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EXTENSIONS OF HOMEOMORPHISMS
BETWEEN LIMBS OF THE MANDELBROT SET

BODIL BRANNER AND NÚRIA FAGELLA

Abstract. Using holomorphic surgery techniques, we construct a homeomor-
phism between a neighborhood of any limb without root point of the Mandel-
brot set and a neighborhood of any other of equal denominator, in such a way
that the limbs are mapped to each other. On the limbs, the homeomorphism
coincides with that constructed in “Homeomorphisms between limbs of the
Mandelbrot set” (J. Geom. Anal. 9 (1999), 327–390) which proves – without
assuming local connectivity of the Mandelbrot set – that these maps are com-
patible with the embedding of the limbs in the plane. Outside the limbs, the
constructed extension is quasi-conformal.
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1. Introduction

Given the family of quadratic polynomials Qc(z) = z2 + c, we define the filled
Julia set of Qc as the set

Kc = {z ∈ C | {Qnc (z)}n≥0 is bounded},

and the Julia set Jc as the boundary of Kc. Both sets are bounded and completely
invariant under Qc. The complement of the filled Julia set is the basin of attraction
of the superattracting point at infinity, which is always connected.

The polynomials Qc have one single critical point in C which is ω = 0. The
behavior of this point plays a crucial role in determining the dynamics of Qc and
the topology of Kc. Indeed, the filled Julia set is connected if and only if it contains
the critical point 0. If not, it is a Cantor set.

This dichotomy is reflected in the definition of the Mandelbrot set which is
defined as follows (see Figure 1).

M = {c ∈ C | 0 ∈ Kc}.

The Mandelbrot set is compact, full and connected and it is conjectured to be
locally connected.

Figure 1. The boundary of the Mandelbrot set and certain wakes
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The interior of M contains infinitely many connected components for which Qc
has an attracting periodic orbit. These are called hyperbolic components and it
is conjectured that their union equals the interior of M . The boundary of each
hyperbolic component Ω can be parametrized by a map γΩ : [0, 1)→ ∂Ω so that, at
c = γΩ(t), the indifferent periodic orbit has multiplier e2πit. The point c = γΩ(0)
is called the root of the hyperbolic component Ω.

The largest hyperbolic component consists of all parameter values c for which Qc
has an attracting fixed point, and we shall denote it by Ω0. Its boundary is referred
to as the main cardioid. At each boundary point γΩ0(p/q), for any p/q ∈ (0, 1)∩Q,
there is attached a hyperbolic component Ωp/q of period q.

We define the set M∗p/q, to be the connected component of M \ Ω0 attached to
the main cardioid at the point c = γΩ0(p/q). We then define the p/q-limb of M as
Mp/q = M∗p/q ∪ γΩ0(p/q) (see Figure 1). Hence the set M∗p/q is the limb without
the root point.

In [BF], homeomorphisms between any two limbs of equal denominator were
constructed. More precisely, the following theorem was proven.

Theorem ([BF]). Given p/q and p′/q in (0, 1) ∩ Q and irreducible, there exists a
homeomorphism

Φqpp′ : Mp/q −→Mp′/q

which is holomorphic on the interior of Mp/q.

Moreover, it was shown that if the Mandelbrot set is assumed to be locally
connected, then these homeomorphisms are compatible with the embeddings of the
limbs in the plane, since a radial extension to the wake can be constructed. Our
goal in this paper is to prove compatibility without assuming the extra hypothesis,
in order to make this technique available for other parameter spaces in which local
connectivity is proven to be false.

We shall prove that the embedding is preserved by extending the homeomor-
phisms of [BF] to a neighborhood of the limbs without root point. As it turns
out, this extension will be quasi-conformal in the complement of the limb. It was
pointed out to us by W. Jung that for this reason, even after MLC is proved, this
new extension will be better than the radial one (see Remark 4.28). A more precise
statement is as follows.

Main Theorem. Given p/q and p′/q in (0, 1) ∩ Q and irreducible, there exist
open sets Vp/q and Vp′/q intersecting M in M∗p/q and M∗p′/q respectively, and a
homeomorphism

Λqpp′ : Vp/q −→ Vp′/q

extending the homeomorphism Φqpp′ : Mp/q → Mp′/q, which is orientation preserv-
ing and quasi-conformal in Vp/q \M∗p/q (see Figure 2).

Remarks 1.1.
a) Trivially, we can first restrict the domain of Λqpp′ to obtain a map from Ṽp/q ⊂

Wp/q to Ṽp′/q ⊂Wp′/q, and then extend it quasi-conformally to the wake, thus
obtaining a homeomorphism Λ̃qpp′ : Wp/q → Wp′/q which is quasi-conformal
from Wp/q \Mp/q to Wp′/q \Mp′/q.
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Figure 2. The map Λ3/5

b) Moreover, Branner and Lyubich have recently announced that the homeo-
morphisms Φqpp′ in [BF] between limbs are quasi-conformal, after removing
arbitrarily small neighborhoods of the root points. Hence the maps above are
quasi-conformal from Wp/q to Wp′/q, adjusting the domains likewise.

c) The proof of the Main Theorem immediately reduces to the case p′ = 1. The
rest of the homeomorphisms Λqpp′ are obtained by composing the maps Λqp1
and their inverses for different values of p. To ease notation we will hereafter
denote Λqp1 by Λp/q.

We will construct the extension using holomorphic surgery but, this time, we
will have to deal also with polynomials with a disconnected Julia set.

An essential step in proving the bijectivity of Φqpp′ was that two polynomials that
are hybrid equivalent and have a connected Julia set must also be affine conjugate.
Since this is false if the Julia set is disconnected, the proof of injectivity will be
completely different.

The paper is organized as follows. Section 2 contains some general preliminaries
about dynamics of polynomials (which the expert reader may skip). In Section 3 we
build up the necessary setup and notation to be able to give a precise statement of
the Main Theorem. Section 4 is dedicated to the proof and divided into three main
parts: the definition of the map in Section 4.2, the proof of continuity in Section
4.3, and the proof of injectivity in Section 4.4.

Notation. We shall denote the interior of a set A by int(A) and uniform convergence
on compact subsets by the symbol ⇒. The set N denotes the natural numbers
1, 2, . . . without including 0.

2. Preliminaries

2.1. Dynamics of quadratic polynomials. An essential tool to study the dy-
namics of complex polynomials is the map known as the Böttcher map or Böttcher
parametrization. For any c ∈ C there exists a real number ν ≥ 0, a neighborhood
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Uc of infinity and a unique holomorphic isomorphism tangent to the identity at
infinity

ψc : C \ Deν → Uc
which conjugates Q0(z) = z2 to the map Qc. The map ψc is called the Böttcher
parametrization of f around infinity. Its inverse is called the Böttcher coordinate.

If the critical point, ω = 0, does not belong to the basin of infinity, and hence Kc

is connected, the set Uc is in fact the complement of the filled Julia set and ν = 0.
In the case where Kc is disconnected, ν > 0 can be chosen so that the critical point
belongs to the boundary of Uc (see Figure 3). The Böttcher coordinates can be
defined holomorphically past the set C \Deν (see Proposition 3.2) but not globally.

Uc

H

Hν

Uc

D

D

ρ

Qc

M2

0 1

0

Q0

Kc ψc exp

ρ

Qc

M2

0 0 1

0 ν

Q

eν

Kc

ψc exp

2πit

2πit

Figure 3. The Böttcher parametrization for both the connected
and the disconnected case

We can also lift Q0 to the map M2(z) := 2z in the right half plane H, the
universal covering space.

In summary, the following diagram commutes

Hν
M2−−−−→ Hν

exp

y yexp

C \ Deν
Q0−−−−→ C \ Deν

ψc

y yψc
C \ Uc

Qc−−−−→ C \ Uc
where Hν = {ρ + 2πit ∈ H | ρ > ν}, and keeping in mind that ν = 0 when Kc is
connected.

We remark that in the case of Kc being connected and locally connected, ψc
extends continuously to the boundary of D, so that ψc is defined on C \D. Even in
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the case when Kc is not locally connected, there is a set of points of full measure
on ∂D where the radial extension of ψc is well defined. This set always includes the
points with rational arguments.

The potential Gc : C \Kc → R+ (Green’s function) of Kc satisfies{
Gc(z) = log

(
|ψ−1
c (z)|

)
if z ∈ Uc,

Gc(z) = 1
2nGc(Q

n
c (z)) if Qnc (z) ∈ Uc,

and hence Gc(Qc(z)) = 2Gc(z) for all z ∈ C \Kc. The potential measures the rate
of escape of points under iteration of Qc. The level sets of the potential function are
called equipotentials (see Figure 4). Equipotentials in Uc are simple closed curves
which correspond in the complement of Deν to circles around the origin and on
Hν to vertical lines. If Kc is connected, then all equipotentials are simple closed
curves. If Kc is a Cantor set, then ν = Gc(0) and the equipotential of potential ν
is a figure eight, the boundary of Uc.

Given t ∈ R we denote by R(t) the horizontal line in H with imaginary part
equal to 2πt, i.e.,

R(t) := {ρ+ 2πit ∈ H | ρ > 0}.
If Kc is connected, we may transport R(t) to the dynamical plane all the way.

In that case, we define the external ray of argument t to be

Rc(t) = ψc (exp(R(t)) .

Note that Rc(t) is an orthogonal trajectory to equipotentials.
If Rc(t) has a limit when ρ → 0, then it tends to a point of the Julia set which

we denote by R∗c(t). We say that the ray lands at this point and we have

Qc(R∗c (t)) = R∗c(2t).

All external rays with rational arguments land, and if Kc is locally connected, all
external rays land.

If Kc is a Cantor set, we may transport R(t) under ψc ◦ exp on the part that
intersects Hν, obtaining a ray in Uc. For a given t ∈ R, the ray segment extends
unbroken as an orthogonal trajectory to equipotentials of decreasing potential, ei-
ther all the way to 0, or down to a level where it branches at the critical point 0 or
an iterated preimage of 0.

Hν

ρ

ψc exp

c

0

Rc(
τ)

Rc(τ)

e2ν

exp(R(τ))

ψc
−1(c)

exp(R(τ ))

τ

0

M2

log(ψc
−1(c))

R(  )

R(τ)

2ν

0 1 eν

Q0

Qc

Rc (
τ+1)

Gc−1(ν) Gc−1(ν) ν

2πit

τ

2

2

Gc−1(2ν)

2

R (
τ+1)
2τ+1

2

τ
2

τ
2

2

exp(R (
τ+1))
2

Figure 4. Equipotentials and external rays in a disconnected
case. An argument t in the vertical axis must be interpreted as
the actual value 2πit.
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2.2. The parameter plane of quadratic polynomials. Let M denote the Man-
delbrot set as defined in the introduction. The results in this section can be found
in [DH1] or [Br].

The map φM : C \M → C \ D defined as ψ−1
c (c) is a conformal isomorphism.

We define an external ray of external argument θ as

RM (θ) = φ−1
M (exp(R(θ))) = φ−1

M

(
{eρ+2πiθ}0<ρ<∞

)
.

If RM (θ) has a limit c ∈ ∂M when ρ → 0, we say that RM (θ) lands at c. It is
known that all external rays with rational arguments land at either a root of a
hyperbolic component or at a Misiurewicz point, i.e., a parameter value c ∈ ∂M for
which ω = 0 is strictly preperiodic under Qc.

There are exactly two external rays landing at each root point in M (except at
c = 1/4). Given p/q ∈ (0, 1) ∩Q, we denote by θ−p/q and θ+

p/q the arguments of the
two external rays landing at the root point of Ωp/q, i.e., at γΩ0(p/q) ∈ ∂Ω0. Then,
we define the p/q-wake of M , Wp/q , as the open subset of C that contains M∗p/q
and is bounded by these two rays and γΩ0(p/q) (see Figure 1).

The characterization of polynomialsQc for which c ∈ Wp/q is as follows. Consider
the dynamical plane of Qc. The polynomial has exactly two fixed points, both
repelling, denoted by αc and βc. The fixed point βc is the landing point of the ray
Rc(0). The fixed point αc is the landing point of a periodic cycle of q rays, with
combinatorial rotation number p/q. The arguments of these rays depend only on
p/q and include θ+

p/q and θ−p/q. Moreover, these rays are unbranched, since neither
the critical point nor any iterated preimage of it ever fall on them. It follows that
all the preimages of these rays are also unbranched.

2.3. Tools. In the surgery construction we shall use the theory of quasi-conformal
mappings, the Measurable Riemann Mapping Theorem, and what essentially is
the theory of Polynomial-like mappings of Douady and Hubbard. For the main
definitions and statements we refer to the Tools section in [BF], or to any of the
original sources like [A, AB, DH2].

In this section, we point out a few important facts that we shall use when dealing
with quadratic polynomials whose Julia set is disconnected.

Recall that two polynomials f and g are said to be topologically equivalent (or
locally topologically conjugate) (f ∼top g) if there exists a homeomorphism between
a neighborhood of Kf and a neighborhood of Kg such that g ◦ h = h ◦ f . If the
homeomorphism h can be chosen to be quasi-conformal, we say that f and g are
quasi-conformally equivalent and denote it by f ∼qc g. If h can be chosen so that
moreover, ∂h = 0 a.e. on Kf , then we say that f and g are hybrid equivalent and
we denote it by f ∼hb g. Finally, f and g are holomorphically equivalent if h is
holomorphic. The strongest type of conjugacy is a (global) holomorphic conjugacy
or affine conjugacy which is given by h being holomorphic and defined on all of C
or, equivalently, affine.

Recall that the quadratic family is usually written in the form Qc(z) = z2 + c
because in this way, there is a unique representative of each affine conjugacy class.
That is to say, if Qc and Qc′ are affine conjugate, then c = c′.

When dealing with polynomials Qc with c in the Mandelbrot set, the same is
true for the classes of hybrid equivalence because of the following fact.

Proposition 2.1 ([DH2]). Let f and g be polynomials of degree d > 1 with Kf

and Kg connected. If f and g are hybrid equivalent, then they are affine conjugate.
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But this is not true for polynomials with a disconnected Julia set. For quadratic
polynomials Qc with c outside of M we have the following.

Proposition 2.2. All polynomials Qc with c /∈ M are hybrid equivalent to each
other.

3. The Main Theorem

The goal of this section is to build up the necessary setup and notations to give
a more precise statement of the Main Theorem. This setup will also be used in the
proof. Throughout the section we fix p/q ∈ (0, 1)∩Q and consider polynomials Qc
with c ∈Wp/q.

3.1. In the dynamical plane. Recall that for each c ∈ Wp/q , there are q rays
landing at αc.

The other preimage of αc under Qc is the point α̃c = −αc. There are q addi-
tional rays landing at α̃c, and their arguments are preimages under doubling of the
arguments of the rays landing at αc. Figure 5 shows an example of a Julia set in
the 3/5-limb, together with the rays described above.

The rays landing at αc and α̃c partition the dynamical plane into 2q − 1 closed
subsets. We denote the subset containing the critical point by V 0

c , and the others
by V ic or Ṽ ic = −V ic for i = 1, 2, . . . q − 1 as shown in Figure 5. Note that these
subsets have their counterparts in the right half plane, the same for all c ∈ Wp/q,
hence we shall use the same notation but without the subscript c. For 1 ≤ i ≤ q
we let θi ∈ (0, 1) be the argument of the ray on the common boundary of V i−1

c and
V ic . In the same fashion, θ̃i denotes the argument of the ray Rc(θ̃i) = −Rc(θi).
Note that Rc(θi) = Rc(θ̃i + 1/2).

Then, Qc acts on these sets as follows:

V 0
c

2−1−→ V pc ,

V ic , Ṽ
i
c

1−1−→ V
[i+p (mod q)]
c for 0 < i ≤ q − 1, i 6= q − p,

V q−pc , Ṽ q−pc
1−1−→ V 0

c ∪
⋃q−1
i=1 Ṽ

i.

(1)

We establish the following conventions: in the dynamical plane and in expressions
with integer indices like [i + p(mod q)] we will omit (mod q), while in expressions
with arguments, we will omit (mod 1). In both cases, it should be understood that
expressions should be taken (mod q) and (mod 1) respectively.

3.1.1. Sectors. For later purposes, we need to define some subsets which we call
sectors. They should be viewed as neighborhoods of rays Rc(θ) that land.

Instead of viewing the sectors in the dynamical plane, it is better to think about
them in the exterior of the unit disk or, even better, in the right half plane (see
Figure 6).

Definition. For a fixed slope s > 0 we define the sector centered at R(θ) with
slope s as

S(θ) = Ss(θ) = {ρ+ 2πi t ∈ H | |t− θ| ≤ sρ}.

The boundary of the sector is the two half lines of slope ±2πs which cross exactly
at the root point of the sector 2πiθ (see Figure 6). For any positive real λ ∈ R,
the mapMλ(z) = λz maps the sector S(θ) homeomorphically and holomorphically
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Figure 5. Left: the Julia set for the center of the main hyperbolic
component Ω3/5 in M3/5, the relevant rays and the nine subsets in
the plane. Right: the partition in H for all c ∈ W3/5, where we
have marked the external arguments of the relevant rays, i.e., the
relevant t-values.

onto the sector S(λθ), sending a point of potential (i.e., real part) ρ to a point of
potential λρ. Therefore, for all λ ∈ R, the map

Hλ(z) = Hλ,θ(z) = λ z − 2πiθ(λ− 1)

is a homeomorphism from any sector S(θ) onto itself, mapping points of potential
ρ to points of potential λρ. The map Hλ is multiplication by λ with respect to the
root point of the sector.

R(θ)θ

0

Hλ
R(θ)

A

B

θ

0

2πit 2πit

ρ0 λρ0 ρ0 λρ0

ρρ

Hλ(A)

Hλ(B)

t = θ + sρ

t = θ − sρ

t = θ + sρ

t = θ − sρ

Figure 6. A sector and the homeomorphisms Hλ

Note that, as they are defined, any two sectors in H overlap. To avoid overlapping
of relevant sectors, we choose an arbitrary but fixed value η > 0 and set

Sn(θ) = Sη,sn (θ) = {ρ+ 2πit ∈ Ss(θ) | ρ ≤ η

2n
},
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where n ∈ N ∪ {0}. We are interested in the sectors around the rays that land at
the fixed point αc and its symmetrical point α̃c, and iterated preimages of these
(see Figure 7 for an example). We set

S = S(θ1) ∪ · · · ∪ S(θq),

S̃ = S(θ̃1) ∪ · · · ∪ S(θ̃q).

The following proposition assures that the restricted sectors do not overlap, if the
slope s is chosen sufficiently small (see Figure 7). We refer to [BF] for the proof.

Proposition 3.1. Fix η > 0 and 0 < s < 1
2η(2q−1) . The sectors

Ss0(θi), 1 ≤ i ≤ q and Ssn(θ), n ∈ N

are all disjoint, where 2nθ = θj for some 1 ≤ j ≤ q.

A sector, as defined in the right half plane, can be transported to a sector in the
dynamical plane if the map ψc is well defined on exp(Ss(θ)). In that case we define

Sc(θ) = Ssc (θ) = ψc(exp(Ss0(θ))),

which is a neighborhood of the ray Rc(θ) in the dynamical plane.

Figure 7. Examples of relevant sectors in the right half plane for
c ∈ M3/5 and their correspondents in the dynamical plane. 0-
sectors and 1-sectors have been drawn, with slope s < 1

2η(2q−1)

(with q = 5).

In order to have sectors around the rays landing at αc always well defined in
dynamical plane for c ∈ Wp/q, no matter if the Julia set is connected or not, we
shall restrict c-values to a neighborhood of the p/q-limb without root point. To find
out what the appropriate restriction is, we need to study the Böttcher coordinates
further.
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3.1.2. Slits. In this section we want to make precise what the maximal domain of
the Böttcher coordinates is.

Definition. Let τ and ν be such that ν = Gc(0) and log(ψ−1
c (c)) = 2ν + 2πiτ ,

where we have chosen the branch of the logarithm for which 0 ≤ τ < 1. A crit-
ical slit in H is any iterated preimage under doubling of the horizontal segments
{ρ + 2πi(τ + m) | 0 < ρ ≤ 2ν, m ∈ Z}. More precisely, the critical slits are the
horizontal segments (see Figure 8) of the form

{ρ+ 2πi(
τ +m

2n
+ k) | 0 < ρ ≤ 2ν

2n
, 0 ≤ m < 2n, n ∈ N, k ∈ Z}.

The critical slits in C \Kc are the union of the singular points of the vector-field
gradGc and their stable manifolds. Equivalently, these correspond to the preimages
under the polynomial Qc of the ray segment of argument τ and potential less than
2ν; if τ is periodic of period k under doubling, then take iterated preimages of the
ray segment of argument τ and potential between 2ν/2k and 2ν. Critical slits in
the dynamical plane correspond to critical slits in the right half plane.

Figure 8. Critical slits in the dynamical plane and in the right
half plane in a case where τ is not periodic under doubling

Proposition 3.2. Let C∗c denote the plane minus the closed unit disk after remov-
ing all the critical slits according to the chosen c-value. Likewise, let H∗c (respectively
(C \Kc)∗) be the right half plane H (resp. (C \Kc)) after removing all the critical
slits and their translates by 2πiZ. Then, the map ψc : C \ Deν → Uc extends to a
conformal isomorphism

ψc : C∗c −→ (C \Kc)∗

conjugating Q0 to Qc. Hence, the map ψc ◦ exp : Hν → Uc extends to a conformal
map

ψc ◦ exp : H∗c −→ (C \Kc)∗

conjugating the doubling map to Qc.
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Proof (Idea). The extension of ψc is obtained inductively through successive lifts.
The construction is similar to the extension of the Böttcher map in a neighborhood
of infinity to the set Uc. Let k ∈ N ∪ {0} be given and assume that

ψc : C∗c ∩ (C \ Deν/2k )→ {z ∈ (C \Kc)∗|Gc(z) > ν/2k}
is a conformal isomorphism conjugating Q0 to Qc. Then we obtain the extension
to

ψc : C∗c ∩ (C \ Deν/2k+1 )→ {z ∈ (C \Kc)∗|Gc(z) > ν/2k+1}
as the lift of ψc ◦Q0 which extends ψc.

3.2. In the parameter plane. Our goal in this section is to make sure that by
restricting the c-values of Wp/q appropriately, we can have the Böttcher coordinates
always well defined on the relevant sectors. In this way, we shall be able to work
with the sectors on the right half plane, independently of the value of c in the
(restricted) domain.

We define

SM (θ) = SsM (θ) = φ−1
M (exp(S(θ))),

which is a neighborhood of the ray RM (θ) in the parameter plane. Let θ±p/q be the
arguments of the two rays landing at the root point of the limb Mp/q (observe that
θ−p/q = θp and θ−p/q = θp+1).

Definition. Given η > 0 and s < 1
2η(2q−1) we define the set (see Figure 9)

W η,s
p/q = {c ∈Wp/q | c /∈ SsM (θ±p/q) and GM (c) < η}.

Figure 9. Sketch of the neighborhood W η,s
3/5 of the limb M3/5 and

the correspondent of W η,s
3/5 \M3/5 in the right half plane

The main proposition is as follows.

Proposition 3.3. If c ∈ W η,s
p/q, then sectors in S and S̃ are contained in H∗.

Hence, they project to sets Sc and S̃c under (ψc ◦ exp) so that sectors around the
rays landing at αc and α̃c are well defined.
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Proof. There is nothing to prove if c ∈ M∗p/q. Hence, assume c ∈ W η,s
p/q \Mp/q.

From the hypothesis c ∈ W η,s
p/q, it follows directly that log(φM (c)) /∈ Ss(θ±p/q) and

hence, log(φM (c)) cannot belong to any sector in S or S̃. Therefore no preimage
under doubling of log(φM (c)) can belong to any of these sets, since M2 maps S̃ to
S, and S to itself (up to vertical translation). It then follows that no critical slit
can intersect S or S̃.

3.3. Statement. We are now ready to give a precise statement of the Main The-
orem. For technical reasons (to be explained later in Section 4.2.1) we set η′ =
2(q−1)(1−1/p)η and s(η) = 1

2η′(2q−1) . Since η′ > η, we have s(η) < 1
2η(2q−1) .

Main Theorem. Let p/q ∈ (0, 1)∩Q. Then, for any η > 0 and any slope s < s(η),
there exists an injective map

Λp/q : W η,s
p/q −→ C

such that,
• it is a homeomorphism onto its image, which is an open set containing M∗p/q;
• Λp/q |Mp/q

≡ Φqp1; hence it is a homeomorphism between both limbs, holomor-
phic in the interior, and
• the map is quasi-conformal on W η,s

p/q \Mp/q.

Therefore, this map is an extension of the homeomorphisms Φqp1 in [BF]. It
follows without assuming local connectivity of M , that the homeomorphism Φqp1 :
Mp/q →M1/q is compatible with the embedding of the limbs in the plane, and the
same holds for Φqpp′ : Mp/q →Mp′/q.

4. Proof of the Main Theorem

4.1. Idea of the proof. We start with a quadratic polynomial Qc with c in the
p/q-wake. Without leaving the plane and using this polynomial, we define a new
map gc which presents the combinatorial properties of a quadratic polynomial in
the 1/q-wake. This new map is holomorphic everywhere except on the rays landing
at αc and α̃c, where it is not even continuous.

To fix this problem, we choose some sectors around these rays (in the complement
of the filled Julia set) and we define a new map fc which is quasi-regular and equals
gc everywhere outside the sectors. This construction is done (up to where it is
possible) on the right half plane (conveniently restricted), and brought back to the
dynamical plane by means of the Böttcher parametrization. Hence, the necessary
choices are made, once and for all, for all values of c. These choices are made in
a very special way to obtain the following crucial fact: although fc is only quasi-
regular, its qth iterate f qc is holomorphic on the sectors.

Up to this point, fc is only defined on a topological disk X ′c which contains the
Julia set. Moreover fc maps X ′c to another topological disk Xc which contains X ′c
compactly.

In other instances of surgery (for example in [BD] or [BF]), at this point one
would construct an invariant almost-complex structure and integrate it to obtain
a polynomial-like mapping conjugate to fc. After that, the Straightening Theorem
would be applied. In this proof, we shall do both steps at once.

Hence, as in the proof of the Straightening Theorem, the next step consists of
extending fc to a globally defined map Fc which is quasi-regular and conjugate to
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z 7→ z2 on a neighborhood of infinity (precisely on C \ Xc). We then construct
an almost-complex structure σc on Ĉ that is invariant under Fc. It is at this
point where a difficulty arises: we cannot apply the Shishikura Principle [S] which
requires the map to be holomorphic everywhere except on regions where the orbits
pass at most once. Indeed, orbits pass an unbounded number of times through the
sectors where the map Fc is not holomorphic. Hence, it seems a priori that any
invariant complex structure would have an unbounded dilatation ratio on these
sectors. However, this problem is eliminated by using the crucial fact mentioned
above: the qth iterate F qc is holomorphic on the sectors. Therefore, the principle
can be applied to F qc .

We finally apply the Measurable Riemann Mapping Theorem to integrate σc and
obtain a quadratic polynomial QΛ(c) conjugate to Fc.

This process provides the definition of the map Λp/q : W η,s
p/q → C as Λp/q(c) =

Λ(c). In Section 4.3, we prove that this map is continuous and that it is an extension
of the map Φqp1 in [BF]. In Section 4.4, we show that it is injective and quasi-
conformal outside the limb.

4.2. Definition of Λp/q.

4.2.1. The combinatorial construction. In this section, we start with a quadratic
polynomial in the p/q-wake, and we construct a new map gc which exhibits the
combinatorial properties of a quadratic polynomial in the 1/q-wake. This new map
is holomorphic everywhere, except on the rays landing at αc and α̃c, where it has
a shift discontinuity. We also define a topological disk, whose boundary is made of
pieces of equipotential curves joined along these rays, such that gc maps this disk
outside itself (except for some pieces on these external rays).

Let p/q, θi, θ̃i for i = 1, . . . , q, V i and Ṽ i for i = 0, 1, . . . , q − 1 be as in Section
3.1. We first establish some combinatorial facts and then proceed to define the new
map.

Definition of n[i]. For 1 ≤ i ≤ q − 1, we define n[i] to be the smallest positive
integer such that

n[i] p ≡ i (mod q).

We set also n[0] = 0 and n[q] = q.

Dynamically, n[i] is the number of iterates of the quadratic polynomial Qc that
are necessary to map V 0

c to V ic , for 1 ≤ i ≤ q − 1. Observe that 1 ≤ n[i] ≤ q − 1
and that n[i] only depends on p/q. The set {n[0], n[1], . . . , n[q]} is a permutation
of the set {0, 1, . . . , q}.

Definition of k[i]. For 0 ≤ i ≤ q − 1, we define

k[i] = n[i+ 1]− n[i].

Note that
∑q−1

i=0 k[i] = n[q] − n[0] = q. Suppose 0 < i ≤ q − 2. Dynamically, if
k[i] is positive, it coincides with the number of iterates of Qc needed to map V ic to
V i+1
c injectively. If k[i] is negative, we need |k[i]| iterates of Qc to map V i+1

c onto
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V ic injectively. Hence, for 0 ≤ i ≤ q − 2 we have

Q
k[0]
c : V 0

c
2−1−→ V 1

c ,

Q
k[i]
c : V ic

1−1−→ V i+1
c if 1 ≤ i ≤ q − 2 and k[i] > 0,

(Q−k[i]
c |V i+1

c
)−1 : V ic

1−1−→ V i+1
c if 1 ≤ i ≤ q − 2 and k[i] < 0,

Q
k[q−1]
c : V q−1

c
1−1−→

⋃q−1
i=1 Ṽ

i
c ∪ V 0

c .

Lemma 4.1. For all 0 ≤ i ≤ q − 1,

k[i] =

{
n[1] if k[i] > 0,
n[1]− q if k[i] < 0.

Proof. The set {n[0], n[1], . . . , n[q]} is a permutation of {0, 1, . . . , q}, hence there is
a unique element in {0, p, 2p, . . . , (q−1)p} which is congruent to each 0 ≤ i ≤ q−1.
The same is true for {−(q − 1)p, . . . ,−2p,−p, 0} since, for each 0 ≤ i ≤ q − 1, we
have −(q − n[i])p ≡ i (mod q).

We now subtract the equalities

n[i+ 1]p = i+ 1 + nq,
n[i]p = i+mq,

obtaining (n[i + 1] − n[i])p = 1 + (n −m)q. Hence, k[i]p ≡ 1 (mod q). However,
−(q + 1) ≤ k[i] ≤ q − 1. Therefore k[i] equals n[1] or −(q − n[1]) = n[1]− q.

We observe that we have the symmetry n[j] + n[q − j] = q for all j = 0, . . . , q.
Hence, k[j − 1] = k[q − j] and, in particular,

k[q − 1] = k[0] = n[1].

It will be useful also to observe the following property.

Lemma 4.2. For all 0 ≤ i ≤ q,
n[i]p ≤ i+ (p− 1)q.

Proof. We know that n[i]p ≡ i (mod q). Hence n[i]p = i + nq for some n ∈ Z.
Assume the lemma is false, i.e., n > p− 1. Then, n ≥ p and n[i]p ≥ i+ pq, but this
is a contradiction since n[i]p ∈ {0, p, 2p, . . . , (q − 1)p}.

We now proceed to define the map gc. Essentially, gc := Q
k[i]
c on V ic . More

precisely,

Definition. On the complement of the set of rays that land at αc and α̃c we define
the map gc to be

gc(z) =


Q
n[1]
c (z) if z ∈ V ic and k[i] > 0, i = 0, . . . , q − 1,

(Qq−n[1]
c |V i+1

c
)−1(z) if z ∈ V ic and k[i] < 0, i = 1, . . . , q − 2,

gc(−z) if z ∈ Ṽ ic , i = 1, . . . , q − 1.

By the remarks above, it follows that

gc(V ic ) = gc(Ṽ ic ) = V i+1
c for 1 ≤ i ≤ q − 2,

gc(V q−1
c ) = gc(Ṽ q−1

c ) =
⋃q−1
i=1 Ṽ

i
c ∪ V 0

c .

Hence we observe that, combinatorially, the dynamics of gc are those of a quadratic
polynomial in the 1/q–wake. Moreover, gc maps Kc to itself continuously, and is
holomorphic in the interior of Kc.
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Remark 4.3. Observe that points with a finite orbit (periodic or preperiodic) under
Qc are still points with a finite orbit under gc. If Qc has an attracting cycle, then
gc must also have an attracting cycle. Moreover, one can check that gqc = Qqc.

Clearly, this map needs to be modified since it is not continuous on the set of
rays that land either at αc or α̃c (although it is holomorphic everywhere else). We
will now study these shift discontinuities in more detail.

Given any Jordan curve γ we denote by B(γ) the bounded connected component
of C \ γ.

Keeping in mind that our goal is to obtain a polynomial–like mapping, we want
to start by defining, for a given σ > 0, two simple closed curves γ̂′c = γ̂′σ,c and
γ̂c = γ̂σ,c, made out of pieces of equipotentials joined along rays, such that

(1) gc(γ̂′c) = γ̂c, and
(2) B(γ̂′c) ⊂ B(γ̂c).

We call σ0, . . . σq−1 (resp. σ′0, . . . σ
′
q−1) the potential of γ̂c (resp. γ̂′c) on V 0

c , . . . , V
q−1
c .

These potentials are not easy to find since the map gc is a forward iterate of the
polynomial on some regions while in others is a backward one. As a consequence,
we cannot take γ̂c to be an equipotential curve and obtain that its preimage under
gc will be contained inside B(γ̂c). Neither is it possible to construct these curves out
of pieces of equipotentials of potential 2nσ for n ∈ Z. In between two equipotential
curves of potential σ and 2σ respectively, we will consider others of potential

2
1
p σ, 2

2
p σ, . . . , 2

p−1
p σ

and also these ones multiplied by 2, 22, etc., up to a maximum of σ0 = 2q−
q−1
p σ.

The idea for choosing the numbers σi and σ′i is as follows. Set σ′0 = σ. We
know that, to map V ic to V i+1

c we move k[i] (whole) potential levels up or down,
depending on k[i] being positive or negative. This forces σ1 = 2k[0]σ. We take, by
choice, σ′1 = 2−1/pσ1 = 2k[0]−1/pσ and this again forces σ2 = 2k[0]+k[1]−1/pσ. As
before we take by choice σ′2 = 2−1/pσ2 and continue this procedure until we arrive
at

σ′q−1 = 2k[0]+···+k[q−2]− q−1
p σ = 2n[q−1]− q−1

p σ

and hence

σ0 = 2k[q−1]σ′q−1 = 2k[0]+···+k[q−1]− q−1
p σ = 2q−

q−1
p σ,

where we have used that k[0] + · · ·+ k[q − 1] = q.
We summarize this process in the following proposition (see Figure 10).

Proposition 4.4. Given σ > 0, let γ̂′c be the curve made of pieces of equipotential
curves (joined along rays) of potential

σ′i = 2n[i]− i
pσ, on V ic ∪ Ṽ ic , for 0 ≤ i ≤ q − 1.

Let γ̂c be the curve made of pieces of equipotential curves (joined along rays) of
potential

σ0 = 2q−
q−1
p σ on V 0

c ∪
⋃q−1
i=1 Ṽ

i
c ,

σi = 2k[i−1]σ′i−1

= 2n[i]− i−1
p σ on V ic , for 1 ≤ i ≤ q − 1.

Then,
(1) gc(γ̂′c) = γ̂c, and
(2) B(γ̂′c) ⊂ B(γ̂c).



116 BODIL BRANNER AND NÚRIA FAGELLA

Figure 10. Sketch of the curves γ̂c (full-drawn) and γ̂′c (dotted)
and the map gc for a c ∈ W3/5. The equipotentials drawn are of
level 2k/3σ where −3 ≤ k ≤ 12. For i = 1, . . . , q − 1 the level
σi = 21/3σ′i.

Proof. Statement (1) is clear by construction.
For the sets V 1

c , . . . , V
q−1
c , statement (2) is clear from the definition. To prove

it for V 0
c ∪

⋃q−1
i=1 Ṽc, we need to show that σ′i < σ0 for any 0 ≤ i ≤ q − 1, i.e.,

σ′i < 2q−
q−1
p σ, for all 0 ≤ i ≤ q − 1 .

We start with i = 0. Since σ′0 = σ, we only need to show that q − q−1
p > 0, or

equivalently 1
p (q(p− 1) + 1) > 0 which is clear since p ≥ 1.

For 1 ≤ i ≤ q − 1 we must show

n[i]− i

p
< q − q − 1

p
,

or equivalently rearranging terms,

n[i]p− i− pq + q − 1 < 0.

From n[i]p ≤ i+ (p− 1)q (Lemma 4.2) it follows that

n[i]p− i− pq + q − 1 ≤ i+ (p− 1)q − i− pq + q − 1 = −1 < 0

and we are done.

In Proposition 4.4 we refer to an arbitrary σ > 0 and in Propositions 3.1 and
3.3 to an arbitrary η > 0 and a slope s bounded in terms of η. In order to have the
equipotential of the critical point (the figure eight) completely contained in B(γ̂′c)
and, at the same time, ensure that a slope is chosen so that sectors do not overlap
within B(γ̂c), we set η′ = σ0 = 2q−

q−1
p σ and η = 2σ, i.e., η′ = 2(q−1)(1− 1

p )η, and
choose a slope s < 1

2η′(2q−1) = s(η).
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4.2.2. Smoothing on the right half plane. In this section we modify the map gc to
construct a new map fc which will be quasi-regular. The modification will be done
only on the sectors around the rays where the discontinuities occur, i.e., in the sets
Sc and S̃c as defined in Section 3.1.1. Recall that, by Proposition 3.3, these are
well defined sectors in the complement of the filled Julia set for all c ∈ W η,s

p/q.
Since we want the entire process to vary continuously with the parameter c,

we make the construction (up to where it is possible) once and for all on the
right half plane H, or rather on the cylinder H/2πiZ, unfolded as the infinite strip
(0,∞) × [0, 2πi), and hence, once and for all for all values of c. Let us first redo
or translate what we have done in the dynamical plane up to now, to the cylinder
H/2πiZ (see Figure 11).

Let V 0, V i and Ṽ i for i = 1, . . . , q− 1, denote the sets in H/2πiZ corresponding
to V 0

c , V ic and Ṽ ic respectively.
We define the map g to be as follows.

Definition. Let (ρ, 2πθ) ∈ H/2πiZ such that 0 ≤ θ < 1. Then,

g(ρ, 2πθ) =

{
(2k[i]ρ, 2π(2k[i](θ − θi) + θi+1)) if (ρ, 2πθ) ∈ V i for i = 0, . . . , q − 1,
g(ρ, 2π(θ + 1

2 (mod 1))) if (ρ, 2πθ) ∈ Ṽ i for i = 1, . . . , q − 1.

It is easy to check that if Kc is connected, the following diagram commutes:

H/2πiZ g−−−−→ H/2πiZ

ψc◦exp

y yψc◦exp

Cc \Kc
gc−−−−→ Cc \Kc

If Kc is not connected, the same is true for at least all points with potential greater
than the potential of ω = 0. Observe that g is independent of c ∈ Mp/q and it is
holomorphic everywhere except along those rays R(θi) ∪ R(θ̃i) for i = 1, . . . , q for
which k[i− 1] 6= k[i].

In the dynamical plane, we constructed two curves γ̂c and γ̂′c made of pieces
of equipotentials joined along rays, such that B(γ̂′c) ⊂ B(γ̂c) and gc(γ̂′c) = γ̂c.
Following the usual notation, we denote by γ̂ and γ̂′ the corresponding curves in
the cylinder. Then, γ̂ and γ̂′ are made of pieces of equipotential (vertical lines)
of potentials σi and σ′i as defined in Proposition 4.4. (See Figure 11 and compare
with Figure 10.)

We now proceed to restrict the domain of definition of g. To that end, we shall
consider sectors around the rays θi and θ̃i for i = 1, . . . , q and define two C∞ curves
γ and γ′, which equal γ̂ and γ̂′ respectively, outside the sectors. That is, we will
use the sectors to fix the jump discontinuities of the curves γ̂ and γ̂′. We first
observe that these jump discontinuities can only be of three types. After a simple
computation, one obtains the following lemma.
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Figure 11. Sketch of the curves γ̂ (full-drawn) and γ̂′ (dotted)
for all c ∈ W3/5. The figure is drawn out of scale for clarity pur-
poses.

Lemma 4.5. Let σi and σ′i be as in Proposition 4.4. Then, for i = 1, . . . , q − 1,

σ′i
σ′i−1

= 2k[i−1]− 1
p =

{
2n[1]− 1

p := 2J1 if k[i− 1] > 0,
2n[1]−q− 1

p := 2J2 if k[i− 1] < 0,

σi+1

σi
= 2k[i]− 1

p =

{
2n[1]− 1

p = 2J1 if k[i] > 0,
2n[1]−q− 1

p = 2J2 if k[i] < 0,
σ′o
σ′q−1

= σ1
σ0

= 2n[1]−q+ q−1
p := 2J3 ,

where we have set σq = σ0.

Therefore, to join the curve discontinuities we basically need three types of
curves. To be more precise, let Σ = Σs denote a standard sector, i.e., a sector
of slope s centered at the real axis (see Figure 12). Let us choose a C∞ curve,
Γ1, such that it connects the points σ · (1 − 2πis) and 2J1σ · (1 + 2πis), and have
vertical tangents at these two points. Likewise, choose Γ2 (resp. Γ3) joining the
points σ · (1− 2πis) with 2J2σ · (1 + 2πis) (resp. 2J3σ · (1 + 2πis)), and having ver-
tical tangents at these points. Observe that for any n ∈ Z, the homothecy M2n/p

“translates” any of these curves to the right or to the left n/p potential levels in a
holomorphic fashion. Likewise, the vertical translations Tθ(ρ+2πit) = ρ+2πi(t+θ)
move the curves to the sector S(θ).

Finally, we define

γ′ =



γ̂′ on (H/2πiZ) \ (S ∪ S̃),
M σ′i−1

σ

Γ1 + Tθ on S(θ), θ ∈ {θi, θ̃i}, if k[i] = n[1], i = 1, . . . , q − 1,

M σ′i−1
σ

Γ2 + Tθ on S(θ), θ ∈ {θi, θ̃i}, if k[i] = n[1]− q, i = 1, . . . , q − 2,

M σ′q−1
σ

Γ3 + Tθ on S(θ), θ ∈ {θq, θ̃q},
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Figure 12. The standard sector and the curves Γ1, Γ2 and Γ3, for
p/q = 3/5. The potential lines are drawn out of scale for clarity
purposes. In this case we have J1 = 2 − 1

3 , J2 = −3 − 1
3 and

J3 = −3 + 4
3 = −2 + 1

3 .

and

γ =


γ̂ on (H/2πiZ) \ S,
H

2
1
p ,θi

γ′ on S(θi), i = 2, . . . , q − 1,

M σ0
σ

Γ3 + Tθ1 on S(θ1),
M σq−1

σ
Γ1 + Tθq on S(θq),

Let X and X ′ denote the subsets of the cylinder H/2πiZ to the left of γ and γ′

respectively. By construction, γ and γ′ project under ψc ◦ exp to C∞ curves γc and
γ′c in dynamical plane such that X ′c ⊂ Xc, where X ′c := B(γ′c) and Xc := B(γc).

We shall modify the map g on the sectors around the rays of discontinuity and
obtain a new C1 map f : X ′ → X , which induces a quasi-regular map fc : X ′c → Xc.
The procedure to define f on the sectors works as follows. Let us first define three
types of quadrilaterals Ti, i = 1, 2, 3, inside a standard sector Σs, as the subsets
of the sector bounded by the curves Γi, 2−

1
pΓi and the two line segments of the

boundary of Σs (see Figure 13).
Set T (0)

i = Ti and T
(n)
i = 2−

n
p Ti. Choose a diffeomorphism from Γ1 to Γ2 and

extend it to a diffeomorphism D(0) : T1 → T2 such that D(0) determines the same
tangent map on the boundary of the sectors as the identity on the line segment with
negative slope and M2J2−J1 on the line segment with positive slope. Moreover, we
also require that

D(0) ◦M
2

1
p

=M
2

1
p
◦ D(0),

on M
2
−1
p

(Γ1).
Inductively, define

D(n) : T (n)
1 −→ T

(n)
2

such that the following diagram commutes.

T
(n−1)
1

D(n−1)

−−−−→ T
(n−1)
2

M
2
−1
p

y yM
2
−1
p

T
(n)
1

D(n)

−−−−→ T
(n)
2
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T1
2πit

0

Γ2

T2

Σ

D(0)

2πit

ρ0

Σ

Γ3

2πit

Γ1
ρ ρ0

Σ

σ
23

T3

σ
22

σ
2

σ 2σ 22σ

σ
23

σ
22

σ
2

σ 2σ 22σ

σ
2

σ 2σ 22σ

Figure 13. Three types of quadrilaterals and the map D(0)

Finally, set D : Σs → Σs where D|
T

(n)
1

= D(n).
The map D : Σs → Σs is K-quasi-conformal for some constant K > 1. Indeed,

D(0) is a diffeomorphism on a compact set, and D consists of compositions of D(0)

with holomorphic maps.

Remark 4.6. Note that D could be defined as follows. Map the standard sector
Σ by (the principal branch of) the logarithm onto a strip, symmetric around the
real axis, with |y| < κ where tan(κ) = 2πs. We would choose a differentiable map
d : log(Γ1) → log(Γ2) such that d(x1(y), y) = (x2(y), y) where (x1(y), y) ∈ log(Γ1)
and (x2(y), y) ∈ log(Γ2). Then, extend to the left by d(x, y) = (x2(y)+x−x1(y), y),
where (x, y) satisfies x ≤ x1(y). This is a differentiable map which commutes
with any horizontal translation, in particular translation by log(2)/p. Set D =
exp ◦ d ◦ log, then D commutes with any multiplication by a real positive number,
in particular multiplication by 21/p in Σ.

We proceed now to define f on the sectors. Abusing notation let S(θ) denote
the restricted sector S(θ)∩X , and let S′(θ) = S(θ)∩X ′. We shall send each sector
to the standard sector Σ by a conformal isomorphism, so that γ′ is sent to Γ1, Γ2

or Γ3 accordingly. We will apply D or D−1 and then bring the image back to fit
correctly with the image sector. More precisely the procedure can be written as
follows.

For i = 1, . . . , q − 1, we define f : S′(θi)→ S(θi+1) as one of the following three
compositions:

(a) If k[i− 1] = n[1] and k[i] = n[1]− q, then we let f be

S′(θi)
M σ

σ′i−1
◦T−θi

−−−−−−−−−→ Σ D−−−−→ Σ
Tθi+1◦Mσi

σ−−−−−−−−→ S(θi+1).
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(b) If k[i− 1] = n[1]− q and k[i] = n[1], then let f be

S′(θi)
M σ

σ′i−1

◦T−θi
−−−−−−−−−→ Σ D

−1

−→ Σ
Tθi+1◦Mσi

σ−−−−−−−−→ S(θi+1).
(c) Finally, if k[i− 1] = k[i], then we let f be

S′(θi)
g−→ S(θi+1).

For i = q, we define f : S′(θq) −→ S(θ1) as f ≡ g ≡ M2n[1] . For the sectors in
S̃ we define

f : S′(θ̃i)
T
θi−θ̃i−−−−→ S′(θi)

f−→ S(θi+1), i = 1, . . . , q − 1
We end the definition of f by setting f ≡ g everywhere outside the sectors.
The following proposition will be essential later.

Proposition 4.7. The q-th iterate of the map f is holomorphic (wherever defined)
on sectors of S′ ∪ S̃′. In fact, f q =M2q on these regions.

Proof. For any i = 1, . . . , q, the sector S(θi) is mapped onto itself after q iterations
of f (wherever defined). At each step, the map is either holomorphic (if k[i] =
k[i− 1]), or it is basically D or D−1 (composed with holomorphic maps like trans-
lations or special homothecies) depending on k[i] and k[i− 1]. Since D commutes
with M21/p , it only remains to prove that the number of times when D is applied
equals the number of times when D−1 is applied and that the composition of the
homothecies equal M2q . If we set

ε[i] =


0 if k[i− 1] = k[i],
1 if k[i− 1] > k[i],
−1 if k[i− 1] < k[i],

for i = 1, . . . , q, this is equivalent to show that
∑q−1

i=1 ε[i] = 0. To this end, consider
the continuous piecewise linear map k : [0, q − 1] → R which results from joining
the points (i, k[i]) for i = 0, . . . , q − 1 by a straight segment (see Figure 14). Since
k[i] can only take the values n[1] or n[1] − q, every time the graph crosses the
real axis with negative slope, it corresponds to a value ε[i] = 1, while each time
that it is crossed with positive slope, it corresponds to a value ε[i] = −1. Since
k[0] = k[q−1] = n[1], it is clear that the graph of k has to cross the real axis the same
number of times with positive slope as with negative slope. Hence,

∑q−1
i=1 ε[i] = 0.

Figure 14. The graph of the piecewise-linear map k in the proof
of Proposition 4.7 for p/q = 3/5

On any sector S(θ̃i), the map f only differs by a vertical translation from that
on S(θi). Hence the qth iterate is also holomorphic.

To see that f q =M2q on S′ ∪ S̃′ we note that
∏q
i=1M σi

σ′i−1

=M2q .
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4.2.3. Back to dynamical plane. We have constructed a smooth map f on the cylin-
der which is a modification of g on the relevant sectors. Since we are considering
values of c ∈ Wp/q for which the filled Julia set might not be connected, we cannot
apply the Böttcher map to simply project f to a map fc on the complement of
Kc. However, we showed in Proposition 3.3 that the Böttcher coordinates are well
defined on the relevant sectors. Hence, we define fc : S′c → Sc as the map for which
the following diagram commutes.

S′
f−−−−→ S

ψc◦exp

y yψc◦exp

S′c
fc−−−−→ Sc

We complete the definition of fc : X ′c → Xc by setting

fc(z) =

{
fc(−z) if z ∈ S̃′c,
gc(z) if z ∈ X ′c \ int(S′c ∪ S̃′c).

Note that the two definitions coincide on the boundary of S′c ∪ S̃′c.
Remark 4.8. In fact, the diagram commutes as long as the Böttcher coordinates
are well defined, in particular, down to the potential level of ω = 0 (see Figure 15).

Proposition 4.9. The map fc : X ′c → Xc is quasi-regular.

Proof. By construction, fc is holomorphic on X ′c \ (S′c ∪ S̃′c). On the sectors in S′c,
the map is defined as fc = (ψ ◦ exp)◦f ◦ (ψc ◦ exp)−1. Since f is K-quasi-conformal
on sectors, so is fc. This implies that fc is also quasi-conformal on sectors in S̃′c

Remark 4.10. It follows from Proposition 4.7 and the definition of fc that f qc = Qqc
wherever defined on S′c ∪ S̃′c.
4.2.4. Extension of fc to C. The following step is to extend fc to a map Fc : C→
C which is quasi-regular and conjugate to z 7→ z2 in a neighborhood of infinity
(precisely in C \Xc).

For convenience, we shall from now on view the cylinder H/2πiZ as the comple-
ment of the unit disk. Abusing notation, let γ, γ′, X , X ′ and f denote the analogs
to the objects with those names, now viewed on C \ D (see Figure 16). Note that
X and X ′ are annuli with their outer boundaries included. Let A be the closed
annulus bounded by γ and γ′ or, equivalently, A = X \ int(X ′ ∪ D). In this model
space we proceed now to extend f : X ′ → X to F : C \ D→ C \ D.

Choose r > 1 arbitrary and a Riemann mapping R : Ĉ \ (X ∪ D) −→ Ĉ \ Dr2 ,
mapping ∞ to ∞. Since X is locally connected, R extends continuously to a map
on the closed sets R : Ĉ \ int(X ∪ D) −→ Ĉ \ Dr2 . We shall extend R to a quasi-
conformal map R : Ĉ \ int(X ′ ∪D)→ Ĉ \ Dr in such a way that it conjugates f to
Q0(z) = z2 on γ′, the outer boundary of X ′. Start by choosing R on γ′ with this
property, i.e., the following diagram commutes.

γ′
f−−−−→ γ

R
y yR
∂Dr

Q0−−−−→ ∂Dr2
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Figure 15. The maps f : X ′ → X and fc : X ′c → Xc in a
disconnected case. The map (ψc ◦ exp) conjugates these two maps
down to the potential level of 0.
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Figure 16. The setup in the complement of the unit disk

Since we have R defined on the boundaries of the annulus A, and quasi-symmetric,
we can now extend it quasi-conformally to the interior of A. Therefore we have
constructed a quasi-conformal map R : Ĉ \ int(X ′ ∪ D) → Ĉ \ Dr such that it
conjugates f to Q0 on γ′.

We may now define the extension of f as F : Ĉ \ D→ Ĉ \ D where,

F =

{
f on X ′,
R−1 ◦Q0 ◦ R on Ĉ \ (X ′ ∪ D).

Observe that, by construction, F is holomorphic everywhere except on A∪(S∪S̃),
where it is quasi-regular. Hence F is quasi-regular on all C \ D.

Back to dynamical plane, we define Fc : Ĉ→ Ĉ as

Fc =

{
fc on X ′c,
ψc ◦ F ◦ ψ−1

c on Ĉ \X ′c.

Remark 4.11. Observe that if Kc is connected, the equality Fc = ψc ◦F ◦ψ−1
c holds

in all of Ĉ \Kc. If Kc is not connected, it is true on (Ĉ \X ′c)∪ (Sc ∪ S̃c) and, even
more, down to wherever the Böttcher coordinates are well defined, in particular,
down to the potential level of ω = 0.

In any case, Fc is a quasi-regular map which is holomorphic everywhere except in
Ac∪(Sc∪S̃c), where Ac = ψc(A) (see Figure 17). The dilatation ratio is bounded by
a uniform constant since all choices were made once and for all on the complement
of the unit disk.

4.2.5. Holomorphic smoothing and definition of Λp/q. We shall construct an almost
complex structure σc on Ĉ which will be invariant under Fc. As usual, the con-
struction starts in the model space, the complement of the disk. The dependence
on the parameter c occurs mainly through the Böttcher coordinates.

Let σ0 denote the standard complex structure which we put on Ĉ \Dr. Define σ
on Ĉ \ (X ′ ∪D) as the pull back of σ0 by the map R, i.e., σ = R∗σ0. Observe that,
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Figure 17. Shadowed, the region Ac∪(Sc∪S̃c) where Fc : C→ C
is not holomorphic

since R is holomorphic on Ĉ \ (X ∪ D) we have that σ = σ0 on this set. Likewise,
σ has bounded distortion on the annulus A since R is quasi-conformal on A.

We now use the Böttcher coordinates to transport σ to the dynamical plane. To
this end, define σc = (ψ−1

c )∗σ on the set Ĉ\X ′c. Since ψ−1
c is holomorphic, σc = σ0

on Ĉ \Xc and σc has bounded distortion on the annulus Ac. Next we use the map
Fc to extend σc to X ′c by setting inductively

σc = (Fnc )∗σc, on F−nc (Ac), n > 0.

Notice that this is well defined since successive preimages of Ac form a nested
sequence of sets with disjoint interiors (which are annuli as long as we are above
the potential level of 0) (see Figure 18). Moreover, they cover all the complement
of Kc since the orbit of any point in X ′c \ Kc has one and only one point in the
annulus Ac (after removing one of its boundaries). Finally, define σc = σ0 on Kc.

Remark 4.12. These pull backs can be done in the complement of the unit disk
defining an almost complex structure σ on this set. If Kc is connected, then σc =
(ψ−1
c )∗σ on Ĉ \Kc. If not, the equality is true at least down to the potential level

of 0.

Proposition 4.13. Let σc be the almost complex structure on Ĉ defined above.
Then, σc is invariant under Fc (i.e., F ∗c σc = σc) by construction. Moreover, σc is
quasi-conformally equivalent to the standard complex structure.

Proof. By construction, it is clear that F ∗c σc = σc on X ′c. We claim that F ∗c σc = σc
holds also on the annulus Ac. Since Fc maps Ac into Ĉ \ Xc where σc = σ0, we
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Figure 18. The complex structure σc on the successive preimages
of Ac

must show that Fc transports σc on Ac to the standard structure σ0. By definition,
Fc = ψc ◦ R−1 ◦Q0 ◦ R ◦ ψ−1

c . Hence,

F ∗c σ0 = (ψ−1
c )∗ ◦ R∗ ◦Q∗0 ◦ (R−1)∗ ◦ ψ∗cσ0

= (ψ−1
c )∗ ◦ R∗ ◦Q∗0 ◦ (R−1)∗σ0

= (ψ−1
c )∗ ◦ R∗ ◦Q∗0σ0

= (ψ−1
c )∗ ◦ R∗σ0

= (ψ−1
c )∗σ

= σc.

It remains to be shown that σc has bounded distortion. We only need to prove
it in Xc \Kc since σc = σ0 everywhere else.

Let Ex be the infinitesimal ellipse defined at almost any point x ∈ Xc \Kc by
σc. Clearly, if x ∈ Ac, the ratio of the axes is bounded by some constant K1.

We first consider points on the sectors. Note that Fc|S′c is an injective map
and consider the compact set T = Tc =

⋃q−1
i=0 F

−i
c (Ac ∩ Sc). On the set T , σc is

obtained by a finite number of pull backs of the structure on Ac, and therefore the
distortion is bounded by a constant K2. Moreover, T \ γ is a fundamental domain
for F qc : Sc \ T → Sc, i.e., if x ∈ Sc \ T , there exists a unique n > 0 such that
Fnqc (x) ∈ T \ γ. Hence,

Ex = (TxFnqc )−1(EFnqc (x)),
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and then, the ratio of the axis is also bounded by K2 since F qc is holomorphic on
Sc \ T (see Proposition 4.7 and Remark 4.10) (see Figure 19).

Figure 19. The complex structure σc on the sectors Sc. For sim-
plification the sketch is drawn for q = 3. Moreover, the ellipse field
is drawn in a symbolic way underlining that F qc is mapping each
sector holomorphically into itself, so that the ellipse field in this
sense repeats itself.

If x ∈ S̃′c, the bound on the ratio of the axis of Ex is also K2, since Fc(x) =
Fc(−x).

If x /∈ (S′c ∪ S̃′c), then either there exists n such that Fnc (x) ∈ (S′c ∪ S̃′c) or the
orbit of x never enters the sectors. In the first case, let n denote the smallest such
number and then,

Ex = (TxFnc )−1(EFnc (x)).

This ellipse has also bounded dilatation ratio (with K2 as a bound) since Fc is
analytic on all points F jc (x) for j = 0, . . . , n− 1 (that is, outside of the sectors). In
the second case, there exists a unique n > 0 such that Fnc (x) ∈ Ac. By the same
argument, the dilation ratio of Ex is bounded by K1.

This concludes the proof of the proposition.

We proceed now to integrate the almost complex structure. Applying the Mea-
surable Riemann Mapping Theorem, we obtain a quasi-conformal homeomorphism
ϕc : Ĉ → Ĉ which integrates σc. That is, ϕ∗cσ0 = σc and ϕc ◦ Fc ◦ ϕ−1

c : Ĉ → Ĉ
is holomorphic of degree two. If we choose ϕc so that it fixes 0 and ∞ and is of
the form R(z) + O(1), then it is unique and the composition map is a centered
quadratic polynomial. It is also monic, since at infinity the map takes the form

ϕc ◦ Fc ◦ ϕ−1
c (z) = ϕc ◦ ψc ◦ R−1 ◦Q0 ◦ R ◦ ψ−1

c ◦ ϕ−1
c (z) = z +O(z).

Hence, it can be written as

QΛ(c) = z2 + Λ(c),

which gives the definition of Λp/q : W η,s
p/q → C as Λp/q(c) = Λ(c). We will write

Λ(c) whenever the dependence on p/q is understood.
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We observe that Λ is well defined once we have chosen the slope s, the bound
η, the boundaries of X and X ′, the smoothing f of g, the real number r > 0, and
the map R. However, recall that all polynomials outside M are hybrid equivalent.
Hence, the resulting Λ(c) may depend on these choices in the case when the Julia
set is disconnected. This is the reason why we have made all the choices once and
for all in the right half plane (or the complement of D).

4.2.6. The Böttcher map of QΛ(c). A useful consequence of this construction is the
fact that one can obtain an expression for the Böttcher map of the new polynomial
in terms of the integrating map. More precisely, we have the following proposition.

Proposition 4.14. Given c ∈ W η,s
p/q, let ϕc, Λ(c), etc., be as above. Then, the

Böttcher map of QΛ(c) can be written as

ψΛ(c) = ϕc ◦ ψc ◦ R−1 on Ĉ \ Dr.

Proof. By construction, the following diagram commutes.

Ĉ \ Dr
Q0−−−−→ Ĉ \ Dr2

R
x xR

Ĉ \ (X ′ ∪D) F−−−−→ Ĉ \ (X ∪ D)

ψc

y yψc
Ĉ \X ′c

Fc−−−−→ Ĉ \Xc

ϕc

y yϕc
Ĉ \ ϕc(X ′c)

QΛ(c)−−−−→ Ĉ \ ϕc(Xc)

Observe that the map ϕc ◦ψc ◦R−1 : Ĉ \Dr → Ĉ \ϕc(Xc) transports the standard
complex structure to itself and therefore it is holomorphic. Moreover, it maps ∞
to ∞, and it conjugates QΛ(c) to Q0. It follows that it is the Böttcher map of
QΛ(c).

Corollary 4.15. The boundaries of the sets ϕc(Xc) and ϕc(X ′c) are equipotential
curves of the polynomial QΛ(c) of potential 2 log(r) and log(r) respectively.

4.3. Continuity of Λp/q and other properties. The goal of this section is to
prove that the map Λ is continuous and that it coincides with the homeomorphisms
Φqp1 in [BF] on the limbs. Prior to that, we state some lemmas and observe some
important properties of the map.

The following rigidity lemma is crucial for the construction to work.

Lemma 4.16 ([DH2, p. 304]). Let c1 ∈ ∂M and c2 ∈ C. Suppose that the polyno-
mials Qc1 and Qc2 are quasi-conformally conjugate. Then, c1 = c2.

The following lemma is the analog to that in p. 313 of [DH2].

Lemma 4.17. Let {cn}n>0, cn ∈ Mp/q, be a sequence converging to c0 ∈ Mp/q.
Let λn = Λ(cn) for n ≥ 0. Assume λ∗ is an accumulation point of the sequence
{λn}n>0. Then, the polynomials Qλ0 and Qλ∗ are quasi-conformally conjugate.
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Proof. Let ϕn = ϕcn be the integrating maps which are all quasi-conformal maps of
the sphere with dilatation ratio bounded by a uniform constant K, and normalized
so that ϕn(0) = 0, ϕn(∞) = ∞ and ϕn is tangent to R(z) at infinity. Also, ∂ϕn
have support in a fixed compact set. Since the space of such maps is compact with
respect to uniform convergence, there exists a subsequence {ϕnk} which converges
uniformly on compact sets to a K−quasi-conformal map ϕ∗. Abusing notation, we
denote this subsequence by {ϕn}.

The quasi-regular maps Fcn constructed by surgery depend continuously on the
parameter c, since the sectors involved in the construction do so. Then, Fcn ⇒ Fc0
and

Qλn = ϕn ◦ Fcn ◦ ϕ−1
n ⇒ ϕ∗ ◦ Fc0 ◦ ϕ−1

∗ =: Q∗.

Observe that Q∗ must be a holomorphic map of Ĉ of degree two since it is the
uniform limit of holomorphic maps of Ĉ of degree two. Moreover, Q∗ is centered
since the critical point is ϕ∗(0) = 0 and monic because the Böttcher map ϕ∗ ◦ψc0 ◦
R−1 is tangent to the identity at infinity. Hence Q∗ is of the form z2 + λ and in
fact, Q∗(z) = Qλ∗(z) = z2 + λ∗ since Qλn ⇒ Q∗ and λn → λ∗ by hypothesis. We
conclude then that

Qλ∗ ∼qc Fc0 ∼qc Qλ0

and the lemma follows.

Proposition 4.18. The map Λ : W η,s
p/q → C sends the interior of the limb Mp/q to

the interior of the limb M1/q; the boundary of Mp/q to the boundary of M1/q, and
the rest of points in W η,s

p/q \Mp/q to points in C \M .

Proof. If c belongs to a hyperbolic component of Mp/q and hence has an attracting
cycle, then QΛ(c) also has an attracting cycle (see Remark 4.3) and therefore Λ(c)
belongs to a hyperbolic component of M1/q.

If c belongs to a non-hyperbolic component of the interior of Mp/q, then the
Julia set Jc has positive measure and it carries an invariant line field. Following
the surgery construction in detail, as in Section 5.4 in [BF], one can check that
JΛ(c) must also have positive measure and carry an invariant line field. Hence Λ(c)
belongs to a non-hyperbolic component of the interior of M1/q.

Suppose c ∈ ∂Mp/q. Let {cn}n≥0, cn ∈ ∂Mp/q be a sequence of Misiurewicz
points (i.e., ω = 0 is strictly preperiodic under Qcn) converging to c. Recall that
this sequence exists since Misiurewicz points are dense in the boundary of the
Mandelbrot set. Let λ = Λ(c) and λn = Λ(cn). The critical point of Qλn must still
be strictly preperiodic, and hence λn is Misiurewicz and belongs to the boundary
of M1/q. Now, let λ∗ ∈ ∂M1/q be any accumulation point of the sequence {λn}
which must exist since ∂M1/q is a compact set. By Lemma 4.17, the polynomials
Qλ and Qλ∗ are quasi-conformally conjugate, but we also know that λ∗ ∈ ∂M1/q.
Hence, it follows from Lemma 4.16 that λ = λ∗ ∈ ∂M1/q.

Finally, let c ∈ W η,s
p/q \Mp/q. Then, the critical orbit under Qc is unbounded.

It is also clear from the surgery construction that the critical orbit under QΛ(c) is
unbounded and therefore Λ(c) ∈ C \M .

We are now ready to prove the continuity of the map Λ. First observe that, since
the integrating map ϕc conjugates Fc to the polynomial QΛ(c), the critical point
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and the critical value of Fc (i.e., 0 and Fc(0)) must be mapped to the critical point
and the critical value of QΛ(c) respectively (i.e., 0 and Λ(c)). Hence,

Λ(c) = ϕc(Fc(0)) = ϕc(Qn[1]
c (0)),(2)

since 0 ∈ V 0
c \ Sc and Fc = Q

n[1]
c on this set.

Theorem 4.19. The map Λ is continuous.

Proof. We consider two separate cases. Suppose c0 /∈ ∂Mp/q. Let V be a neighbor-
hood of c0 in W η,s

p/q such that V ∩ ∂Mp/q = ∅. We claim that the almost complex
structure σc we constructed, varies continuously with c ∈ V . To see this, observe
that ψc(z) is a holomorphic map in both variables, c ∈ V and z ∈ Uc. Now, σ
is defined once and for all outside D and then transported to Uc by the tangent
map of ψc(z). Finally, Uc is the complement of Kc if this set is connected or the
complement of a figure eight that contains Kc if it is disconnected. In both cases,
the boundary of Uc also moves continuously with c ∈ V and the claim follows.

Hence, we conclude from the Measurable Riemann Mapping Theorem including
dependence on parameters, that the map (c, z) 7→ (c, ϕc(z)) is jointly continuous
where, as above, ϕc is the integrating map. Thus the map c 7→ ϕc(Q

n[1]
c (0)) is

continuous and this equals Λ(c) by Equation (2).
Now suppose c0 ∈ ∂Mp/q. The same argument cannot be applied since there is a

discontinuity of the almost complex structure at all parabolic points. Let {cn}n>0

be an arbitrary sequence of parameter values cn ∈ W η,s
p/q such that cn → c0. Let

λn = Λ(cn) for n ≥ 0. For any accumulation point λ∗ of {λn} we must show that
λ∗ = λ0.

From Lemma 4.17 it follows that Qλ∗ and Qλ0 are quasi-conformally conjugate.
From Proposition 4.18 we know that λ0 ∈ ∂M1/q. Hence we conclude from Lemma
4.16 that λ∗ = λ0.

The following proposition states that the map Λ coincides with the homeomor-
phism Φqp1 constructed in [BF].

Proposition 4.20. If c ∈ Mp/q, then Λp/q(c) = Φqp1(c). Hence, Λp/q is a homeo-
morphism on the limb Mp/q which is holomorphic in the interior.

Proof. In [BF] we constructed for each p/q ∈ (0, 1) ∩ Q a homeomorphism φp/q :
Mp/q → Lq,0, where Lq,0 denotes the 0-limb of the connectedness locus Lq of the
family of polynomials Pλ(z) = λz(1 + z

q )q. The homeomorphism Φqp1 : Mp/q →
M1/q equals the composition φ−1

1/q ◦ φp/q : Mp/q → M1/q. In order to prove that
Λp/q = Φqp1 on Mp/q we shall prove that φ1/q◦Λp/q = φp/q on Mp/q. We shall briefly
recall the surgery construction in [BF] leading to the definition of φp/q , leaving out
technical details.

Let c ∈ Mp/q be chosen arbitrarily. We truncate the plane by cutting away the
wedges V 1

c , . . . , V
q−1
c and identify points equipotentially on the two bounding rays

Rc(θ1) and Rc(θq). We denote this truncated plane by CTc = (V 0
c ∪

⋃q−1
i=1 Ṽ

i
c )/ ∼ .

Then we construct the first return map of Qc on the truncated plane, that is on
V 0
c and each Ṽ jc we apply the smallest number of iterates of Qc that maps the

sets into the allowed space. The first return map of Qc is then Qqc on int(V 0
c ) and

z 7→ Q
q−n[j]
c (−z) on int(Ṽ jc ), j = 1, . . . , q − 1. To obtain the polynomial Pλ with

φp/q(c) = λ, we restrict the first return map, and smoothen it on sectors around the
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lines of discontinuity, ray segments ofRc(θ̃j), j = 1, . . . , q−1, such that the resulting
map, say pc, is quasi-regular. This map is hybrid equivalent to the polynomial Pλ.
In [BF] we argued that other choices in the construction result in maps that are
hybrid equivalent to pc, hence also to Pλ. Starting from QΛ(c) we construct in a
similar manner a map pΛ(c). By a rigidity argument analog to Proposition 2.1, to
finish the proof we only need to show that pc ∼hb pΛ(c).

Observe that if we form the composition gq−jc on V jc , j = 0, 1, . . . , q− 1, then we
obtain gq−jc = Q

q−n[j]
c since

V jc
Qk[j]
c−−−−→ V j+1

c

Qk[j+1]
c−−−−→ . . .

Qk[q−2]
c−−−−−→ V q−1

c

Qk[q−1]
c−−−−−→ V 0

c ∪
⋃q−1
i=1 Ṽ

i
c ,

and k[j]+k[j+1]+ · · ·+k[q−2]+k[q−1] = q−n[j]. It follows that the first return
map of gc equals Qqc on int(V 0

c ) and z 7→ Q
q−n[j]
C (−z) on int(Ṽ jc ). Hence the first

return map of gc coincides with the first return map of Qc.
We note that fc ∼hb QΛ(c), and if we carry through the surgery construction

starting from fc, we obtain a quasi-regular map, say p̃c, that is hybrid equivalent
to pΛ(c). Since we can use the choices made when starting from fc as choices when
starting from Qc we have pc ∼hb p̃c and all together

pΛ(c) ∼hb p̃c ∼hb pc ∼hb Pλ.

Remark 4.21. Note that since ϕc(γc) is an equipotential of level 2 log(r), where r
is the arbitrary number chosen in connection with the Riemann mapping

R : Ĉ \ int(X ∪D)→ Ĉ \ Dr2 ,

it follows that

GM (Λ(c)) = 2 log(r),

if c ∈Wp/q and GM (c) = η, while

GM (Λ(c)) < 2 log(r)

if c ∈W η,s
p/q.

Note that the image Λ(W η,s
p/q) may not be contained entirely in W1/q. The

Riemann mapping R is uniquely determined up to post-composition by a rota-
tion. Hence when η, s and γ have been chosen, then the angle spanned by the arc
R(γ ∩ (V 1 \ (S(θ1) ∪ S(θ2)))) on ∂Dr2 is determined. If this angle is larger than

1
2q−1 , the span of W1/q, then the image of W η,s

p/q cannot fit into W1/q.
Note however that the map Λ does depend on the different choices. Let us

choose for instance an arbitrary c′ ∈ W η,s
p/q \ Mp/q and let r′ > 0 be such that

2 log(r′) = GM (Λ(c′)). Let R′ : Ĉ \ int(X ∪D)→ Ĉ \D(r′)2 be a Riemann mapping
satisfying R′(∞) = ∞. If we continue the construction from here on to obtain
a map Λ′ = Λ′p/q : W η,s

p/q → C, then we can be sure that Λ′(c′) 6= Λ(c′), since
GM (Λ(c′)) < 2 log(r′).

4.4. Injectivity and quasi-conformality of Λp/q outside the limb. To show
that the map Λp/q : W η,s

p/q → C is a homeomorphism in all of its domain onto
its image it remains to solve the problem of injectivity on the complement of the
p/q-limb, W η,s

p/q \Mp/q.
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We shall do so by giving an alternative expression for the integrating map ϕc in
the cases when Kc is not connected. This will lead to a new expression of Λ(c) for
which injectivity will be simpler to check. We remark that this argument cannot
be used for points in the limb but only those in the complement.

To this end, let c0 denote the center of Ωp/q, the main hyperbolic component
of Mp/q (that of period q) and let c ∈ W η,s

p/q \Mp/q. Let ψc0 and ψc be the two
respective Böttcher maps. Recall that the set Uc was defined as the set of those
points in dynamical plane that lie in the complement of the filled figure eight that
corresponds to the potential level of ω = 0. Define the map

hc : Uc −→ C \Kc0

z 7−→ (ψc0 ◦ ψ−1
c )(z).

(See Figure 20.) Note that hc is injective and holomorphic for any c ∈W η,s
p/q \Mp/q.

Remark 4.22. In fact, the set {(c, z) | c ∈ W η,s
p/q \ Mp/q, z ∈ Uc} is open in

(W η,s
p/q \Mp/q)×C. In other words, for any given c̃ ∈W η,s

p/q \Mp/q and any z̃ ∈ Uc̃,
there exists a neighborhood Uc̃ ∈ W η,s

p/q \Mp/q of c̃, and a neighborhood Vz̃ of z̃,
such that Vz̃ ⊂ Uc for all c ∈ Uc̃. Moreover, the map (c, z) 7−→ (c, hc(z)) is well
defined in Uc̃ × Vz̃ and it is holomorphic in both its variables, c and z.

0

Uc

Fc
Gc−1(νc)

eνc

D

Q0

ψc

Fc0

Gc−0
1(νc)

hc

ψc0

Figure 20. The set Uc and the map hc

An important property of this map is that it provides a conjugacy between Fc
and Fc0 .

Lemma 4.23. The following diagram commutes.

Uc
Fc−−−−→ Uc

hc

y yhc
C \Kc0

Fc0−−−−→ C \Kc0
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Proof. Recall (from Remark 4.11) that

Fc = ψc ◦ F ◦ ψ−1
c ,

on Uc, where F is a map defined on the complement of the unit disk independently
of c. Then,

hc ◦ Fc = (ψc0 ◦ ψ−1
c ) ◦ (ψc ◦ F ◦ ψ−1

c ) = ψc0 ◦ F ◦ ψ−1
c .

On the other hand,

Fc0 ◦ hc = (ψc0 ◦ F ◦ ψ−1
c0 ) ◦ (ψc0 ◦ ψ−1

c ) = ψc0 ◦ F ◦ ψ−1
c .

We shall now make a parallel construction for polynomials in W1/q \M1/q. Set
λ0 = Λp/q(c0), this is the center of Ω1/q, the main hyperbolic component of the
1/q-limb. Let Uλ be as above in the dynamical plane of Qλ.

Similarly as before, we define a map

Hλ : Uλ −→ C \Kλ0

z 7−→ (ψλ0 ◦ ψ−1
λ )(z)

which is holomorphic and injective.
The analog to Lemma 4.23 is also true and it is proven in the same way.

Lemma 4.24. The following diagram commutes.

Uλ
Qλ−−−−→ Uλ

Hλ

y yHλ
C \Kλ0

Qλ0−−−−→ C \Kλ0

The two maps hc and HΛ(c), together with the integrating map for the center
point c0, give the following key expression for the integrating map for any c not
inside the limb.

Proposition 4.25. The integrating map ϕc can be written as

ϕc = H−1
Λ(c) ◦ ϕc0 ◦ hc,

on Uc ∩ ϕ−1
c (UΛ(c)).

Proof. On the smaller set C \ X ′c, Proposition 4.25 can also be stated by saying
that the following diagram commutes:

C \X ′c0
ψc0←−−−− C \ (X ′ ∪D)

ψc−−−−→ C \X ′c
ϕc0

y R
y yϕc

C \ ϕc0(X ′c0)
ψλ0←−−−− C \ Dr

ψΛ(c)−−−−→ C \ ϕc(X ′c),
which we have proven in Proposition 4.14.

Observe that this argument cannot be applied deeper since the expression for
the Böttcher maps in terms of R applies only to C \ Dr. However, we shall use
Lemmas 4.23 and 4.24 to pull back the equality.

For any z ∈ Uc∩ϕ−1
c (UΛ(c)), there exists n ≥ 0 such that Fnc (z) ∈ C\X ′c. Hence

the proposition applies to Fnc (z) and we have

HΛ(c) (ϕc (Fnc (z))) = ϕc0 (hc (Fnc (z))) .
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Since z and Fnc (z) are in Uc and the Böttcher maps are defined in this set we have
that

hc (Fnc (z)) = Fnc0 (hc(z)) .(3)

Since z ∈ ϕ−1
c (UΛ(c)), it follows that ϕc(z) ∈ UΛ(c) and hence HΛ(c)(ϕc(z)) is well

defined. Moreover,

Qnλ0

(
HΛ(c) (ϕc(z))

)
= HΛ(c)

(
QnΛ(c) (ϕc(z))

)
.(4)

Now, by construction we know that ϕc (Fnc (z)) = QnΛ(c) (ϕc(z)). Hence, equation
(3) can be written as

HΛ(c)

(
QnΛ(c) (ϕc(z))

)
= ϕc0

(
Fnc0 (hc(z))

)
or, using (4), as

Qnλ0

(
HΛ(c) (ϕc(z))

)
= Qnλ0

(ϕc0 (hc(z))) .

By taking the appropriate branches of the inverse of Qλ0 , we obtain that

HΛ(c) (ϕc(z)) = ϕc0 (hc(z))

and the proposition follows.

If c ∈ W η,s
p/q \ Mp/q, then Q

n[1]
c (0) belongs to the set Uc since n[1] ≥ 1 and

Λ(c) = ϕc(Fc(0)) belongs to the set UΛ(c). Hence the prospective critical value
Fc(0) = Q

n[1]
c (0) belongs to the set Uc∩ϕ−1

c (UΛ(c)) (see Figure 21), and Proposition
4.25 holds for this point. We have then proved

Fc(0)

0

ϕc(∂Uc)

ϕc

QΛ(c)

∂UΛ(c)

Λ(c)=QΛ(c)(0)

Fc

0

∂Uc

Uc∩ϕc
−1(UΛ(c))

Figure 21. The set Uc ∩ ϕ−1
c (UΛ(c)) and the location of Fc(0) =

Q
n[1]
c (0) and of QΛ(c)(0)

Proposition 4.26. Let c ∈W η,s
p/q \Mp/q. Then,

Λ(c) = ϕc

(
Qn[1]
c (0)

)
= H−1

Λ(c)

(
ϕc0

(
hc

(
Qn[1]
c (0)

)))
.

It remains to be shown,

Proposition 4.27. The map c 7→ Λ(c) is a quasi-conformal injection.
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Proof. Let } : Wp/q \Mp/q −→ int
(
V 1
c0 \Kc0

)
be defined by

}(c) = hc(Qn[1]
c (0)) = hc(Qn[1]−1

c (c)).

We shall first show that this map is well defined and it is a holomorphic isomor-
phism.

Clearly, any c ∈ Wp/q \Mp/q can be viewed as well in V pc \Kc. Then, the map
Q
n[1]−1
c sends c to a point in V 1

c \ Kc, which will be mapped, by the Böttcher
coordinates ψc0 ◦ψ−1

c , into V 1
c0 \Kc0. The composition is clearly holomorphic since

all maps are holomorphic with respect to c and z. Moreover, it is proper, onto
and of degree one. To see this, observe that } maps the rays RM (θ±p/q) bounding
Wp/q bijectively onto the rays Rc0(θ1) and Rc0(θ2) bounding V 1

c0 . Indeed, let c ∈
RM (θ−p/q) and be of potential ρ. Then, in dynamical plane, c ∈ Rc(θp) and is

of potential ρ (recall that θp = θ−p/q); the image Q
n[1]−1
c (c) ∈ Rc(θ1) and is of

potential 2n[1]−1ρ. It follows that hc(Q
n[1]−1
c (c)) ∈ Rc0(θ1) and is of potential

2n[1]−1ρ. Hence } maps RM (θ−p/q) bijectively onto Rc0(θ1) and, similarly, it maps
RM (θ+

p/q) bijectively onto Rc0(θ2). To finish the argument we observe that when c
tends to ∂Mp/q, then }(c) tends to ∂Kc0 .

Next, consider the following map:

H : C \M −→ C \Kλ0 ,
λ 7−→ Hλ(λ).

We observe that H is also a holomorphic isomorphism since we may write

H(λ) = ψλ0

(
ψ−1
λ (λ)

)
= ψλ0 (φM (λ)) ,

which is a composition of the two holomorphic isomorphisms φM : C\M −→ C\D
and ψλ0 : C \ D −→ C \Kλ0 .

Finally, observe (see Figure 22) that the map Λ = H−1 ◦ ϕc0 ◦ } is a quasi-
conformal homeomorphism onto its image, being a composition of two holomorphic
isomorphisms and a quasi-conformal map. Indeed, note that

}(W η,s
p/q \Mp/q) = (V 1

c0)2n[1]−1η,s \Kc0

where (V 1
c0)2n[1]−1η,s is the dynamical wake restricted by part of the equipotential of

potential η and slope lines of slope s of sectors around Rc0(θ1) and Rc0(θ2). Thus
the set ϕc0

(
(V 1
c0)2n[1]−1η,s \Kc0

)
is a quasi-conformal image within C \Kλ0 which

is finally mapped by a holomorphic isomorphism onto a subset of C \M .

This ends the proof of the Main Theorem.
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Figure 22. Commutative diagram relating parameter spaces and
dynamical planes, as in Proposition 4.26

Remark 4.28. In this paper we have constructed an extension Λp/q of the home-
omorphism Φqp1 : Mp/q → M1/q and proved that Λp/q is quasi-conformal outside
Mp/q. As noted in the introduction we can deduce that Λp/q (after a restriction –
if necessary – followed by an extension) gives rise to a homeomorphism from Wp/q

onto W1/q which is quasi-conformal outside Mp/q. As further mentioned in the
introduction, the combinatorial extension of Φqp1 described in [BF] assuming local
connectivity of the Mandelbrot is not quasi-conformal outside Mp/q. We end this
paper by describing why this is so. The combinatorial extension is defined for each
c ∈Wp/q \Mp/q with ΦM (c) = eρ+2πiθ as

(ρ, θ) 7→ (ρ,Θ(θ))

where Θ : [θ−p/q, θ
+
p/q] → [θ−1/q, θ

+
1/q] is obtained through combinatorial surgery as

described in section 7.1.2 in [BF]. The map is of the form (ρ, θ) 7→ (ρ, h(θ)) with
h : I1 → I2 a homeomorphism between intervals. Indeed, such a map is quasi-
conformal if and only if h is bi-Lipschitz. In our case, Θ is not Lipschitz, thus Φqp1
is not quasi-conformal. To see that Θ is not Lipschitz we compare para-patterns in
Wp/q and W1/q.

We call a parameter value c an α-Misiurewicz point if the critical point eventually
falls on the fixed point αc. As usual fix q and consider an arbitrary p/q. Each α-
Misiurewicz point in Mp/q is the landing point of q rays of external arguments, say
ν1 < ν2 < · · · < νq. The lengths of the intervals [νj , νj+1] for j = 1, 2, . . . , q − 1
are of the form 2σ

p(j)/D where D is a common denominator depending on c and
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σp(1), σp(2), . . . , σp(q − 1) is a permutation of 0, 1, . . . , q − 2. Note that for p = 1
the permutation is trivial, i.e. (σp(1), σp(2), . . . , σp(q − 1)) = (0, 1, . . . , q − 2), and
for any p we have σp(p) = 0. We consider in the limb Mp/q the tree of – what
we shall call – dominating α-Misiurewicz points together with the tree of external
arguments associated to those. Let cp denote the first dominating α-Misiurewicz
point in Mp/q, i.e., the one of lowest pre-period, and let νp1 , . . . , ν

p
q denote the

external arguments in increasing order of the q rays landing at cp. Let W p
j denote

the sub-wake within Wp/q bounded by RM (νpj ),RM (νpj+1) and cp. Inductively, let
cpj1,...,jk denote the dominating α-Misiurewicz point in the sub-wake W p

j1,...,jk
i.e.,

the one of lowest pre-period, and let νpj1,...,jk,1, . . . , ν
p
j1,...,jk,q

denote the external
arguments in increasing order of the q rays landing at cpj1,...,jk ; here W p

j1,...,jk
denotes

the sub-wake within W p
j1,...,jk−1

bounded by RM (νpj1,...,jk−1
), RM (νpj1,...,jk−1+1) and

cpj1,...,jk−1
. The surgery map Φqp1 respects the tree of dominating α-Misiurewicz

points, and the combinatorial surgery map Θ respects the tree of associated external
arguments, especially

Θ(νpj1,...,jk) = ν1
j1,...,jk .

Consider in particular the two arguments in the kth generation: νpp,...,p,p and
νpp,...,p,p+1. A simple computation shows that

Θ(νpp,...,p,p+1)−Θ(νpp,...,p,p)
νpp,...p,p+1 − ν

p
p,...,p

= 2k(p−1).(5)

Since 2k(p−1) is unbounded when k tends to infinity, the map Θ is not Lipschitz
(see Figures 23 and 24).

Figure 23. Some external arguments of the tree of dominating
α-Misiurewicz points in the 2/3 and 1/3 limbs, corresponding to
levels k = 1 and k = 2. Highlighted, we find the intervals in
equation (5) for these two levels. The ratios are 21 and 22 respec-
tively.
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Figure 24. Some external arguments of the tree of dominating α-
Misiurewicz points in the 3/5 and 1/5 limbs, corresponding to lev-
els k = 1 and k = 2. Highlighted, we find the intervals in equation
(5) for these two levels. The ratio for k = 1 is 47/992−39/992

695/992−693/992 = 22

and 171/3968−163/3968
11111/15872−11109/15872 = 24 for k = 2.
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Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via

585, 08007 Barcelona, Spain

E-mail address: fagella@maia.ub.es

http://www.ams.org/mathscinet-getitem?mr=85j:58089
http://www.ams.org/mathscinet-getitem?mr=88i:58099

	1. Introduction
	2. Preliminaries
	2.1. Dynamics of quadratic polynomials
	2.2. The parameter plane of quadratic polynomials
	2.3. Tools

	3. The Main Theorem
	3.1. In the dynamical plane
	3.2. In the parameter plane
	3.3. Statement

	4. Proof of the Main Theorem
	4.1. Idea of the proof
	4.2. Definition of p/q
	4.3. Continuity of p/q and other properties
	4.4. Injectivity and quasi-conformality of p/q outside the limb

	Acknowledgments
	References

