Periodic Solutions of a Class of Second-Order Differential Equation

Zeyneb Bouderbala ${ }^{1}$, Jaume Llibre ${ }^{2}$, Amar Makhlouf ${ }^{1}$
${ }^{1}$ Department of Mathematics, University of Annaba, Elhadjar, Annaba, Algeria
${ }^{2}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
Email: zeynebbouderbala@yahoo.fr, jllibre@mat.uab.cat, makhloufamar@yahoo.fr

Received 25 December 2015; accepted 26 February 2016; published 29 February 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

We study the periodic solutions of the second-order differential equations of the form

$$
\ddot{x}+3 x \dot{x}+x^{3}+F(t)\left(\dot{x}+x^{2}\right)+G(t) x+H(t)=0,
$$

where the functions $F(t), G(t)$ and $H(t)$ are periodic of period 2π in the variable t.

Keywords

Periodic Solution, Differential Equation, Averaging Theory

1. Introduction and Statement of the Main Results

In this paper we shall study the existence of periodic solutions of the second-order differential equation of the form

$$
\begin{equation*}
\ddot{x}+3 x \dot{x}+x^{3}+F(t)\left(\dot{x}+x^{2}\right)+G(t) x+H(t)=0, \tag{1}
\end{equation*}
$$

where the dot denotes derivative with respect to the time t, and the functions $F(t), G(t)$ and $H(t)$ are periodic of period 2π in the variable t.

We note that the second-order differential Equation (1), when $F=G=H=0$, appears in the Ince's catalog of equations possessing the Painlevé property (see [1]). Moreover, the differential equation $\ddot{x}+3 x \dot{x}+x^{3}=0$ is well known in many areas of mathematics and physics, and it possesses the algebra $\operatorname{sl}(3, \mathbb{R})$ of Lie point symmetries (see for more details in the paper [2] and the references quoted there).

In a recent paper [3] (see also [4] [5]), the second-order differential Equation (1) has been studied when $F=H=0$. A study of coupled quadratic unharmonic oscillators in terms of the Painlevé analysis and inte-

[^0]
[^0]: How to cite this paper: Bouderbala, Z., Llibre, J. and Makhlouf, A. (2016) Periodic Solutions of a Class of Second-Order Differential Equation. Applied Mathematics, 7, 227-232. http://dx.doi.org/10.4236/am.2016.72021

