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Abstract. Let F = (f, g) : R2 → R
2 be a polynomial map such

that detDF (x) is different from zero for all x ∈ R
2. We assume

that the degrees of f and g are equal. We denote by f and g the
homogeneous part of higher degree of f and g, respectively. In this
note we provide a proof relied on qualitative theory of differential
equations of the following result: If f and g do not have real linear
factors in common, then F is injective.

1. Introduction and statement of the main result

Let F = (f, g) : R2 → R
2 be a smooth map such that detDF is

nowhere zero. It is clear that F is a local diffeomorphism, but it is
not always injective. There are very general well known conditions to
ensure that F is a global diffeomorphism, for instance F is a global
diffeomorphism if and only if it is proper (i.e. if inverse images of
compact subsets are compact), or F is a diffeomorphism if and only if
∫ ∞

0

inf
|x|≤s

∥

∥DF (x)−1
∥

∥

−1
ds = ∞. These conditions are due to Banach–

Mazur and Hadamard, respectively, and remain true in more general
spaces, for details, see (Plastock 1974). Another condition, now specif-
ically of R

2 and ensuring just the injectivity of F , is the following
sufficient condition: the real eigenvalues of DF (x), for all x ∈ R

2, are
not contained in an interval of the form (0, ε), for some ε > 0, see
(Fernandes et al. 2007) and (Cobo et al. 2002).

Now, if F is a polynomial map, the statement that F is injective is
known as the real Jacobian conjecture. This conjecture is false, since
Pinchuk constructed, in (Pinchuk 1994), a non injective polynomial
map with nonvanishing Jacobian determinant. So it is natural to ask
for additional conditions in order for this conjecture to hold. In (Braun
and dos Santos Filho 2010), for example, it is shown that it is enough
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to assume that the degree of f is less or equal to 3. On the other hand,
if we assume that detDF (x) = constant 6= 0, then to know if F is
injective is an open problem largely known as the Jacobian conjecture,
see (Bass et al. 1982) and (Van den Essen 2000) for details and for
surveys on the Jacobian conjecture).

In the next theorem, we provide another sufficient condition for the
validity of the real Jacobian conjecture. Our result is not new. Indeed
it is a consequence of the main result of (Cimma et al. 1996). But
our proof is a very elementary dynamical one and relies on qualitative
theory of differential equations.
Before the statement of the theorem, we introduce some notations.

Given a polynomial map p : R2 → R, we write p the homogeneous part
of higher degree of p. If q : R2 → R is another polynomial map, we say
that p and q do not have linear factors in common when there is not a
linear polynomial ax+ by which divides both p and q.

Theorem 1. Let F = (f, g) : R2 → R
2 be a polynomial map such that

detDF is nowhere zero. Assume that the degrees of f and g are equal
and greater than one. Then the following condition is sufficient for the
global injectivity of F : the homogeneous polynomials f and g do not
have real linear factors in common.

The following map shows that the condition in Theorem 1 is not
necessary for global injectivity:

F1 = (f1, g1) =

(

2x− y +
1

27
(3x+ y)3, 3x− y +

4

45
(3x+ y)3

)

.

For this polynomial map F1, we observe that the degree of f1 and g1
is 3, detDF1(x, y) = 1 + 2(3x + y)2/3 > 0, and the homogeneous
polynomials f 1 and g1 have in common the real linear factor 3x + y.
We recall that in (Braun and dos Santos Filho 2010) it is proved that
all the polynomial maps F : R2 → R

2 with one of the components
with degree less than or equal to 3 whose Jacobian is nowhere zero, are
injective, so F1 is injective.

Now we shall show that there are polynomial maps satisfying the as-
sumption of Theorem 1. We consider the following class of polynomial
maps

F2 = (f2, g2) =
(

− y + xk − yk, x+ xk + yk
)

with k ≥ 1 odd.

For these maps the degree of f2 and g2 is k, detDF2(x, y) = 1 +
k(xk−1 + yk−1) + 2k2xk−1yk−1 > 0, and the homogeneous polynomials
f2 and g2 have no common real linear factors, because the unique real
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linear factors of f 2 and g2 are x− y and x+ y, respectively. Hence, by
Theorem 1 it follows that the maps F2 are injective.

In section 2 we summarize some results that we shall use in the proof
of Theorem 1, which will be depicted in section 3. In section 4 we show
that the Pinchuk counterexample to the real Jacobian conjecture does
not satisfy the assumptions of Theorem 1.

2. Preliminary results

A singular point p of a differential system defined in R
2 is a center if

it has a neighborhood filled of periodic orbits with the unique exception
of p. The period annulus of the center p is the maximal neighborhood
P of p such that all the orbits contained in P are periodic except of
course, p.

A center is global if its period annulus is the whole plane R
2.

Let X be a planar polynomial vector field of degree n. The Poincaré
compactified vector field p(X ) corresponding to X is an analytic vector
field induced on S

2 as follows, see for more details (González 1969) or
Chapter 5 of (Dumortier et al. 2006).

Let S
2 = {y = (y1, y2, y3) ∈ R

3 : y21 + y22 + y23 = 1} (the Poincaré
sphere) and TyS

2 be the tangent space to S
2 at the point y. Assume

that X is defined in the plane T(0,0,1)S
2 ≡ R

2. Consider the central
projection f : T(0,0,1)S

2 → S
2. This map defines two copies of X , one

in the open northern hemisphere H
+ and other in the open southern

hemisphere H
−. Denote by X ′ the vector field Df ◦ X defined on S

2

except on its equator S
1 = {y ∈ S

2 : y3 = 0}. Clearly S
1 is identified

to the infinity of R2. In order to extend X ′ to a vector field on S
2

(including S
1) it is necessary that X satisfies suitable conditions. In

the case that X is a planar polynomial vector field of degree n then p(X )
is the only analytic extension of yn−1

3 X ′ to S
2. On S

2 \ S1 = H
+ ∪ H

−

there are two symmetric copies of X , one in H
+ and other in H

−, and
knowing the behavior of p(X ) around S

1, we know the behavior of X at
infinity. The projection of H+ on y3 = 0 under (y1, y2, y3) 7−→ (y1, y2)
is called the Poincaré disc, and it is denoted by D

2. The Poincaré
compactification has the property that S

1 is invariant under the flow
of p(X ).

The singular points of X are called the finite singular points of X
or of p(X ). While the singular points of p(X ) contained in S

1, i.e.
at infinity, are called the infinite singular points of X or of p(X ). It
is known that the infinity singular points appear in pairs diametrally
opposite.
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Assume that the two components of the planar polynomial vector
field X are the polynomials P and Q, such that n is the maximum of
the degrees of P and Q. Denote as usual Pn and Qn the homogeneous
parts of degree n of P and Q, respectively. Then it is known that p(X )
has infinite singular points if and only if there exist real linear factors
ax+ by dividing yPn − xQn, see Chapter 5 of (Dumortier et al. 2006).
In this situation, the endpoints of the straight line ax+ by = 0 provide
the infinite singular points.

Now we assume that ∆ is an open subset of R2 and X is a vector
field of class Cr with r ≥ 1. For the basic definition of ω–limit set or
α–limit set of an orbit, see for instance Chapter 1 of (Dumortier et al.
2006).

Theorem 2 (Poincaré–Bendixson Theorem). Let ϕ(t) = ϕ(t, p) be an
integral curve of X defined for all t ≥ 0, such that ϕ(0) = p and
γ+
p = {ϕ(t) : t ≥ 0} is contained in a compact set K ⊂ ∆. Assume

that the vector field X has at most a finite number of singularities in
K. Then one of the following statements holds.

(i) If ω(p) contains only regular points, then ω(p) is a periodic
orbit.

(ii) If ω(p) contains both regular and singular points, then ω(p) is
a graphic, i.e. a set formed by orbits, each of them tending to
one of the singular points contained in ω(p) as t → ±∞.

(iii) If ω(p) does not contain regular points, then ω(p) is a unique
singular point.

The Poincaré–Bendixson theorem can also be stated for α–limit sets.

The next result is the Poincaré–Hopf theorem for the Poincaré com-
pactification of a polynomial vector field. For a proof, see Theorem
6.30 of (Dumortier et al. 2006).

Theorem 3. Let X be a polynomial vector field. If p(X ) defined on
the Poincaré sphere S

2 has finitely many singular points, then the sum
of their topological indices is two.

The next result of Sabatini, see Theorem 2.3 of (Sabatini 1998), will
play a main role in the proof of Theorem 1.

Theorem 4. Let F = (f, g) be a polynomial map with nonvanishing
Jacobian determinant such that F (0, 0) = (0, 0). Then the following
properties are equivalent.

(1) The origin is a global centre for the polynomial differential sys-
tem ẋ = −ffy − ggy, ẏ = ffx + ggx.

(2) F is a global diffeomorphism of the plane onto itself.
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3. Proof of Theorem 1

We denote (a1, a2) = F (0, 0) and consider the translation A(x, y) =
(x− a1, y − a2). Taking the map G = A◦F , we observe that G(0, 0) =
(0, 0), detDG is nowhere zero, the degrees of the components of G are
equal and the assumption of Theorem 1 is still true for G, because the
higher degree terms of F and G coincide. Moreover, F is injective if
and only if G is injective. In what follows we will assume F = G.

We consider now the function HF : R2 → R defined by HF (x, y) =
(f(x, y)2 + g(x, y)2) /2 and the Hamiltonian vector field associated to
HF , X = (P,Q), i.e

(1)
ẋ = P = −ffy − ggy,
ẏ = Q = ffx + ggx.

It is clear that if (x0, y0) is such that F (x0, y0) = (0, 0), then (x0, y0)
is a singular point of X . Moreover, (x0, y0) is an isolated minimum of
HF and so it is a center of the Hamiltonian system (1) because near
(x0, y0) the level curves of HF are closed.

By Theorem 4, in order to prove Theorem 1 it is enough to prove
that (0, 0) is a global center of the polynomial differential system (1).

We now consider the Poincaré compactification p(X ) of X defined
in S

2.

We claim that p(X ) does not have infinite singular points. Indeed,
there exist singular points of p(X ) at infinity if and only if there exist
linear factors dividing the homogeneous polynomialyPn − xQn, where
n is the maximum degree of P and Q. Let m be the degree of the
polynomials f and g. It is clear that n ≤ 2m − 1. Moreover, by the
Euler’s Theorem for homogeneous functions it follows that

(2) −y(fm fmy + gm gmy)− x(fm fmx + gm gmx) = −m(fm
2 + gm

2),

and so the homogeneous part of degree 2m− 1 of P or Q is not zero,
proving n = 2m− 1. The same calculation (2) also shows that a linear
factor divides yPn − xQn if and only if it divides fm = f and gm = g,
which does not occur by assumption. So the claim is proved and it
follows that S1 is a periodic orbit of p(X ).

We claim that system (1) has no finite singular points, but the origin.
Indeed, P (x, y) = Q(x, y) = 0 is equivalent to

(

fx gx
fy gy

)(

f
g

)

=

(

0
0

)

,

which gives that f(x, y) = g(x, y) = 0, since detDF (x, y) 6= 0. Thus
all the finite singular points of X are zeros of F , and consequently there
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are just a finite number of them. Moreover, by the considerations on
the function HF above, all the finite singular points of X are centers,
each of them producing two centers of p(X ) in S

2 (one in H
+ and one

in H
−). As there are no infinite singular points, it follows by Theorem

3 that the sum of the indices of the singular points of p(X ) is 2. Since
each center has index 1, it follows that p(X ) has only two singular
points, and thus X has only one singular point. This singular point is
(0, 0). Hence, the claim is proven.

Now we shall prove that (0, 0) is a global center of p(X ). Then (0, 0)
will be a global center of X , and by Theorem 4 the proof of Theorem
1 will be finished.

From now on we will consider p(X ) the projection of the Poincaré
compactification on D

2. Since there are no finite singular points, except
the origin, and there are no infinite singular points, the boundary of
the period annulus P of the center (0, 0) is a periodic orbit that we
call γc. If it is S1, we are done. If not, in a neighborhood of γc in the
exterior of the period annulus we take the orbit γa through some point
a in this region, and we claim that γa has its ω–limit or its α–limit set
equal to γc. Indeed by the Poincaré–Bendixson Theorem (see Theorem
2), these ω– or α–limit sets are either a singular point, a graphic, or a
periodic orbit. Since in D

2\P there are no singular points of p(X ), such
ω– and α–limit sets are periodic orbits. This implies that γc outside P
is stable or unstable, i.e. the orbits near it outside P spiral in forward
or backward time to it. This completes the proof of the claim.

Considering now the Poincaré map defined in a transversal section
S through γc, we observe that it is the identity map in S ∩ P, and it
is different from the identity in S ∩ (D2 \ P). But this is impossible,
because the Poincaré map is an analytic function since the vector field
p(X ) is analytic. Therefore, the center is global and this completes the
proof of Theorem 1.

Remark 5. Analyzing the proof of Theorem 1, it is tempting to think
that it can also be done under the hypothesis degree of f greater than
degree of g. The hypothesis (2) in such a version of Theorem 1 would
be that there are no real linear factors dividing f . The problem is that
this assumption guarantees that f is not a submersion, a necessary
condition for detDF to be nowhere zero. Indeed, if f is a submersion,
then the vector field Y = (fy,−fx) has no finite singular points. Since
the Poincaré compactification of Y defined in S

2, an even dimensional
sphere, is a smooth vector field by the Poincaré–Hopf Theorem (see
for instance Theorem 6.30 of (Dumortier et al. 2006), it must have a
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singular point, which will be an infinite one. Then a real linear factor
divides yfy + xfx = mf , where m is the degree of f .

4. Pinchuk counterexample

The above mentioned Pinchuk example is F (x, y) = (p(x, y), q(x, y))
with p and q as follows. Let t = xy − 1, h = t(xt + 1), f = (xt +
1)2(t2 + y) and define p(x, y) = h + f . Observe that p has degree 10.
The polynomial q(x, y) varies for different Pinchuk maps, but always
has the form q(x, y) = −t2−6th(h+1)−u(f, h), where u is an auxiliary
polynomial in f and h, chosen so that the Jacobian determinant of (p, q)
is t2 + (t + f(13 + 15h))2 + f 2, which is strictly positive. This u(f, h)
is a solution of a differential equation.

In the original paper (Pinchuk 1994) it is suggested the following u:

u = −
75

4
f 4 + (−75h− 67)f 3 +

(

225

2
h2 − 201h− 91

)

f 2 − 12fh,

which gives q of degree 40, since the higher degree of q comes from the
term with f 4 contained in u. So the map (p, q) does not satisfy the
hypothesis of Theorem 1 that the degrees of p and q must be equal.
In (Campbell 2011) the polynomial u is taken

u = 170fh+ 91h2 + 195fh2 + 69h3 + 75fh3 + 75h4/4,

which gives q of degree 25, since the higher degree comes from the term
with 75fh3 contained in u. So the degrees of p and q are also not equal.

We remark that 25 is the smallest degree that a component q in a
Pinchuk map can have. For details see (Campbell 2011).
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Resumo

Seja F = (f, g) : R2 → R
2 uma aplicação polinomial tal que detDF (x)

é diferente de zero para todos x ∈ R
2. Assumimos que os graus de f e g

são iguais. Denotamos por f e g as partes homogêneas de maior grau de
f e g, respectivamente. Nesta nota, damos uma demonstração baseada



8 F. BRAUN, J. LLIBRE

na teoria qualitativa de equações diferenciais do seguinte resultado: Se
f e g não têm fatores lineares em comum, então F é injetora.
Palavras-chave: Conjectura Jacobiana real, injetividade global, centro,
compactificação de Poincaré.
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