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Abstract. We present various criteria for the non-existence of positive pe-
riodic solutions of generalized Abel differential equations with periodic coef-
ficients that can change sign. As an application, we obtain some families of
planar vector fields without limit cycles.

1. Introduction

Hilbert’s 16th problem [12] is usually stated as determining the maximum num-
ber of limit cycles (isolated periodic orbits) in terms of the degrees of a polynomial
system in the plane

(1.1)

{
x′ = P (x, y),
y′ = Q(x, y),

where P and Q are polynomials. Although there has long been intense research
interest in this problem, only recently has it been proved that the number of limit
cycles is finite for each individual equation [6, 13].

Bounds on the number of limit cycles have only been found for some families
of polynomial systems, the problems most extensively studied being non-existence
and uniqueness. In most cases, a change of variables proposed by Cherkas [4] is
used to obtain an equivalence between the number of limit cycles of (1.1) for some
P and Q, and the number of positive periodic solutions of an Abel-like differential
equation

(1.2) x′ =
n∑

i=0

Ai(t)xi,

for certain Ai being functions in sin(t) and cos(t). Examples of this transform
can be found in [3, 5, 15]. In all the paper we will assume A0 = 0, then u(t) ≡ 0
is always a solution of (1.2), corresponding with the origin in the planar system,
which is assumed to be a critical point of (1.1).

For n = 3 (the Abel differential equation), Lins Neto [14] showed that (1.2) may
have any number of periodic solutions, and Shashashani [16] proved that if A3(t)
does not change sign then (1.2) has at most three periodic solutions. Gasull and
Llibre [8] proved that if A2(t) does not change sign then (1.2) has at most three
periodic solutions. Álvarez, Gasull and Giacomini [1] proved that if A1(t) ≡ 0 and
there exits a, b ∈ R such that aA2(t) + bA3(t) has definite sign then (1.2) has at
most three periodic solutions.
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The existence or non-existence of an isolated periodic positive solution in gen-
eralized Abel equations has also been studied in recent work [2], [11], [17]. All the
aforementioned studies, however, were based on the constancy of sign of some of
the functions involved in (1.2). The main goal of the present communication is to
show new technics to deal with functions with some “change of sign”.

First, we need to precise the notion of “change of sign”: A non-identically zero
function f will be said to change sign at t0 if there exist t1 < t0 < t2 such that
f(t)f(s) ≤ 0 for all t ∈ (t1, t0), s ∈ (t0, t2), and the inequality is strict for some t
and s.

We shall here study some families of Abel-like equations of any degree, for which
all the coefficients change sign. In particular, we consider

(1.3) x′ = f(t)xα + h(t)xβ, t ∈ [0, 2π],

with α, β ∈ R, α 6= β, α, β ≥ 1, f, h 2π-periodic continuous functions, h(t) with
at most four changes of sign in [0, 2π).

We shall look for conditions on f and h such that (1.3) has no isolated positive
periodic solutions. As we are only interested in positive solutions, we consider (1.3)
when x ≥ 0. Therefore, it is well-defined for any α, β ≥ 1, and there are uniqueness
of solutions. Note that if α, β ≤ 1, after the change of variables x → x−1, it holds
that α, β ≥ 1.

We shall distinguish three cases: h with zero, two or four changes of sign,
summarized in Theorems 2.1, 2.4 and 2.8, respectively. The boundedness of the
number of limit cycles of generalized Abel equations has also been studied in [2, 7],
but when the exponents are natural and one of the coefficients does not change
sign.

Equation (1.3) was motivated by rigid planar polynomial systems, i.e., equations
of the form

(1.4)

{
x′ = y + xF (x, y),
y′ = −x + yF (x, y),

where F is a polynomial. The study of the limit cycles of these systems has also
been considered in [9, 10] for a particular choice of F .

Transforming to polar coordinates, one obtains that the number of limit cycles
of (1.4) is the same as the number of positive periodic solutions of

(1.5) r′ = rF (r cos θ, r sin θ).

Note that a term (monomial) of F in (1.4) contributes to (1.5) as a term of the
form Krm+1 cosk θ sinm−k θ for some constant K. These terms have zero, two, or
four zeros for θ ∈ [0, 2π).

In Section 3, we provide some families of rigid planar vector fields such that the
associated Abel-like equation satisfies the hypotheses of one of Theorems 2.1, 2.4,
or 2.8. In particular, Theorem 3.4 sets that if

F (x, y) = axk1yn−k1 + bxk2yn−k2 + cxk3ym−k3 ,

n is odd, and m is even, then (1.4) either has no limit cycles or is a centre.
Equation (1.4) when F is a quadratic polynomial and the coefficient of the

main term does not change sign is described fully in [9, 10], while the case with
coefficients of the main term changing sign remains open. Some families belonging
to this case are studied in Section 3.
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2. Main results

First, suppose that h does not change sign. Next result set sufficient conditions
for (1.3) having no positive periodic solution.

Theorem 2.1. Let α, β ≥ 1, α 6= β, and assume that f, h are 2π-periodic contin-
uous functions such that ∫ 2π

0
f(t)dt = 0,

and h has no changes of sign. Then (1.3) has no positive periodic solutions if and
only if h(t) 6≡ 0.

Proof. Consider h(t) 6≡ 0, and the perturbed differential equation

(2.6) x′ = f(t)xα + λh(t)xβ.

For λ = 0, one has
x′ = f(t)xα,

an equation in separate variables. Let u be a bounded solution. Integrating over
[0, 2π], one obtains ∫ 2π

0

u′(t)
uα(t)

dt =
∫ 2π

0
f(t)dt = 0.

By a change of variables, ∫ u(2π)

u(0)

1
xα(t)

dx = 0.

Since any primitive of the integrated function is monotonic, then u(2π) = u(0).
Let u(t, x, λ) (u(t) when no confusion is possible) denote the solution of (2.6)

determined by u(0, x, λ) = x.
Suppose that u(t, x, λ) is well-defined at t = 2π for every 0 ≤ λ ≤ 1. Differen-

tiating (2.6) with respect to λ, one obtains

u′λ(t) = αf(t)uα−1(t)uλ(t) + βλh(t)uβ−1(t)uλ(t) + h(t)uβ(t).

Integrating this equation over [0, 2π] gives

uλ(2π) =
∫ 2π

0

(
h(t)uβ(t)e

R 2π
t (αf(s)uα−1(s)+βλh(s)uβ−1(s))ds

)
dt > 0.

Since u(2π) = u(0) for λ = 0, then u(2π) > u(0) for every 0 ≤ λ ≤ 1.
Let prove that if u(t, x, 1) is well-defined at t = 2π, then u(t, x, λ) is well-defined

at t = 2π for every 0 ≤ λ ≤ 1. Therefore, (1.3) has no positive periodic solution
for λ = 1.

By the change of variables t → −t, one may assume that h(t) ≥ 0. Therefore, if
u(t, x, 1) is well-defined at t = 2π, then u(t, x, 1) ≥ u(t, x, λ) ≥ 0 for every λ ≤ 1,
and then u(t, x, λ) is well-defined at t = 2π.

Finally, if h(t) ≡ 0, then (1.3) is an equation in separate variables and one can
check that every positive bounded solution is periodic. ¤

From the previous proof one deduces:

Corollary 2.2. If h does not change sign, is not identically zero, and u is a
bounded solution of (1.3), then

sign(u(2π)− u(0)) = sign (h) .
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The following result is a generalization of Theorem 2.1 when there are more
summands in (1.3).

Corollary 2.3. Let 1 ≤ α < β1, . . . , βn ∈ R, and assume that f , hi, i = 1, . . . , n,
are 2π-periodic continuous functions such that

∫ 2π

0
f(t)dt = 0,

and for every i = 1, . . . , n, hi has no changes of sign, hi(t) 6≡ 0, and hi(t) ≥ 0.
Then

x′ = f(t)xα +
n∑

i=1

hi(t)xβi

has no positive periodic solutions.
The result also holds if α > β1, . . . , βn ∈ R for every i ∈ {1, . . . , n}, or hi(t) ≤ 0

for every i ∈ {1, . . . , n}.
Proof. Proceeding as in the proof of Theorem 2.1, one obtains

uλ(2π) =
∫ 2π

0

(
n∑

i=1

hi(t)uβi(t)e
R 2π

t (αf(s)uα−1(s)+
Pn

i=1 βiλhi(s)u
βi−1(s))ds

)
dt,

which again is positive, and the proof follows identically. ¤

The next two theorems can be applied when the function h changes sign. First,
rewrite (1.3) as

(2.7) x′ =
(
f(t) + g(t)

)
xα + h(t)xβ, t ∈ [0, 2π].

We shall prove that, under appropriate assumptions, there are no positive periodic
solutions.

Theorem 2.4. Let α, β ≥ 1, α 6= β, and assume that f, g, h are 2π-periodic
continuous functions satisfying

(i) f(t− π/2) is odd and f does not change sign in (π/2, 3π/2).
(ii) g is odd.

(iii) h is odd and does not change sign in (0, π).
Then (2.7) has no positive periodic solutions.

Remark. With these hypothesis the functions f and h change sign exactly two
times in each period. Moreover, since f and h are 2π-periodic, then f(t − 3π/2)
and h(t − π) are odd, so after the changes of variables t → −t, t → π − t and
t → π + t, (2.7) satisfies (i), (ii), and (iii).

In order to prove Theorem 2.4, we perturb (2.7) multiplying f by a parameter
λ,

(2.8) x′ = (λf(t) + g(t))xα + h(t)xβ.

We shall prove that (2.8) is a centre for λ = 0 and that all positive periodic
solutions disappear as λ is increased. In particular, for λ = 1, (2.7) has no positive
periodic solutions.

Proposition 2.5. Assume that λ = 0. Then every positive bounded solution of
(2.8) is 2π-periodic.
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Proof. Let u be a positive bounded solution of (2.8). Then u is even because g
and h are odd. Therefore, u(π) = u(−π) and u is periodic. ¤

Now, we are on conditions for proving the theorem.

Proof of Theorem 2.4. Assume that f(t), h(t) ≥ 0 for all t ∈ [0, π/2], and α < β.
Note that this determines the sign of f and h for all t ∈ [0, 2π] and, by periodicity,
for all t ∈ R. The rest of the cases are analogous.

Let u(t, x, λ) denote the solution of (2.8) determined by u(0, x, λ) = 0, and
uλ(t, x, λ) denote the derivative of u(t, x, λ) with respect to λ. To simplify the
notation, we shall write u(t) and uλ(t) when this does not lead to confusion.

Suppose that u(t, x, λ) is well-defined at t = ±π for every 0 ≤ λ ≤ 1. We shall
prove that uλ(π, x, λ) > 0 and uλ(−π, x, λ) < 0. Then

u(π, x, λ)− u(−π, x, λ) > 0 for every λ > 0.

In particular, for λ = 1 it implies that (2.7) has no positive periodic solutions.
Differentiating (2.8) with respect to λ, one obtains

u′λ(t) = f(t)uα(t) + α(λf(t) + g(t))uα−1(t)uλ(t) + βh(t)uβ−1(t)uλ(t),

and integrating over [0, π],

uλ(π) =
∫ π

0
f(t)uα(t)e

R π
t (α(λf(s)+g(s))uα−1(s)+βh(s)uβ−1(s))dsdt

=
∫ π

0
f(t)uα(t)e

R π
t (αu′(s)/u(s)+(β−α)h(s)uβ−1(s))dsdt

=
∫ π

0
f(t)uα(t)uα(π)/uα(t)e

R π
t (β−α)h(s)uβ−1(s)dsdt

= uα(π)
∫ π

0
f(t)e

R π
t (β−α)h(s)uβ−1(s)dsdt.

Note that uα(π) is positive, so that the sign of uλ(π) is the sign of the integral.
Since f(t− π/2) is odd, one may rewrite the foregoing integral as

∫ π

0
f(t)e

R π
t (β−α)h(s)uβ−1(s)dsdt

=
∫ π/2

0
f(t)

(
e
R π

t (β−α)h(s)uβ−1(s)ds − e
R π

π−t(β−α)h(s)uβ−1(s)ds
)

dt.

Now we shall prove that the expression in parentheses is positive for all t ∈ [0, π/2],
so that uλ(π) > 0. One may rewrite that expression as

e
R π

t (β−α)h(s)uβ−1(s)ds − e
R π

π−t(β−α)h(s)uβ−1(s)ds

= e
R π

π/2(β−α)h(s)uβ−1(s)ds
(
e
R π/2

t (β−α)h(s)uβ−1(s)ds − e
− R π−t

π/2 (β−α)h(s)uβ−1(s)ds
)

.

Since β − α > 0, the sign of this expression is the same as the sign of

(2.9)
∫ π/2

t
h(s)uβ−1(s)ds +

∫ π−t

π/2
h(s)uβ−1(s)ds > 0,

as uβ−1 and h are positive in [0, π].
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Finally, we shall prove that uλ(−π) < 0. By the change of variables t → −t in
(2.8), and since g and h are odd,

u′(−t) = (−λf(−t) + g(t))uα(−t) + h(t)uβ(−t).

Then u(−t, λ) = ū(t,−λ), where ū denotes the solutions of (2.8) for f(−t) instead
of f(t). Note that (i) implies that f(−t + π/2) is odd:

f(−t + π/2) = f((−t + 2π/2)− π/2) = −f(t− 2π/2− π/2) = −f(t + π/2).

Now, since f(−t + π/2) is odd and the sign of λ does not affect the foregoing
arguments, uλ(−t, λ) = −ūλ(t,−λ) < 0.

Now, suppose that u(t, x, 1) is a bounded solution of (2.8). We shall prove that
we may assume that u(t, xλ) is defined for t = ±π, 0 ≤ λ ≤ 1. Therefore, by
arguments above, (2.8) has no positive periodic solutions.

By the changes t → −t, t → π + t or t → π − t, one may assume that f(t) ≥ 0
for every t ∈ [0, π/2], and h(t)(β −α) ≥ 0 for every t ∈ [0, π/2]. Then, if u(t, x, λ)
is defined, and 0 ≤ t ≤ π/2, as f(t) ≥ 0, then uλ(t, x, λ) ≥ 0. If π/2 ≤ t ≤ π, then

uλ(t, x, λ) =
∫ π−t

0
f(s)uα(s)e

R π
s (α(λf(τ)+g(τ))uα−1(τ)+βh(τ)uβ−1(τ))dτds

+
∫ t

π−t
f(s)uα(s)e

R π
s (α(λf(τ)+g(τ))uα−1(τ)+βh(τ)uβ−1(τ))dτds.

The first integral is positive since f(s) ≥ 0 for s ∈ (0, π − t), and arguing as for
u(π, x, λ), one obtains that the second integral is positive, so uλ(t, x, λ) ≥ 0.

Then, 0 < u(t, x, λ) < u(t, x, 1) for every 0 ≤ λ ≤ 1, 0 < t ≤ π, as long as both
solutions are defined. As a consequence, u(π, x, λ) is defined for every 0 ≤ λ ≤ 1.
In particular u(π, x, 0) is defined. Since u(t, x, 0) is even, u(−π, x, 0) is defined.
Now, using that uλ(−t, x, λ) = −uλ(t, x,−λ) < 0, 0 < u(t, x, λ) < u(t, x, 0) for
every 0 ≤ λ ≤ 1, −π ≤ t < 0, as long as both solutions are defined. Then
u(−π, x, λ) is defined for every 0 ≤ λ ≤ 1. ¤

The next result follows from the previous proof.

Corollary 2.6. Assume that the hypothesis of Theorem 2.4 holds and u is a
positive bounded solution of (2.7), then

sign
(
u(2π)− u(0)

)
= sign

(
(β − α)f(t)h(s)

)
,

for any t, s ∈ (0, π/2) such that f(t), h(s) 6= 0.

As a generalization of Theorem 2.4, a similar result can be obtained when (2.7)
has more terms.

Corollary 2.7. Let 1 ≤ α < β1, . . . , βn ∈ R, and assume that f , g, hi, i =
1, . . . , n, are 2π-periodic continuous functions such that f(t− π/2) is odd, f does
not change sign in (π/2, 3π/2), g is odd and for every i = 1, . . . , n, hi is odd, and
hi(t) ≥ 0 for all t ∈ (0, π). Then

x′ = (f(t) + g(t))xα +
n∑

i=1

hi(t)xβi

has no positive periodic solutions.
The result also holds if α > β1, . . . , βn ∈ R for every i ∈ {1, . . . , n}, or hi(t) ≤ 0

for all t ∈ (0, π) and every i ∈ {1, . . . , n}.
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Proof. Proceeding as in the proof of Theorem 2.4, one obtains that (2.9) becomes
n∑

i=1

(∫ π/2

t
hi(s)uβi−1(s)ds +

∫ π−t

π/2
hi(s)uβi−1(s)ds

)
> 0,

and the proof follows identically. ¤
Now, suppose that h has four zeros in [0, 2π). Next result gives sufficient con-

ditions for (2.7) having no positive periodic solution.

Theorem 2.8. Let α, β ≥ 1, α 6= β, and assume that f, g, h are 2π-periodic
continuous functions satisfying

(i) f(t− π/2) is odd and f does not change sign in (π/2, 3π/2).
(ii) g is odd and g(t) + g(π − t) does not change sign in (0, π/2), and g(t) +

g(π − t) 6≡ 0.
(iii) h and h(t− π/2) are odd and h does not change sign in (0, π/2).

Then (2.7) has no positive periodic solutions.

Remark. The condition g(t) + g(π − t) does not change sign in (0, π/2) is implied
by g having definite sign in [0, π]. Note that after the changes of variables t → −t,
t → π − t and tπ + t, (2.7) satisfies (i), (ii), and (iii).

Again we shall consider (2.8) and prove that (2.8) is a centre for λ = 0 and that
all positive periodic solutions disappear when λ 6= 0.

Proposition 2.9. Assume that λ = 0. Then every positive bounded solution of
(2.8) is 2π-periodic.

Proof. Let u be a bounded solution of (2.8). As a consequence of g and h are odd,
u is even. Therefore u(π) = u(−π), and u is periodic. ¤

We shall also need to prove that the inequality satisfied by g(t)+g(π−t) induces
a similar inequality on the solutions.

Proposition 2.10. Let u be a positive solution of (2.8). Then u(π−t)−u(t) does
not change sign for all t ∈ [0, π/2]. Moreover, the sign is the same as g(t)+g(π−t).

The same result holds for u(t− π)− u(−t), t ∈ [0, π/2].

Proof. Assume that g(t)+ g(π− t) ≥ 0 (the case g(t)+ g(π− t) ≤ 0 is analogous).
By (2.8), and since f(t− π/2) and h(t− π/2) are odd, one has

u′(π − t) = − (λf(π − t) + g(π − t))uα(π − t)− h(π − t)uβ(π − t)

= (λf(t)− g(π − t))uα(π − t) + h(t)uβ(π − t).

Let v(t) be the solution of

x′ = (λf(t)− g(π − t))xα + h(t)xβ,

determined by v(π/2) = u(π/2). Since g(t) + g(π − t) ≥ 0, g(t) ≥ −g(π − t).
Therefore v is a subsolution of (2.8) (i.e., v′ < (λf(t)+g(t))vα +h(t)vβ) such that
v(π/2) = u(π/2). Then u(t) < v(t) = u(π − t) for all t < π/2. ¤
Proof of Theorem 2.8. Assume that α < β and

f(t), h(t), g(t) + g(π − t) ≥ 0 for every t ∈ [0, π/2].

Note that this determines the sign of f(t), g(t)+g(π−t), and h(t) for all t ∈ [0, 2π]
and, by periodicity, for all t ∈ R. The rest of the cases are analogous.
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We shall prove that uλ(π, x, λ) < 0 and uλ(−π, x, λ) > 0. Then u(π, x, λ1) −
u(−π, x, λ1) < 0 for every λ1 > 0 such that u(t, x, λ) is well-defined at t = ±π for
every 0 ≤ λ. Arguing as in the proof of Theorem 2.8, it implies that (2.7) has no
positive periodic solutions for λ = 1.

Differentiating (2.8) with respect to λ, and integrating over [0, π], one has

uλ(π) = uα(π)
∫ π

0
f(t)e

R π
t (β−α)h(s)uβ−1(s)dsdt.

As f(t− π/2) is odd, one may rewrite the foregoing integral as
∫ π

0
f(t)e

R π
t (β−α)h(s)uβ−1(s)dsdt

=
∫ π/2

0
f(t)

(
e
R π

t (β−α)h(s)uβ−1(s)ds − e
R π

π−t(β−α)h(s)uβ−1(s)ds
)

dt.

Now we shall prove that the expression in parentheses is negative for all t ∈ [0, π/2],
so that uλ(π) < 0. Rewrite that expression as

e
R π

t (β−α)h(s)uβ−1(s)ds − e
R π

π−t(β−α)h(s)uβ−1(s)ds

= e
R π

π/2(β−α)h(s)uβ−1(s)ds
(
e
R π/2

t (β−α)h(s)uβ−1(s)ds − e
− R π−t

π/2 (β−α)h(s)uβ−1(s)ds
)

.

Since β − α > 0, the sign of this expression is the same as the sign of
∫ π/2

t
h(s)uβ−1(s)ds +

∫ π−t

π/2
h(s)uβ−1(s)ds.

As h(t− π/2) is odd, the foregoing expression may be rewritten as

(2.10)
∫ π/2

t
h(s)

(
uβ−1(s)− uβ−1(π − s)

)
ds.

By Proposition 2.10, u(s) < u(π− s). Therefore the above expression is negative.
Finally, as in the proof of Theorem 2.4, using the change of variable t → −t,

one obtains
uλ(−t, λ) = −ūλ(t,−λ) > 0,

where ū denotes the solutions of (2.8) for f(−t) instead of f(t). ¤

The next result follows from the previous proof.

Corollary 2.11. If the hypothesis of Theorem 2.8 holds and u is a positive bounded
solution of (2.7), then

sign
(
u(2π)− u(0)

)
= sign

(− f(t1)(g(π − t2) + g(t2))h(t3)(β − α)
)

for any t1, t2, t3 ∈ (0, π/2) such that f(t1), g(π − t2) + g(t2), h(t3) 6= 0.

As in the previous cases, Theorem 2.8 can be generalized to equations with
more terms of higher degree.

Corollary 2.12. Let 1 ≤ α < β1, . . . , βn ∈ R, and assume that f , g, hi, i =
1, . . . , n, are 2π-periodic continuous functions such that f(t− π/2) is odd, f does
not change sign in (π/2, 3π/2), g is odd, g(t) + g(π − t) does not change sign in
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(0, π/2), g(t) + g(π − t) 6≡ 0, and for every i = 1, . . . , n, hi, hi(t − π/2) are odd,
and hi(t) ≥ 0 for all t ∈ (0, π/2). Then

x′ =
(
f(t) + g(t)

)
xα +

n∑

i=1

hi(t)xβi ,

has no positive periodic solutions.
The result also holds if α > β1, . . . , βn ∈ R for every i ∈ {1, . . . , n}, or hi(t) ≤ 0

for all t ∈ (0, π/2) and every i ∈ {1, . . . , n}.
Proof. Proceeding as in the proof of Theorem 2.8, (2.10) becomes

n∑

i=1

∫ π/2

t
hi(s)

(
uβi−1(s)− uβi−1(π − s)

)
ds.

Since the sign of each of the summands is positive, the whole expression is positive
and the proof follows identically. ¤

3. Applications to rigid planar polynomial vector fields

In the following, we present some families of rigid planar polynomial vector
fields

(3.11)

{
x′ = y + xF (x, y),
y′ = −x + yF (x, y),

such that, after transforming to polar coordinates, x = r cos θ, y = r sin θ,

(3.12) r′ = rF (r cos θ, r sin θ),

satisfies Theorems 2.1, 2.4, or 2.8. I.e., conditions are imposed on F such that
(3.11) has no limit cycles. Equations of this type are considered in [2], with some
of the coefficients having constant sign, and studying the existence of exactly one
limit cycle and the non-existence of limit cycles. Our results extend the non-
existence case.

Write F (x, y) as

F (x, y) =
∑

i,j

cijx
iyj .

Then (3.12) becomes

(3.13) r′ =
∑

i,j

cij cosi θ sinj θri+j+1.

Consider one summand, φ(θ) = cij cosi θ sinj θri+j+1. There are four possibilities
for the changes of sign of φ in [0, 2π):

(1) If i and j are odd, then φ does not change sign.
(2) If i is odd and j is even, then φ(t− π/2) is odd and does not change sign

in (π/2, 3π/2).
(3) If i is even and j is odd, then φ is odd and does not change sign in (0, π).
(4) Finally, if i and j are even, then φ, φ(t − π/2) are odd and φ does not

change sign in (0, π/2).
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Proposition 3.1. The family of rigid planar vector fields

(3.14)





x′ = y + x

(
Fn(x, y) +

∑
k

ckx
2iky2jk

)
,

y′ = −x + y

(
Fn(x, y) +

∑
k

ckx
2iky2jk

)
,

when Fn is a homogeneous polynomial of degree n, n odd, 2ik + 2jk > n, and
ck ≥ 0 for every k, the inequality being strict for some k, has no limit cycles.

The same result holds if 2ik +2jk < n for every k or ck ≤ 0 for every k and the
inequality is strict for some k.

Proof. We shall prove that (3.13) satisfies Corolary 2.3.
First, since n is odd, then all the terms of Fn(r cos θ, r sin θ) are of odd degree

in cos θ and even in sin θ, or odd in sin θ and even in cos θ. Thus, we may write

rFn(r cos θ, r sin θ) =
(
f(θ) + g(θ)

)
rn+1,

where f is the sum of terms odd in cos θ and even in sin θ and g is the sum of
terms odd in sin θ and even in cos θ. Since f, g are periodic, and f(t− π/2) and g
are odd then ∫ 2π

0
f(t)dt =

∫ 2π

0
g(t)dt = 0.

Finally, let hk(θ) = ck cos2ik θ sin2jk θ. Then hk has no changes of sign and,
since ck ≥ 0, hk(θ) ≥ 0. Therefore (3.13) satisfies Corolary 2.3 and has no positive
periodic solutions and hence (3.14) has no limit cycles. ¤

Proposition 3.2. Let n be odd, and consider

F (x, y) =
(n+1)/2∑

k=0

(
akx

2k+1yn−2k−1 + bkx
n−2k−1y2k+1

)
+

∑

2i+2j+1>n

cijx
2i+1y2j .

Assume that ak, cij ≥ 0 for every k and every i, j, with the inequalities being strict
for some i, j, k. Then the family of rigid planar vector fields (1.4) has no limit
cycles.

The same result holds if the second sum is over 2i+2j+1 < n, ak ≤ 0 for every
k or cij ≤ 0 for every i, j, the last two inequalities being strict for some indices.

Proof. We shall prove that, under these assumptions, (3.13) satisfies Corolary 2.7.
Changing (1.4) to polar coordinates, one obtains

r′ = (f(θ) + g(θ)) rn+1 +
∑

2i+2j+1>n

kij(θ)r2i+2j+2,

where

f(θ) =
(n+1)/2∑

k=0

ak cos2k+1 θ sinn−2k−1 θ,

g(θ) =
(n+1)/2∑

k=0

bk cosn−2k−1 θ sin2k+1 θ = sin θ

(n+1)/2∑

k=0

bk cosn−2k−1 θ sin2k θ,

and
hij(θ) = cij cos2i+1 θ sin2j θ, for every 2i + 2j + 1 > n.
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The function f is the sum of monomials odd in cos θ and even in sin θ. Since
ak ≥ 0 for every k, then f(t− π/2) is odd, and f(t) ≥ 0 for all t ∈ (π/2, 3π/2).

The function g is the product of sin θ by a function which is even with respect
to 0. Hence g is odd with respect to 0.

Finally, every hij is odd in cos θ and even in sin θ, and thus hij is odd.Moreover,
since cij ≥ 0, then hij(t) ≥ 0 for all t ∈ (0, π).

Applying Corolary 2.7, (3.13) has no positive periodic solutions, and thus (1.4)
has no limit cycles. ¤
Proposition 3.3. Consider

F (x, y) =
(n+1)/2∑

k=0

(
akx

2k+1yn−2k−1 + bkx
n−2k−1y2k+1

)
+

∑

2i+2j+2>n

cijx
2i+1y2j+1,

and assume that n is odd, and ak, bk, cij ≥ 0 for every i, j, k, the inequalities being
strict for some i, j, k. Then (1.4) has no limit cycles.

The same result holds if the second sum is over n > 2i + 2j + 2, ak ≥ 0 for
every k, bk ≥ 0 for every k, or ck ≥ 0 for every k, the inequalities being strict for
some indices.

Proof. Arguing as in Proposition 3.2, one has that (3.13) satisfies Corolary 2.12
and then (1.4) has no limit cycles. ¤

When F consists of only three terms, Propositions 3.1, 3.2, and 3.3 may be
summarized in the following result:

Theorem 3.4. For given n,m, k1, k2, k3 ∈ N and a, b, c ∈ R, consider the family,

(3.15)

{
x′ = y + x(axk1yn−k1 + bxk2yn−k2 + cxk3ym−k3),
y′ = −x + y(axk1yn−k1 + bxk2yn−k2 + cxk3ym−k3).

Then:
(i) If n is odd and m is even then (3.15) either has no limit cycles or is a centre.
(ii) If n and m are odd and k1 or k2 have the same parity as k3 then (3.15) either

has no limit cycles or is a centre.

Proof. If c = 0, proceeding as in Theorem 2.1, by direct integration of (3.13) one
obtains that (3.15) is a centre. Thus one may assume that c 6= 0.

First, assume that m is even. If k3 is even, then (3.15) satisfies Proposition 3.1.
Thus (3.15) has no limit cycles.

If k3 is odd, there are the following possibilities:
(a) Both k1 and k2 are odd. By Proposition 2.9, all solutions of (1.5) are periodic,

so that (3.15) is a centre. The same holds if a = 0 and k2 odd, b = 0 and k1

odd, or a = b = 0.
(b) Either k1 is even and k2 is odd, or k1 is odd and k2 is even. Since (3.15)

satisfies the hypotheses of Proposition 3.3, it has no periodic solutions. If a
or b are zero is included in one of the other two cases.

(c) Both k1 and k2 are even. Exchanging x and y, one obtains k1 and k2 odd.
Then, proceeding as in the first case, (3.15) is a centre. The same holds if
a = 0 and k1 odd, b = 0 and k2 odd, or a = b = 0.

Finally, assume that m and k3 are odd (if k3 is even, exchanging x and y one
obtains the case k3 odd again). Since n is odd, one of k1 and n − k1 is even and
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the other is odd. The same holds for k2 and n− k2. By hypothesis, k1 and k2 can
not both be even, so that there are the following possibilities:
(a) Both k1 and k2 are odd. By Proposition 2.9, all solutions of (1.5) are periodic,

so that (3.15) is a centre. The same holds if a = 0 and k2 odd, or k1 odd and
b = 0.

(b) Either k1 is even, a 6= 0, and k2 is odd, or k1 is odd, b 6= 0, and k2 is
even. Then (3.15) satisfies the hypotheses of Proposition 3.2, and thus has no
periodic solutions.

¤

In [9] the problem of the number of limit cycles of (1.4) was also considered
for the case of F (x, y) being a polynomial of degree 2. In that work there appear
some open problems when the homogeneous part of degree 2 can change sign. The
normal form in that case is{

x′ = y + x(a + bx + cy + dx2 + exy),
y′ = −x + y(a + bx + cy + dx2 + exy),

with d = 0 or d = 1. A corollary of the foregoing Theorem is that there are no
limit cycles in the case a = d = 0.
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References
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