {U} be a fundamental systems of neigh-
borhoods of y. Due to Lemma 2.9, we can pick for each U an open set Iy C [0, 1] such that
the restriction functor ¢([0, 1] x U) — ¥ (Iy x U) is an isomorphism. We might choose I/
such that Iy x U form a fundamental system of neighborhoods of (¢,y). Then it follows that
the restriction functor of stalks (¢.¥)y — ¥, ) is an isomorphism, since

(@9), =lmq.9(U)= lim 9(01]xV)~ lm %(yxU)=%,,
yel (t,y)€[0,1]xU (ty)elyxU
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Now let x € X, then we have natural isomorphisms

(f'09)e = (@09 ) = Do p) = (8D (1)~ (28D )

hence the natural isomorphism is an isomorphism. 0

1

Theorem 2.10. Let p denote the projection [0,1] x X — X. Then p. and p~" are inverse

equivalences between LCSH (ky ) and LCSH(k| 1),.x )-

Proof. Let.# € LCSH(kx)

Now let x € X and iy : {x} < X be the inclusion. Similarly let jy : [0,1] ~ [0,1] X x —
[0,1] x X, and let ¢ : [0,1] ~ [0, 1] x x — x. By Proposition 2.8 the natural map (p,p~'.%), =
i7'pup~LF = q.j ' p~.F is anisomorphism. On the other hand, ¢,.j; | p~'.Z% = q.q~ 'i; \.7 =
g+q~ ' (F). The natural map .%, — (psp~'.F)x ~ q+q~ ' (%) coincides with the adjunction
map .Z, — q.q~ ' (F). Since ¢~'.Z, is constant, .Z, — g.q~ ' (%) is an equivalence by
Proposition 2.3. Therefore, .# — p,p~'.Z is an isomorphism of sheaves.

Let ¥ € LCSH(k|g,1)xx)-

,let (¢,x) € [0,1] x X. Then, there is an equivalence (pilp*%)(m) ~ (p+9),. Proposition 2.8
gives us an equivalences (p.%9 ), ~ q.j; 'Y = j*4([0,1]). The locally constant sheaf j_'¥
is constant over [0, 1], so j; '%(]0,1]) ~ 9+ ,x) by Proposition 2.3. It follows that plp—9

is an isomorphism of sheaves. [

Recall that a two topological spaces X and Y are homotopy equivalent if there exists
continuous maps f : X — Y and g : Y — X such that f o g is homotopic to idy and go f is

homotopic to idx.

Corollary 2.11. Let f : X — Y be a homotopy equivalence. Then f~! : LCSH(ky) —
LCSH(ky) is an equivalence of categories.

Proof. Let g: Y — X be an homotopy inverse to f. Let 4 : [0,1] x X — X be a homotopy
between go f and idy. Let p:[0,1] x X — X denote the projection, and for ¢ € [0, 1]
let i; : X — [0,1] x X be such that i,(x) = (t,x). Then i; ' ~ p, by Theorem 2.10. It
follows that iy ' ~ i, ' and that (hoip)~! ~ (hoi;)~!. On the other hand, hoiy = go f and
hoiy =idx,so flog l~ idy CSH(ky)- In @ similar manner, we can construct an equivalence
g o f ! idicsuy)

0

Theorem 2.12. Let X be a locally contractible topological space, and let ¥ be a be a sheaf

on X. Then, the following are equivalent:
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(i) The sheaf % is locally constant.

(ii) If U and V are two open subsets of X with V C U, and the inclusion map 'V — U is a

homotopy equivalence, then the restriction map % (U) — Z (V) is an isomorphism.

(iii) If U and V are two contractible open subsets of X, such that V C U, then % (U) —

F (V) is an isomorphism.

(iv) There exists a collection {U;}; of contractible open subsets of X such that each point
x € X has a fundamental system of neighborhoods of the form {U; j} j» and such that
F (Uy,) — F (Uy;) is an isomorphism whenever U;; C Uj,.

Proof. To prove that (i) implies (ii) let U and V' be such that the conditions in (ii) are satisfied.
Then Corollary 2.11 implies that .7 (U) — % (V) is an isomorphism, so (i)=-(ii)

The fact that condition (ii) implies condition (iii) and that condition (iii) implies condition
(iv) are obvious.

For seeing that (iv) implies (i) let .% fulfill the conditions on (iv). We will show that .% is
locally constant. To do so, we need to show that its restriction to each of the U; is constant.
Each x € U; has a fundamental system of neighborhoods, {U,-j }j such that for each j, Ui, CU;.
Due to the hypothesis, .7 (U;) ~ .7 (U;;), so the map % (U) — #, is also an isomorphism
(same argument as in Lemma 2.3). Then due to Lemma 2.3 .7 |y, ~ My, where M = .%,. [

2.3 Serre fibrations

In this section we will follow [7] and [8]. Set I := [0, 1]

Definition 2.13. (i) A continuous map f : X — Y is said to have the homotopy lifting
property with respect to a topological space A if, given a continuous map g: A X1 =Y
and a continuous map &g : A — X lifting g(-,0), i.e. fogp = g(+,0), then there exists a
continuous map g : A x I — X lifting g(-,7).

(i1) A Serre fibration is a continuous map f : X — Y that has the homotopy lifting property
with respect to I" for all n > 0.

Example 2.14. Any covering map, more generally any locally trivial bundle, is a Serre
fibration.

Proposition 2.15. Ler # € LCSH(kx). If f: X — Y is a Serre fibration, then f,F €
LCSH(ky).
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Proof. LetV C U C X be open subsets of X. By Theorem 2.12 we need to show that the
restriction map f..% (U) — f..% (V) is an isomorphism. Since f is a Serre fibration, the
inclusion f~!(V) < f~1(U) is a homotopy equivalence and the proposition follows from
the Corollary 2.11. O

If f:X — Y is a Serre fibration we get a functor
f« :LCSH(kx) — LCSH(ky)

Example 2.16. (i) Let X =Y = C\0,and let f : X — Y be the covering map z +— 7". If
D is an open disk in Y , f~!(D) is isomorphic to the disjoint union of n copies of D.
Hence, the sheaf f.kx|p is isomorphic to kp. It follows that the sheaf f.ky is locally

constant.

(ii) Let X be arcwise connected and not a singleton and let i, : {x} < X be the inclusion of
a point. Then any sheaf % € Mod(ky,} ) is constant, but (iy)«% is the skyscraper sheaf,
which is not locally constant.

Recall that the compact-open topology defined on the path space space PY of continuous
paths I — Y is the topology induced by the sub-basis consisting of the sets M(K,U) := {f :
K — U|f continuous, and f(K) C U} where K C I is compact and U C Y is open.

Proposition 2.17. In the notation above:
(i) The evaluationmap e : PY X1 —Y, e(f,y) = f(y), is continuous.

(ii) Amap f:IxZ —Y is continuous if and only if the map f : X — PY, f(x)(y) = f(y,x),

Is continuous.

Proof. For (i) (f,s) € PY x I andlet U C I be a neighborhood of f(s). Since I is compact,
continuity of f implies that there exists a compact neighborhood of s, K C I such that f(K) C
U. Then M(K,U) x K is a neighborhood of (f,s) in PY x I such that e(M(K,U) x K) C U,
hence e is continuous.

(ii) Suppose f : I x X — Y is continuous. To show that f is continuous we need to show that
for any M(K,U) C PY set of the sub-basis, the set f ! (M(K,U)) = {x € X|f(K,x) CU} is
open in X. Since f~!(U) is an open subset of the compact set K x {x}, there exists V C I
and W C X such that K x {x} C V xW C f~!(U). I follows that W is a neighborhood of z
in f~1(M(K,U)) and hence f is continuous. O
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Now we shall see that any continuous map f : X — Y can be decomposed as the compo-

sition of a homotopy equivalence and a fibration. This would mean that f factors as

X L Ly
%
Nf

where £ is a fibration and / is a homotopy equivalence.
Set Nf :={(x,y)|x € X and y: I — Y such that y(0) = f(x)} with the subspace topology
induced from the inclusion Nf C X x PY. Let %< denote the constant path on x.

Proposition 2.18. Let f : X — Y be a continuous map. Then f = foh, withh:X — Nf,
h(x) = (x, ’yjﬁ(x)) a homotopy equivalence, and f : Nf — Y, f(x,y) = y(1) a Serre fibration.

Proof. f is continuous since the evaluation map PY x I — Y, (y,t) — ¥(t) is continuous by
proposition 2.17 (i).

Now, we have to check that f is a Serre fibration. Let g(-,¢) : I" — Y be a homotopy and give
alift for g(-,0), g(-,0) : I" = Nf, (x,0) = (h(x), ) for h: I" — X and %, : I — Y. Now, we
shall define the lift g(x,) = (h(x), Yx * g[0,1(x)), where % * g|o | denotes the product of paths
between 7, and the path induced by [0,7] 5 s +— g(x,s). The composition is well defined,
since g(x,0) = fog(x,0) = %(1). Now, to check that g(-,¢) is continuous we consider it
asamap I" xI — Nf C X x PY and use Proposition 2.17 (ii) from which we deduce that
continuity of /" x I — X x PY is equivalent to continuity for I” x I xI — X x Y.

As for h being a homotopy equivalence, let p : Nf — X be the natural projection. Then,
clearly idxy = poh. On the other hand, idys ~ ho p since we can define the continuous
deformation g: Nf x I — Nf of Nf onto h(X) by

g(x’ Y)(t) = (X, %)
where % (s) = y((1 —1)s), hence g is indeed a deformation from Nf to X. O

Definition 2.19. Let f: X — Y and p : Nf — X be the natural projection. For ¢ € LCSH(ky)
set
NG = FpT'e 2)

where f is as in Proposition 2.18.
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Remark 2.20. Note that by Propositions 2.18, 2.11 and 2.15, we have that fLCSHG ¢
LCSH(ky) for any ¢ € LCSH(kx ), hence we get a functor

fECSH  LCSH(kx ) — LCSH(ky)
Remark 2.21. If f is a Serre fibration, then there is an isomorphism of functors

LCSH
S =2 [y .

Indeed, X — Ny is a fiber homotopy equivalence, hence by Theorem 2.10 the result follows.



16 Table of contents

3 Monodromy representations

We will start this section by introducing the well known notions of fundamental groupoid
of a topological space X and the monodromy functor from the category of locally constant
sheaves over X to the representations of the fundamental groupoid. The first half of the
section will be devoted to constructing a quasi-inverse for the monodromy functor in the
case X is semi-locally simply connected. Given a continuous map f: X — Y, we will
use this equivalence to show that the restricted representation of the induced functor on
the fundamental groupoids corresponds to the inverse image functor at the level of locally
constant sheaves. On the other hand, if f is a Serre fibration, the induced representation
corresponds to the direct image functor. Finally, we will use the results from the previous
section to construct a general adjoint to the inverse image functor in the category of locally
constant sheaves.

Here we follow [1], [5] and [9].

3.1 The fundamental grupoid

Definition 3.1. Let X be a topological space. We define IT;(X) as the category given by
Ob(IT; (X)) = X and whose morphisms are homotopy classes of paths between two points.
Note that every morphism is an isomorphism, so it is a grupoid. We call this category the

fundamental grupoid of X.

Remark 3.2. Note that if X is arcwise connected then for any xo € X the natural functor

7 (X,x0) = II;(X) is an equivalence. Indeed, since every object in II;(X) is isomorphic
ixg
to xo, iy, 1s essentially surjective. Moreover it is clear that it is fully faithful. It follows

that if X is any topological space, and X = | |;U; a decomposition on its arcwise connected
components, then IT; (X) ~ | |; 7 (U;, x).

3.2 The monodromy functor and its quasi-inverse

Definition 3.3. The objects in the category Rep(I1; (X)) = Fet(IT; (X),Mod(k)) are called
monodromy representations of X.

Definition 3.4. We define monodromy functor
p : LCSH(kx) — Rep, (IT; (X)).

For .# € LCSH(kx), . : IT; (X) — Mod(k) is defined as follows
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@)

(ii)
wz (V) : Fyo)~ (v ' Flo v ' Z(U) S (v ')~ Fy 3)

Where the isomorphism is well defined since .# locally constant implies y~!.% constant, by
Proposition 2.6.

Example 3.5. Let X = C and letP:za% — 3. Let K =ker(P) := {f € 0x|Pf = 0}.

For U an open disk in X centered at 79, let A(z) be a primitive of % in U. Since the diagram

OXL> Ox

exp(—A(z))l , léexm—A(z))
Ox —— Oy

commutes, we have that K|y ~ Ox|y ~ Cx|y. Hence K is locally constant. Note that in X,
Pf =0 implies that f = 0, hence K is not constant.
Now, since I1; (X) ~ Z, the isomorphisms given in (3) will be given by the image of 1. In

our case we have,

Z — Aut(Oy)
11— e 40,
the multiplication by ¢4k
Lemma 3.6. The monodromy functor U is faithful.

Proof. Let @,y : % — % be two morphisms of locally constant sheaves. Assume that
1(@) = u(y). This induces an equality on the level of stalks, ¢ = Yy : Fy — G, for any
x € X. Therefore, ¢ =y 0

Recall that a topological space is semi-locally simply connected if for any x € X there
exists a neighborhood U such that any loop in U is contractible in X, in other words, the

induced group morphism 7} (U,x) — m; (X, x) is trivial, i.e. we get the commutative triangle

7751(

> 1 (X, x)

U,x)
\{ }/
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The main objective of this section is to prove the following theorem:

Theorem 3.7. Let X be semi-locally simply connected and locally arcwise connected topo-

logical space. Then the monodromy functor U is an equivalence of categories.

To prove the equivalence we shall construct a quasi-inverse v of u. We start by defining

the functor v without any assumption on the space X.

Definition 3.8. Let F : IT; (X) — Mod(k) be a monodromy representation. Then for every
U C X open we define

v(F)(U) = lgn Foiy,
I (U)

where iy : 1} (U) — I (X) is the map induced by the inclusion U C X.

Remark 3.9. (i) Consider first the projection map

m:| | Fx) = X.
xeX

Then v(F)(U) identifies with the set of local sections of 7 which are compatible with
the action of IT; (X), in other words

V(F)U)={f:U— | JF(x)|mof=idy and f(y(1)) = F([¥])(f(¥(0)) for any path yin U}

xeX

Hence we recover the definition in section in chapter 6 section F in [9].

(i) Let U be an arcwise connected open subset of X and let xo € U. We get
7 (U,xo) —2 T (U) —% T1(X) —E— Mod(k)

and, we can write V(F)(U) ~ Im Foiyoiy = F(x0)™(U0) | where F(xo)™ U0
m (U.xo)
denotes the subspace of invariant elements of F(xg) under the action of m; (U, xo).

Lemma 3.10. In the notation above, v(F) € Mod(kx)

Proof. First, we will show that v(F) is a presheaf. Clearly v(F)(U) € Mod(k), since for
every x € I1;(U), F(x) € Mod(k). As for the restriction maps, let V C U C X and let
ivy : V <= U be the inclusion. Then there exists a morphism

lim(F oiy) ey lim(F oiy oiyy)
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The commutativity of the restriction maps follows from the commutativity of the diagram
with the inclusions .
I, (V) % 10, (V)

iwy /
iwy

T (W)

Therefore v(F) is a presheaf. Now, we will see that v(F) satisfies both sheaf axioms. Let
U C X be open and let {U;}; be an open cover of U.

(1) Lets € v(F)(U) such that s|y, = 0. Then, since s is a map, clearly s = 0.

(2) Lets; € v(F)(U;) such that s;|y;; = s;|u,;- Then, we can define amap s: U — ||F(x)
by s(x) = s;(x) if x € U;. The compatibility conditions ensure that s is well defined.
Moreover, we have that o s(x) = wos;(x) = x, where i is such that x € U;. We only
need to check the final compatibility regarding y. Let y: I — U be a continuous path
in U. Then, since I is compact and 7y continuous, ¥(I) C U is compact and we can get
a finite subcover {U;; };_, such that (1) C U;U;;. We can order the Uj; in the order by

which ¥ crosses them. Now let z; | be a point of Uj, i, , Ny. We can decompose the path

i
in pieces as follows. Let y; be the path that follows y from y(0) to z, and let ¥, the path
that follows y from z, to y(1). For j =2...n—2, let y; be the path that follows y from

xj to xj11. Therefore, we have that Yy = ¥,...¥; and each y; C U;. Then, we have that

F([Y)(f(r(0) =F([%-.- 1)) (f(¥n---1(0)))
=F([1])-- - F(In)(f(#---1(0)))
=f(y(1))

Therefore, v(F) is a sheaf N

With this, we can define a functor v : Rep, (I1; (X)) — Mod(kx ), that sends F € Rep, (I1; (X))

to V(F'), and a morphism of functors ¢ : F = G to the morphism of functors induced by

Px

F(x) > G(x)
/ F(y) /
lim Foiy AL » lim Goiy 6
I (U) I, (V) g
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The composition and the compatibility with restrictions is preserved naturally from the
uniqueness of V(@) stated above. Trivially v(idr) = idy ). Hence v : Rep;(I1; (X)) —
Mod(ky) is a functor.

Example 3.11. Let Ay : IT; (X) — Mod(k) be the constant functor that sends every x € X to
M € Mod(k) and every ¥ to the identity. Then

V(AM)(U) = @l Ayoiy = ILH Ay an Ay
I, (U) 1, (U) m (I (U))

Here mp(I1; (U)) denotes the set of isomorphism classes of IT; (U ), which is in one to one

correspondence with the set (U ) of the arc-wise connected components of U. Therefore,

V(Ay)(U) ~ lim Ay ~ Homge(700(U), M)
7o (U)

Hence we have a natural morphism from My (U) := {f : U — M|f locally constant} —
Homget (70 (U ), M).

Note that if U is arcwise connected, then we can construct an isomorphism

Note that since U is connected, then due to Lemma 2.3 y, and yy are isomorphisms. More-
over, since U is arcwise connected V(Ay)(U) ~ Homget (7o (U ), M) = Homget ({*},M) ~ M,
hence A, and A, are also isomorphisms. Therefore, due to the commutativity of the triangles,

¢ is an isomorphism.

Lemma 3.12. For any x € X we have a morphism v(F), — F(x). Moreover, if X is locally

arcwise connected, the morphism is an isomorphism.
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Proof. The first claim is due to definition of stalk:

S0 evy, the evaluation map of s, € (V(F)), at x is the desired map.

If X is locally arcwise connected, firstly we want to prove that ev, is injective. Letx € U C X
be open and sy € V(F)(U). We will denote the projection of sy onto the stalk as [sy].
Suppose sy such evy([sy]) = sy (x) = 0. We want to prove that [sy] = 0.

Since X is locally arcwise connected, there exists V > x, V C U arcwise connected. Let
sy € V(F)(V) be such that [sy] = [sy]. We claim that sy = 0, hence [sy| = 0. Indeed,
since V is arcwise connected, for any point y € V there exists a path y from x to y hence,
sv () = F(17) (sv () = F(IY)(0) = 0.

To check the surjectivity of ev,, for any m € F(x) we need to find a section s € v(F)(U) such
that s(x) = m. Suppose that U is arcwise connected, and for y € U define s(y) = F([y])(m)
for y a path from x to y. Clearly s € v(F)(U), and hence ev; is surjective. O

Example 3.13. Now we would like to construct an example where ev, is not injective. Let

X be the comb space, figure 1, and let Ay € Rep, (I (X)) be the constant functor with value
1

M. We will label each tooth of the comb for its position, being the n-th comb the one over .
and the 0-th the one over 0. Consider {U;}; a fundamental system of open neighborhoods of
(0, 1) such that U; contains infinitely many connected components of X. This can be done
since (1,0) is a limit point. We will call A; C NU{0} the subset indexes of teeth with non
empty intersection with U;. Note that for alli € I, 0 € A; and |A;| = |N|.

We have that

V(AM)(O,l) ~ 1&1 Homset(ﬂo(U),M) ~ @Homsedﬂo(Ui),M),
U>(0,1) U;

where the last equivalence follows from U; being a fundamental system of neighborhoods.
Since |mo(U;)| = | Al
V(Au)(0,1) = imHomge (A, M)
Ui
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Fig. 1 Depiction of the comb space

Note that Homge¢(A;, M) are nothing but sequences of elements of M, and lgl‘nUi Homge¢ (A, M)
sets that s; ~ s if there exists k € I such that Uy C U;,U; and such that the series coincide on
Ay

Therefore, let sg,s; € V(F)(U;) for some i such that sg := (0,0,0...) and sy := (0,m,m...)
for m # 0. Then, for i =0, 1 ev(o ) (s;) = 0, however, both of the sections are distinct on the

stalk by construction.

Example 3.14. Example 3.13 gives us a case in which v(Ayy) is not locally constant. If
it were, there would exists U > (0, 1) such that v(Ay )|y ~ My. In this case, For V C U,
V' > (0,1) connected we would have v(Ay) (V) ~ (Mx)(9,1) = M by Lemma 2.3, which leads
to contradiction.
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Proposition 3.15. If X is locally arcwise connected the following diagram quasi-commutes:

Repk(Hl( <— LCSH(kx)

\ |

Mod (k)

. . . . . 0
More precisely, there exists an isomorphism of functors i = v o lL.

Proof. To define 6, let .% be a locally constant sheaf. Let x,y € U and let ¥ be a path from x
to y. Then the following diagram holds:

Ox
w(F)(y) = 7,
ﬂ(U) _!?in__> lgl ‘u(g)ow/ B
I (U) o
; (P x) = Z

Therefore, we define 64 : % — v(lL#), and hence 6 : i = voL.

Now, let X be locally arcwise connected and take .# € LCSH(kyx). Since X is locally
arcwise connected, there exists an open cover {U;}; of X of arcwise connected open subsets
such that .7 |y, ~ My,. Moreover, we have that 1|y, ~ My, = Ay, the constant functor.
As U; is arcwise connected, we have that v(Ay)|y, >~ My,, by Example 3.11. Therefore,
v(Uz|vu;) =~ My,. Thus, since they are locally isomorphic on an open cover of X, they are
globally isomorphic. Hence vo i ~ i. [

Corollary 3.16. If X is locally arcwise connected W is fully faithful.

Proof. Faithfulness was already proven in Lemma 3.6.
Fullness follows from Proposition 3.15, since for o € Homgep, (11, (x)) (17, He) We get the
following diagram

where ¢ is induced and makes the diagram commute. Note that the vertical arrows on the

level of stalks translate to v(ug )y — Uz (x) = Z4, hence by the universal property they
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restrict to the the evaluation map ev,. We claim that p(¢) = . Indeed, let x € X, then

g

=

v(a)

or
l - l > V(U )x
O"x s g

o
Ox

F
=<
V(L)
\ -
F

=

where the vertical arrows are induced by the isomporhpism ev, and hence they are the identity.

All the squares commute by contruction. Hence (1 (¢), = . 0

Lemma 3.17. If X is locally arcwise connected and semi-locally simply connected, then
v(F) € LCSH(kyx ). Hence we get a functor

v :Rep(I1; (X)) — LCSH(kx)

Proof. Since X is semi-locally simply connected, for xo € X, there exists U > xo open
connected subset of X such that any loop in U is contractible in X. Therefore, we have that

iy factors as

)7

I, (U) v » T (X
\ | }/

where {+} denotes the category with only one morphism and the functor {*} — IT;(X) sends
* to xo. In this setting, F o iy is constant on U, hence V(F)|y ~ V(F oiy) = V(Ap(y)) is the
constant sheaf on U with stalk F(xp). Since we can cover X with such U’s, V(F) is locally

constant. O]

Theorem 3.18. If X is semi-locally simply connected and locally arcwise connected, then UL

and v are quasi inverse to each other.

Proof. By Lemma 3.17 and Proposition 3.15 we deduce that idy cspy) = VO 1.

Now, we want to prove that U o v = idgep, (11,(x))- In order to do this, we will explicitly
construct such isomorphism.

Let F € Rep(IT;(X)). Recall that, since X is locally arcwise connected, u o v(F)(x) =
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V(F)y 2F (x). We will build the data for an isomorphism of functors. Let x,y € X such that
there exists a path y: I — X from x to y. Consider the diagram

ov(F)([7])
V(F = (F)y

\/

evy ~ | evy

/\

where all the diagonal arrows are the natural ones. The upper triangle commutes by definition

F(y)

of the monodromy functor, the lower by definition of v and the side ones by Lemma 3.12.

Hence the diagram commutes. Therefore, we get an isomorphism of functors pov ~

idRep,(11, (X)) =

3.3 Monodormy representation associated to a continuous map

Let X and Y be topological spaces, and f : X — Y a continuous map. Then f induces a
functor

f:Hl(X) —>H1(Y)
x> f(x)
(Y= [fo7]

With the notation of Section 1.3 we get a functor
ress = fi : Rep, (IT; (X)) — Rep, (IT; (Y))
Proposition 3.19. (i) The following diagram quasi-commutes.

Repy(TT(Y)) — Repy(IT; (X))

uyT MXT

1
LCSH(ky) —.— LCSH (k)
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(ii) If X,Y are locally arcwise connected, the following diagram quasi-commutes

Rep(ITi(Y)) — Repy(IT;(X))

|w I

—1
Mod(ky) ——— Mod(ky)

Proof. For (i), let .# € LCSH(ky). Then

resy oty (%) : 11 (X) — Mod(k)
respoly (F) = ( x = F ) )
XX Ty = Fyiy)
ux (f~L%) : T (X) — Mod(k)
~ ( x> (f71)x ) = ux(f'7)
x~oX = (L)~ (FLF)y

So the diagram quasi-commutes.
For (ii), let F € Rep,(IT;(Y)). Let U C X and let V C Y such that f(U) C V. We get

FU@»;\\\\ F@)&\\\
@Fofoiu <-——3—!—¢Y ____________ l'&nFOiV
m () (V)
F(f(x/)) < F(y/)

where y,y’ € Y are such that f(x) =yand f(x') =y'. Hence for any V C Y such that f(U) CV
we can define a morphism ¢y : vy (F)(V) — vx(res;(F))(U). Using these ¢y we can define

v

fiv)cu

e

vy (F)(W)
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Hence we have a morphism of presheaves § : ”f~1"vy (F) — vy (res(F)). Since vx (res¢(F))
is a sheaf, we know that { factors as

<

f vy (F)\ />Vx (resy(F))
sh 4

f_lVY(F)

where sh denotes the sheafification functor. Hence we have defined a morphism y :
f~ vy (F)(U) — vx(resf(F)). Under the assumption that X and Y are locally arcwise
connected, we have that for any x € X

(f 7 Vr (F))w = vy (F) o) = F(f(x)) = res(F) (x) = vy (res p(F))x.
Hence, v, is an isomorphism for all x. [

Recall that if f is a Serre fibration
f+ : LCSH(kx) — LCSH(ky)

Proposition 3.20. If f is a Serre fibration. If X and Y are semi-locally simply connected and

locally arcwise connected, the following diagrams quasi-commute:

(i)
ind
Repy (IT1(¥)) +—— Repy(IT;(X))
/JYT /JXT
LCSH(ky) <2 LCSH(kx)
(ii)

Repy (IT; (Y)) " Rep; (IT; (X))

lw lvx

LCSH(ky) «—L— LCSH(ky)
Proof. For (i), we have that ind s o iy is right adjoint to vVx oresy and Uy o f is right adjoint
to flovy. LetI': flovy 5 vyores r be the unique isomorphism induced from the
commutativity from Proposition 3.19. Since indf o tx oI is a right adjoint for y o f,
there exists a unique isomorphism py o f, — indy o tx oI'. On the other hand, we have an
isomorphism —oI"~! : ind rouxol’— vyoindy, hence by composing both isomorphisms
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we have that vy oind; ~ f, o vy

(i1), follows from a parallel argument as the one in (i). 0

If f is not a fibration, we have to use the decomposition of f studied in Section 2.3:

where f is a Serre fibration, p is the natural projection and / is a homotopy inverse for p.
Recall that
LCSH .— f o p~ ! : LCSH(kx) — LCSH(ky)

Theorem 3.21. Let X and Y be semi-locally simply connected and locally arcwise connected,

and let f : X — Y be a continuous map. Then the following diagrams quasi-commute

(i)
ind
Rep; (IT; (Y)) +—— Rep,(I1; (X))
I-LYT ﬂXT
LCSH(ky) <2 LCSH(ky)
(ii)

Repy (IT; (¥)) < Rep, (TT; (X))

LCSH

LCSH(ky) +—— LCSH(ky)

Proof. (1) Consider the following diagrams:

Repe(IT1 (V) ol Repy (I (N)) " Repy(IT; (X))

Hy T ) IJNfT - MXT

LCSH(ky) +—2— LCSH(kys) +——— LCSH(ky)

By Propositions 3.19 and 3.20 we know that both squares commute. Moreover, since

p is a homotopy equivalence, by Corollary 2.11 he have that p~!

is an equivalence
of categories. We need to show that indy = ind;ores, i.e. ind; = res,, since indy ~

ind oindy,. This follows from the fact that idy csp(k,) = (poh)™' =h 'op~! and



3 Monodromy representations 29

that idLCSH(ka) ~ (poh)™' = p~loh™!. Hence p~! and A~ ! are quasi inverse to each
other, and due to the uniqueness of adjointness res;, ~ ind,. Hence, the result follows.

(i) Similarly we can decompose (ii) into the following commutative diagrams.

Repe(IT1 (V) ol Repy(IT(N)) " Repy(IT; (X))

[

LCSH(ky) +—2— LCSH(kys) ¢——— LCSH(ky)

]

Example 3.22. Let X be locally arcwise connected and semi-locally simply connected not a
singleton, and consider iy : {x} — X.
Note that LCSH(ky,}) =~ Rep, (TT; ({x})) ~ Mod(k), hence we can write the diagram

ind;,

Rep(IT; (X)) «—— Mod(k)

Hx T /CSH

LCSH(kyx)

Let M € Mod(k). Then

ind,(M)() = lm M= ind; (M) () = Hom(m(TT; ({x} "), M)
(y—=x) €I ({x})”
~ Hom(my(QX ), M) ~ Hom(m; (X,x),M)

since o (IT; ({x}”)) ~ mo(I1; (X)) under our assumptions, 7o (IT; (Q X)) ~ mH(2X) ~
71 (X,x). On the other hand,

pr ()M (v) = ()0~ M), = () Mpx),
~T(i; ' (y),M) ~ Hom(my(Q.X),M)
~ Hom(m (X,x),M)

Where the one before last isomorphism is due to the fact that i, is a fibration and hence

mo(iy ' (v)) = 7o (QuX)
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