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Abstract

This paper is concerned with stochastic SIR and SEIR epidemic models on random networks in
which individuals may rewire away from infected individuals at some rate ω, so-called preventive
rewiring. The models are denoted SIR-ω and SEIR-ω, and we focus attention on the early
stages of an outbreak, where we derive expression for the basic reproduction number R0 and the
expected degree of the infectious nodes E(DI) using two different approximation approaches.
The first approach approximates the early spread of an epidemic by a branching process, whereas
the second one uses pair approximation. The expressions are compared with the corresponding
empirical means obtained from stochastic simulations of SIR-ω and SEIR-ω epidemics on Poisson
and scale-free networks. For SIR-ω, and the SEIR-ω case without rewiring of exposed nodes,
both approaches predict the same epidemic threshold and the same E(DI), the latter being very
close to the observed mean degree DI in simulated epidemics over Poisson networks. Above the
epidemic threshold, pairwise models overestimate the value of R0 obtained from the simulations,
which turns out to be very close to the one predicted by the branching process approximation.
For SEIR-ω where exposed individuals also rewire (perhaps unaware of being infected), the two
approaches give different epidemic thresholds, with the branching process approximation being
more in agreement with simulations.

Keywords: network epidemic models, preventive rewiring, branching process, pair
approximation.

1. Introduction

Interactions among individuals in a population can be described by networks of who-contacts-
whom. Studies of contact networks in sexually transmitted diseases have long revealed a high
variability in the number of contacts per individual and highlighted the importance of those indi-
viduals described as ”super-spreaders” for the onset of an epidemic [1, 20]. Similar conclusions
about the importance of super-spread events were drawn from contact tracing data collected
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from recent epidemic outbreaks of airbone-transmitted diseases like those of the severe acute
respiratory syndrome (SARS) in 2002 and 2003 [17, 23].

On the other hand, the risk perception among people during an epidemic outbreak triggers
behavioural responses to lower the risk of contagion [15, 27], the avoidance of contacts with
infected individuals being an example of such responses. This sort of social distancing led to the
idea of disease-avoiding link rewiring and is one of the basis of the so-called adaptive or dynamic
networks. Such a preventive rewiring assumes transmission of information which allows people to
gather knowledge about the disease status of their neighbours. Therefore, in such networks the
contact pattern is no longer static but evolves with the spread of an infectious disease according
to the rules defining the rewiring process [8, 11].

Pairwise models have been the main approach used to analyse epidemic dynamics on adaptive
networks [8, 24, 25, 26, 28, 31]. This class of models was initially developed to deal with processes
defined on regular (random) networks and offers a good description of their dynamics. For
heterogeneous networks, however, its accuracy is far from being satisfactory, especially for its
prediction of the epidemic threshold. Extensions of these models with a higher accuracy in
their predictions (but also with a higher complexity) are the so-called effective degree models.
In these models, in addition to the disease status of nodes, the number of neighbours for each
status is also considered [9, 16, 19].

In addition to pairwise models, stochastic models have been used to analyze epidemic out-
breaks on dynamic networks. If the contact network has a large size and no cycles, it can
be locally described as a tree and the initial phase of an epidemic can be approximated by a
branching process [4]. An example of a stochastic model defined on a dynamic network is the
one developed in [29, 30]. The model assumes that, at a given rate, the identities of neighbours
change stochastically by means of an instantaneous edge swap between a randomly selected
pair of links. So, this neighbour-exchange mechanism is independent of the epidemic dynamics
because it does not depend on the disease status of the involved nodes. In other words, it is not
an example of behavioural response against the presence of the disease. Other models defined
on dynamic networks whose architecture evolves by random edge swapping can be found in [21].

This paper aims mainly at comparing the predictions from both modelling methodolo-
gies (pairwise/stochastic) for the initial phase of Susceptible-Infectious-Recovered (SIR) and
Susceptible-Exposed-Infectious-Recovered (SEIR) epidemics with preventive rewiring among in-
dividuals (so, with an interplay between the spread of the disease and the rewiring process, that
is, between disease’s dynamics and network dynamics). In particular, following [8, 11, 18], in
the SIR model we will assume that susceptible individuals break off connections with infectious
neighbors at a given rate ω and instantaneously reconnect to susceptible or recovered individuals.
As for the SEIR model, we consider two alternative scenarios for the dynamics of exposeds (i.e.,
infected but not infectious individuals). In the first one, exposed individuals rewire away from
their infectious neighbors at a given rate and instantaneously reconnect to any non-infectious
individual in the population. In this case, susceptibles can reconnect to exposeds when breaking
off a connection with infectious neighbors. In the second scenario, exposed individuals do not
rewire at all and susceptibles rewire away both from them and from infectives. From a mod-
eling viewpoint, the rewiring scenario can depend on whether exposed individuals realize they
have been infected (for instance, because they show symptoms) or not (they are asymptomatic).
In both scenarios, the degree distribution changes over time while preserving a constant mean
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degree. A very related situation would be to assume that individuals drop their connections
to infectious (and exposed) individuals but without reconnecting to new individuals. In that
case, the mean degree would also change over time but, as for the initial phase of an epidemic
outbreak, these two variants turn out to be very similar, see the discussion for further comments.

The basic reproduction number R0, namely, the average number of infections produced by a
typical infectious individual when the fraction infected is still negligible, is one of the compared
quantities. Its predicted value will be checked against stochastic simulations carried out on
contact networks with degree distributions that follow a Poisson distribution and a power law,
respectively. It is worth noting that, while the meaning of R0 in randomly mixing homogeneous
populations is straightforward because any infectious individual is as likely as any other to
infect a susceptible one, in heterogeneous networks it requires that one specifies the meaning
of typical individual. In most network models (in particular, for those without multiple levels
of mixing), this definition implies that one has to compute R0 from the average number of
infections per infective once the early correlations of disease status around infectious individuals
have been formed, which takes a couple of generations after the occurrence of the primary
cases. Interestingly, this computation/redefinition of R0 has been obtained under both previous
modelling approaches [6, 12, 22]. In fact, it is well known that both pairwise models and
branching process approximations lead to the same epidemic (or invasion) threshold in networks
without rewiring [13].

In Section 2 we present the SIR and SEIR epidemic models with rewiring, here denoted by
SIR-ω and SEIR-ω respectively. In Section 3 we use the branching process approximation to
analyse the early phase of an SIR-ω epidemic. In particular, we compute R0 and the expected
degree of infectives during this initial phase as a function of the rewiring rate ω. In Section 4
the same approximation is applied to the study of the early stage of an SEIR-ω epidemic under
different types of rewiring processes. Section 5 contains the results of the initial phase obtained
for both epidemic models using the pair approximation with the triple closure introduced in
[11, 18] for heterogeneous networks. In particular, the SEIR-ω pairwise model extends the
one considered in [18] to account for the rewiring of exposed individuals and the possibility
that susceptibles reconnect to exposed ones after breaking off an infectious link. In Section 6
numerical estimates of R0 and the mean degree of infectives during the initial phase are obtained
from continuous-time stochastic simulations on heterogeneous networks. Finally, in Section 7
we discuss the analytical results obtained from both approximations and compare them to the
output of the stochastic simulations. Moreover, we comment about the new insight into the role
of the rewiring process in the SEIR-ω epidemic model.

2. The stochastic network epidemic model with rewiring

Let us define our stochastic network epidemic model. The population consists of a fixed
number N of individuals and the stochastic network model is given by the configuration model
with degree distribution D ∼ {pk} having finite mean µ and finite variance σ2 (e.g. [5]). This
model is defined by all individuals having i.i.d. degrees Di and edge-stubs being pairwise con-
nected completely at random with any loop or multiple edge being removed making the graph
simple. We are primarily interested in the situation where N is large, and the approximations
will rely on this.
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On this network we now define an epidemic model where susceptible individuals may rewire if
they are neighbors of infectious individuals. We start by defining an SIR epidemic where infected
people immediately become infectious and later recover, and then extend the model to an SEIR
model in which infected people are at first exposed (latent), then they become infectious, and
eventually they recover. The latter model is a bit more complicated in that now the rate of
rewiring could differ depending on whether the person rewiring is susceptible or exposed, and
depending on whether the person he/she rewires away from is exposed or infectious.

2.1. The SIR-ω network epidemic with rewiring

In this model individuals are at first susceptible. If an individual gets infected he/she imme-
diately becomes infectious, and after some random time he/she recovers and becomes immune
for the rest of the outbreak. SIR hence stands for susceptible-infectious-recovered (e.g. [4] for
more on SIR and SEIR epidemic models).

The SIR-ω model is defined on the network (described above) as follows. Initially one
randomly selected individual is infectious and the rest are susceptible. An infectious individual
transmits the disease to each of its susceptible neighbors at rate β, and the infectious periods
are i.i.d. following an exponential distribution with rate parameter γ (so infectious individuals
recover at rate γ). Further, susceptible individuals that are neighbors with infectious ones
rewire away from such neighbors independently at rate ω, and reconnect to a randomly selected
non-infectious (i.e., susceptible or recovered) individual in the community.

The SIR-ω network epidemic has the following parameters: β (infection rate), γ (recovery
rate), ω (rewiring rate), and the degree distribution D with mean µ and variance σ2. We will
focus on what happens early on in the epidemic, before a substantial fraction of the community
has been infected.

2.2. The SEIR-ω network epidemic with rewiring

In the SEIR-ω model an infectious individual transmits the disease to each of its susceptible
neighbors at rate β, but, when this happens, the neighbor first becomes exposed (or latent) and
can transmit the disease only after a time delay. In other words, such an exposed individual
becomes infectious at rate ϕ, and at this moment can start infecting each of its susceptible
neighbors at rate β. As before, infectious individuals recover at rate γ.

As regards to rewiring, it can be modelled differently depending on when an individual starts
and stops having a rewiring rate and also depending on which individuals it rewires away from.
Our model considers three different rewiring rates: a susceptible individual rewires away from
each exposed neighbor at a rate ωSE , a susceptible individual rewires away from each infectious
neighbor at a rate ωSI , and an exposed individual rewires away from each infectious neighbor
at a rate ωEI . It is of course possible to also allow for rewiring from other states, e.g. that
susceptible individuals rewire from recovered individuals, but since we are primarily focusing on
the initial phase such rewiring would have negligible effects. If infected people are detected only
when they become infectious (e.g. if the latent period is the same as the incubation period), and
hence individuals rewire away from infected neighbors only when those become infectious and
not while they are exposed, this would correspond to ωSE = 0 and ωSI = ωEI > 0: susceptible
individuals are not aware of exposed (latent) neighbors being infected and hence don’t rewire,
and susceptible but also exposed (latent but unaware) individuals rewire away from infectious
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individuals. We could obtain a second scenario if also exposed (latent) individuals are known to
have been infected (e.g. by contact tracing or because they show some symptoms). We would
then have ωSE = ωSI > 0 and ωEI = 0: susceptible individuals rewire away both from exposed
and infectious neighbors but exposed individuals don’t rewire away since they know they have
already been infected.

3. Branching process approximation of the initial phase of the SIR-ω epidemic

Most stochastic epidemic models allow for a branching process approximation of the early
stages of an outbreak, an approximation which can be made rigorous as the population size
N tends to infinity (e.g. [2]). This applies also to network epidemics – we now describe the
approximation of the current model.

We derive expressions for the basic reproduction number R0, here denoted by RBA
0 to dis-

tinguish its expression from the one obtained using pair approximation. We also derive the
exponential growth rate r (the Malthusian parameter) for the situation that R0 > 1, and the
average degree of infected individuals. Since rewiring is a focus of this paper, we look at both
the degree of newly infected individuals as well as on the average of all infectious individuals,
the latter expected to be smaller than the former since individuals rewire away from infectious
neighbors.

3.1. The basic reproduction number R0

Recall that R0 is defined as the mean number of new infections caused by a typical infected
individual during the early stage of the epidemic. Individuals that get infected during the
early stage will, at the time of infection, have the size biased degree distribution of neighbors,
D̃ ∼ {p̃k}, where p̃k = kpk/

∑
j jpj = kpk/µ (e.g. [3]). One of the neighbors is its infector

whereas the remaining neighbors, with large probability during the early stage of an outbreak,
will be susceptible. When considering the disease progress it is only the D̃− 1 susceptibles that
are of interest since it is not possible to reinfect the infector.

From the derivation above, the mean degree of susceptible neighbours a typical infectee has
during the early stages equals

E(D̃ − 1) =
∑
k

(k − 1)
kpk
µ

= µ− 1 +
σ2

µ

(e.g. [3]). The probability to infect a given such neighbor is obtained by considering the com-
peting events that may happen: there could be an infection (rate β), the neighbor could rewire
away from the infectee (rate ω), or the infectee can recover (rate γ). The probability of infection
hence equals β/(β + γ + ω). The basic reproduction number equals the mean degree multiplied
by the transmission probability, i.e.

RBA
0 =

β

β + γ + ω
E(D̃ − 1) =

β

β + γ + ω

(
µ− 1 +

σ2

µ

)
. (1)

If there is no rewiring (ω = 0), the basic reproduction number equals E(D̃ − 1)β/(β + γ) as is
well known. Therefore, the rewiring reduces R0, as expected.
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3.2. The exponential growth rate r

During the early stage and assuming a large population, the number of infectives in the epi-
demic will asymptotically (as N → ∞) evolve like a branching process. R0 is the corresponding
mean offspring distribution. Another important quantity associated to this branching process
is λ(t), the expected birth rate (rate of new infections) of an infectee having ”age” t, where age
corresponds to time since infection. We now derive λ(t) which in turn will help us derive the
exponential growth rate of the epidemic.

As derived earlier, the average number of susceptible neighbors upon infection is E(D̃−1) =
µ − 1 + σ2/µ, and the infectee will infect each neighbor independently. The average rate of
infection (=”birth”) for each neighbor is obtained by considering what must be fulfilled for
infection to happen. In order to infect a neighbor t time units after infection, the infectee must
still be infectious, the neighbor should not have rewired, and the infectee should not yet have
infected the neighbor. Given this, the infection rate equals β. Since all events are assumed to
follow an exponential distribution this gives us the following expression for λ(t):

λ(t) = E(D̃ − 1)βe−(β+γ+ω)t =

(
µ− 1 +

σ2

µ

)
βe−(β+γ+ω)t. (2)

The average total number of births (infections) is hence
∫∞
0 λ(t)dt = E(D̃−1)β/(β+γ+ω) = R0

as it should be. The mean birth rate λ(t) also determines the exponential growth rate of the
epidemic, i.e. for which r, I(t) ∼ ert (cf. [10]). This r, the Malthusian parameter, is given by
the solution of the Lotka-Volterra equation∫ ∞

0
e−rtλ(t)dt = 1.

For our model this gives us, after a bit of algebra,

r = βE(D̃ − 2)− γ − ω = β

(
µ− 2 +

σ2

µ

)
− γ − ω. (3)

3.3. The mean degree of infectives

We now turn to the mean degree of infectives during the early stages of the epidemic. We
consider two different means. The first one is for newly infected, which in fact has already been
shown: during the early stages newly infected individuals will have degree distribution D̃ (when
considering the degree distribution we also count the non-susceptible infector), so the mean
degree of newly infected individuals equals E(D̃) = µ+ σ2/µ.

The second mean, E(DI), denotes the average number of neighbors of all infectives during
the early stages, not only that of the newly infected ones. As described above, during the early
stage of an outbreak the degree distribution of newly infected equals D̃. However, while still
infectious, an individual loses susceptible neighbors by rewiring: each susceptible neighbor is
lost at a rate ω. The probability that a susceptible neighbor v is still a neighbor (i.e. has not
rewired) t time units after our individual x was infected and given that x is still infectious, is
obtained by conditioning on the potential infection time of the neighbor (v only rewires if not
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yet infected). So, we have

P (v still a neighbor at t) =

∫ t

0
P (v still a neighbor at s | v infected at s)βe−βsds

+ P (v still a neighbor at t | v not infected by t)e−βt

=

∫ t

0
e−ωsβe−βsds+ e−(β+ω)t

=
β

β + ω
+

ω

β + ω
e−(β+ω)t.

Note that we condition on that x remains infectious at t.
When deriving the degree distribution of all infectives during the early stage, we have to take

into account both this decrease of degree with age, but also the fact that, in the exponential
phase of the epidemic (recall that I(t) ∼ ert), ”young” infectives will be over-represented. The
ratio of individuals infected s time units ago over the number of individuals infected at present
equals e−rs due to the exponential growth rate. And only a fraction e−γs of them are still
infectious at present. Consequently, the fraction of infectives that were infected s time units
ago or longer equals e−(r+γ)s, so the age distribution of infectives is exponential with parameter
r + γ (this is the so-called stable age distribution of this branching process, [10]).

The mean degree of all infectives during the early stage is obtained by conditioning on their
age:

E(DBA
I ) = 1 +

∫ ∞

0
E(D̃ − 1)

(
β

β + ω
+

ω

β + ω
e−(β+ω)s

)
(r + γ)e−(r+γ)sds

= 1 + E(D̃ − 1)

(
β

β + ω
+

ω(r + γ)

(β + ω)(β + ω + r + γ)

)
= E(D̃)− ω

β
, (4)

where, as before, E(D̃) = µ+σ2/µ, and r = βE(D̃−2)−γ−ω was defined in Equation (3). This
mean degree should be valid after a couple of generations and will then change as the depletion
of susceptibles will start affecting things.

4. Branching process approximation of the initial phase of the SEIR-ω model

We now study the extended SEIR model recalling that individuals who get infected are
now first latent for an exponentially distributed time with rate parameter ϕ, after which they
become and remain infectious according to earlier rules. Individuals rewire away from infected
neighbors. More precisely, a susceptible individual rewires from each exposed (latent) neighbor
at a rate ωSE and from each infectious neighbor at a rate ωSI . Moreover, exposed individuals
rewire away from infectious neighbors at a rate ωEI . Of course, some of these rewiring intensities
may be zero (cf. Sec 2.2).
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4.1. The basic reproduction number R0 for the SEIR-ω model

During the early stage of an outbreak, at the time of infection an exposed individual e has
degree distribution D̃ as before, one neighbor i being the infector and the remaining neighbors
being susceptible. So, e has E(D̃) − 1 expected susceptible neighbors. However, in the SEIR
model this number can eventually increase by one, provided that e can rewire away from its
infector i (if not yet recovered) and reconnect to a susceptible individual that will become a new
neighbor. The probability for this to happen is ωEI/(ϕ + ωEI). In consequence, the expected
number of susceptible neighbors for e is E(D̃) − 1 + ωEI/(ϕ + ωEI). Any such neighbor, say
s, will get infected if e first becomes infectious (before s rewires away from e) and, then, an
infection occurs (before e recovers or s rewires from e). Hence, the probability for this to happen
is the product of probabilities of these two events, namely, ϕ/(ϕ + ωSE) · β/(β + γ + ωSI). To
conclude, the expected number of neighbors infected by e equals:

RBA
0 =

ϕβ

(ϕ+ ωSE)(β + γ + ωSI)

(
E(D̃)− 1 +

ωEI

ϕ+ ωEI

)
. (5)

By studying Eq. (5) we make the following observations. If there is no rewiring from any
state, RBA

0 reduces to β/(β + γ)E(D̃ − 1), i.e. the same as for the SIR case. Further, RBA
0 is

decreasing in both ωSE and ωSI as expected. However, RBA
0 increases with ωEI . If ωSE = 0

and ωSI = ωEI = ω, the perhaps most realistic example discussed in Sec. 2.2, then RBA
0 can

be increasing in ω for some parameter set-ups, implying that the quicker individuals rewire the
larger epidemic outbreak! The explanation to this is that, when ωEI > 0, the exposed (latent)
individuals can rewire away from their infector, with the effect that they may later (once they
become infectious) infect the new susceptible neighbor.

4.2. The exponential growth rate r for the SEIR-ω model

As with the SIR-ω model, in order to compute the Malthusian parameter r we first derive an
expression for λ(t), the average rate at which an individual, who was infected during the initial
phase of the epidemic, infects new individuals t time units after his/her time of infection.

At the time when an individual gets infected he has on average E(D̃) neighbors, one being
infectious (its infector) and the remaining E(D̃ − 1) will, with large probability since we are in
the beginning of the epidemic, be susceptible. At a rate β, the infected individual infects each of
the E(D̃−1) initially susceptible neighbors t time units after infection if the following conditions
are fulfilled: the infected individual must have terminated the latent period without the neighbor
having rewired, and after that the infectious period should still be active, an infection should not
yet have taken place, and the neighbor should not have rewired. As mentioned in the previous
subsection, it is also possible that the infected individual infects through the link to the infector.
This happens with a rate β at t time units after infection if the following holds: the infected
individual rewired from its infector while still latent, and after this the infected individual has
become infectious, has not yet infected the neighbor nor has the new neighbor rewired. The
above reasoning leads to the following expression for λ(t):

λ(t) = βE(D̃ − 1)P (infectious, neighbor did not rewire, neighbor not yet infected, at t) (6)

+ βP (rewired while latent, infectious, neighbor not rewired, neighbor not infected, at t).
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By conditioning on the end of the latency period, the first probability equals∫ t

0
ϕ e−ϕse−ωSEse−γ(t−s)e−ωSI(t−s)e−β(t−s)ds.

The second probability, now conditioning both on the time of first rewiring and the end of the
latent period, equals∫ t

0

∫ s

0
ϕ e−ϕsωEIe

−ωEIue−ωSE(s−u)e−γ(t−s)e−ωSI(t−s)e−β(t−s)du ds.

Using these expressions in Equation (6) and solving the integrals results in the following expres-
sion for λ(t):

λ(t) = E(D̃ − 1)βϕ
e−(ωSI+γ+β)t − e−(ϕ+ωSE)t

ϕ+ ωSE − (ωSI + γ + β)

+ β
ϕωEI

ωSE − ωEI

(
e−(ϕ+ωEI)t − e−(ωSI+β+γ)t

ωSI + β + γ − (ϕ+ ωEI)
− e−(ϕ+ωSE)t − e−(ωSI+β+γ)t

ωSI + β + γ − (ϕ+ ωSE)

)
.

We now use λ(t) to derive the exponential growth rate r of the epidemic in case it takes off, and
also to confirm our expression for R0. The latter is easy. If we compute

∫∞
0 λ(t)dt using the

expression above we get exactly R0 as defined in Eq. (5), as it should be. As for the Malthusian
parameter r this is given as the solution to the equation

∫∞
0 e−rtλ(t)dt = 1. For the expression

of λ(t) above, this can be shown to be equivalent to

βϕ

(r + ωSI + β + γ)(r + ϕ+ ωSE)

(
E(D̃ − 1) +

ωEI

r + ϕ+ ωEI

)
= 1. (7)

For ωEI > 0, this is a third order equation, but for positive values of r (the relevant values as we
assume R0 > 1) the left hand side is decreasing in r, starting from a value larger than 1 when
r = 0 and decreasing to 0 as r → ∞ implying that there is a unique solution to the equation.

Equation (7) is not explicit but it is still possible to see how various parameters affect the
growth rate. For example, r is increasing in the transmission rate β and the mean degree E(D̃).
As regards to the rewiring rates, r decreases in ωSI and ωSE but increases with the ”harmful”
rewiring rate ωEI . Finally, as we increase the rate to leave the latent state (i.e. making the
latent state shorter), the effect depends on other parameter values, but if we increase ϕ towards
infinity it can be shown that we obtain the expression for r of the SIR-ω model (cf. Eq. (3)) as
expected.

4.3. The mean degree of infectives and related quantities

For the SEIR-ω model it is also possible to derive specific features of infected individuals
during the initial phase of an epidemic. For example, as we did for the SIR-ω case, we can
compute E(DI), the average degree of infectives during the early stage of the outbreak. However,
other mean quantities might be equally relevant as, for instance, the mean degree E(DL) of
infected but still latent individuals, or the mean degree E(DI+L) of either latent or infectives,
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or for that matter the expected number of susceptible neighbors while in one of these states.
For brevity and because some of these quantities have even more complicated expressions, we
compute E(DI) without solving the integrals appearing in the derivation, and indicate how to
modify the derivations if we want to compute another mean.

To compute E(DI), let us pick at random an infectious individual i during the early stage
of an outbreak and let T denote how long ago this individual was infected. We first compute
the expected degree of i conditional upon T = t, denoted by E(Di|T = t). This is done by
conditioning on the duration of the latent period L = s, which must lie between 0 and t since i
is infectious t time units after infection:

E(Di|T = t) =

∫ t

0
E(Di|T = t, L = s)fL(s|T = t)ds.

The second factor is given by fL(s|T = t) = ϕe−ϕse−γ(t−s)/
(∫ t

0 ϕe
−ϕue−γ(t−u)du

)
. As for

the first factor, the individual has E(D̃) expected neighbours at the time of infection, one
being infectious and the rest being susceptible. For the susceptible neighbors we compute the
probability that they are still neighbors. For the infector, it could have lost a neighbor from this
edge only if i rewired away from the infector and the new neighbor later rewired away from i.
We hence get

E(Di|T = t, L = s) = E(D̃ − 1)P (susceptible neighbor did not rewire|L = s, T = t)

+ 1− P (i rewired, and new neighbor rewired away from i|L = s, T = t).

The first probability is obtained by conditioning on whether the susceptible neighbor was infected
or not, and, in the former case, whether the latent period ended before t or not:

P (susceptible neighbor did not rewire |L = s, T = t)

= e−ωSEs

(∫ t

s
βe−(β+ωSI)(u−s)

(∫ t

u
ϕe−(ϕ+ωEI)(v−u)dv + e−(ϕ+ωEI)(t−u)

)
du+ e−(ωSI+β)(t−s)

)
.

The second probability is obtained by conditioning on the time when i rewires away from the
infector, whether the second rewiring happens during latency or infectious period of i, and in
the latter case whether infection takes place or not:

P (i rewired, and new neighbor rewired away from i |L = s, T = t)

=

∫ s

0
ωEIe

−(ωEI+γ)u

(∫ s

u
ωSEe

−ωSE(v−u)dv

)
du

+

∫ s

0
ωEIe

−(ωEI+γ)u

(
e−ωSE(s−u)

∫ t

s
e−(β+ωSI)(v−s)

(
β

∫ t

v
ωEIe

−(ωEI+ϕ)(z−v)dz + ωSI

)
dv

)
du.

It remains to derive the distribution for T , the time since infection. For this we know that
due to the exponential growth rate r of infectives, there is a fraction e−rt to choose from t units
earlier as compared to present time. However, we also require that the individual is infectious at
present, an event which happens with probability

∫ t
0 ϕe

−ϕse−γ(t−s)ds. The probability density
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of T is hence proportional to e−rt
∫ t
0 ϕe

−ϕse−γ(t−s)ds, which after a bit of algebra gives the
following density

fT (t) =
(r + γ)(r + ϕ)

ϕ− γ

(
e−(r+γ)t − e−(r+ϕ)t

)
.

Finally, the expected degree of a randomly chosen infective during the early stages is obtained
by integrating with respect to this density:

E(DBA
I ) =

∫ ∞

0
E(Di|T = t)fT (t)dt. (8)

In order to compare this predicted E(DI) with the one obtained from pair approximation (see
next section), for each set of values of the parameters we obtain the value of r given by the
positive solution of (7) and evaluate the resulting expression of the previous integral.

If we were to compute e.g. the average degree of a latent individual E(DL), we would similarly
condition on the time T since infection of the randomly chosen latent individual. This individual
would have E(D̃) neighbours at the time of infection, one infectious and the rest susceptible, and
we need to compute the probability that these neighbours would not have been lost similarly to
what we did before. We would then integrate this expected value with respect to the probability
density of T , which is proportional to e−rte−ϕt.

5. R0 and E(DI) for the SIR and SEIR pairwise models with rewiring

We now derive expressions for R0 and E(DI) using an alternative deterministic approxima-
tion based on the closed-form equations for the dynamics of pairs of disease status, the so-called
pairwise models. While the SIR-ω pairwise model was already introduced in [18], the SEIR-ω
pairwise model is a generalization of the one also introduced in [18] that includes rewiring of
exposeds and reconnection rules introduced in accordance with it. This extended model will
allow for a better understanding of the impact of rewiring on R0 derived under this approach,
here denoted by RPA

0 .

5.1. The SIR-ω pairwise model

Let [S], [I] and [R] be the expected number of susceptible, infectious, and recovered individ-
uals, respectively. Moreover, let [ij] be the expected number of non-ordered connected i-j pairs,
i.e. pairs whose individuals are in states i and j, and let [ijk] the expected number of connected
non-oriented i-j-k triples (i, j ∈ {S, I,R}). So, if N is the network size and L is the total number
of links in the network, then [S]+ [I]+ [R] = N and [SS]+ [SI]+ [SR]+ [II]+ [IR]+ [RR] = L.

The SIR-ω model formulated in terms of triplets can be closed by assuming the statistical
independence at the level of pairs which leads to the following approximations for the expected
number of the involved triples: [SSI] ≈ (E(D̃) − 1)2[SS][SI]/(µ[S]), [ISI] ≈ 1/2 · (E(D̃) −
1)[SI]2/(µ[S]), and [ISR] ≈ (E(D̃) − 1)[SI][SR]/(µ[S]) with µ = 2L/N being the average
degree (see [18] for details). Note that, since we focus our analysis on the early epidemic stage,
we approximate the expected degree of the susceptible central node of a triple by E(D̃), the
mean degree of a node reached by following a randomly chosen link in a wholly susceptible
population at t = 0, i.e., when the degree distribution is the initial one.
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Upon introducing the triple closure into the original model, the initial dynamics of the SIR-ω
model is determined by

d

dt
[S] = −β[SI],

d

dt
[I] = β[SI]− γ[I],

d

dt
[SI] =

(
βz

(
2[SS]

[S]
− [SI]

[S]

)
− β − γ − ω

)
[SI],

d

dt
[II] = β

(
1 + z

[SI]

[S]

)
[SI]− 2γ[II], (9)

d

dt
[SS] = ω

[S]

N − [I]
[SI]− βz

2[SS]

[S]
[SI],

d

dt
[SR] =

(
γ + ω

[R]

N − [I]

)
[SI]− βz

[IS]

[S]
[SR],

d

dt
[IR] = 2γ[II]− γ[IR] + βz

[IS]

[S]
[SR],

where z := (E(D̃)− 1)/µ. Note that susceptible individuals who break off a link with infectious
neighbours (at a rate ω) reconnect to any susceptible or recovered individual with probability
[S]/(N − [I]) and [R]/(N − [I]), respectively.

The average number of susceptible individuals around an infective is [SI]/[I]. If this quantity
stabilizes to a value ([SI]/[I])∗ during the initial exponential growth of an epidemic, then we
can use it to compute R0 as ([18])

RPA
0 :=

β

γ

(
[SI]

[I]

)∗
. (10)

Moreover, if [II]/[I] and [IR]/[I] also stabilize during the epidemic exponential growth, then
the mean degree of the infectives at the early stage is given by

E(DPA
I ) =

(
[SI]

[I]

)∗
+

(
2[II]

[I]

)∗
+

(
[IR]

[I]

)∗
. (11)

The equations for the dynamics of the local densities [SI]/[I], 2[II]/[I], and [IR]/[I] at the
early stage of the epidemic are obtained from the SIR-ω model by using the standard rules of
differentiation and are given by

d

dt

(
[SI]

[I]

)
= −

(
β + ω + βz

(
[SI]

[S]
− 2[SS]

[S]

)
+ β

[SI]

[I]

)
[SI]

[I]
,

d

dt

(
2[II]

[I]

)
= 2β

(
1 + z

[SI]

[S]

)
[SI]

[I]
−
(
γ + β

[SI]

[I]

)
2[II]

[I]
, (12)

d

dt

(
[IR]

[I]

)
= γ

2[II]

[I]
+ βz

[SI]

[S]

[SR]

[I]
− β

[SI]

[I]

[IR]

[I]
.
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Now, taking the limit when 2[SS]/[S] → µ = 2L/N , and [SI]/[S] → 0, i.e., after the introduction
of the first infectious individuals, we obtain the following limit system:

d

dt

(
[SI]

[I]

)
=

(
β(E(D̃)− 2)− β

[SI]

[I]
− ω

)
[SI]

[I]
,

d

dt

(
2[II]

[I]

)
= 2β

[SI]

[I]
−
(
γ + β

[SI]

[I]

)
2[II]

[I]
, (13)

d

dt

(
[IR]

[I]

)
= γ

2[II]

[I]
− β

[SI]

[I]

[IR]

[I]
.

It is interesting to observe that the rewiring rate ω only appears in the last term of the first
equation. This means that disconnections from infectious individuals play a role in the early
epidemic dynamics, but the way the new connections are created, or even if they occur at all
(dropping of edges), does not play any role at this stage.

The first equation of (13) is decoupled from the other two and has a unique positive equilib-
rium ([SI]/[I])∗ = E(D̃)−2−ω/β, which is globally asymptotically stable. From this equilibrium
and (10), it immediately follows that

RPA
0 =

β

γ

(
E(D̃)− ω

β
− 2

)
(14)

which defines the same epidemic threshold R0 = 1 as RBA
0 (cf. Eq. (1)), but overestimates R0

when it is larger than one. A graphical comparison of the expressions of R0 obtained from each
modelling approach is shown in Fig. 1 using β as a tuning parameter.

The other components of the positive equilibrium of (13) follows upon substituting ([SI]/[I])∗

for [SI]/[I] into the last two equations. Then, from (11), we have

E(DPA
I ) = E(D̃)− ω

β
, (15)

which is the same expression as the one obtained for E(DBA
I ) (cf. Eq. (4)).

5.2. The SEIR-ω pairwise model

According to the rewiring processes described in Section 2.2, and using the same notation
and the triple closure as before, the equations of the SEIR model with the three types of rewiring
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Figure 1: Basic reproduction number of an SIR-ω epidemic. Dashed line corresponds to R0 = 1. PA: pair
approximation. BA: branching process approximation. Open circles (solid dots) correspond to R0 computed from
stochastic simulations of the epidemic on a Poisson (scale-free) network. Each network has a degree sequence
with an average size-biased degree very close to E(D̃) = 10. This fact allows a direct comparison of outputs on
each network. Parameters: γ = 1, ω = 1.

are

d

dt
[S] = −β[SI],

d

dt
[E] = β[SI]− ϕ[E],

d

dt
[I] = ϕ[E]− γ[I],

d

dt
[SI] =

(
−βz

[SI]

[S]
− β − γ − ωSI

)
[SI] + ϕ[SE],

d

dt
[SE] = βz

(
2[SS]

[S]
− [SE]

[S]

)
[SI]− (ϕ+ ωSE) [SE] + ωEI

[S]

N − [I]
[EI] + ωSI

α[E]

N − [I]
[SI],

d

dt
[SS] =

(
−βz

2[SS]

[S]
+ ωSI

[S]

F ([S], [E], [R])

)
[SI] + ωSE

[S]

[S] + [R]
[SE],

d

dt
[SR] =

(
−βz

[SR]

[S]
+ γ + ωSI

[R]

F ([S], [E], [R])

)
[SI] + ωSE

[R]

[S] + [R]
[SE], (16)

d

dt
[EI] = β

(
z
[SI]

[S]
+ 1

)
[SI]− (ϕ+ γ + ωEI) [EI] + 2ϕ[EE],

d

dt
[EE] = βz

[SE]

[S]
[SI]− 2ϕ[EE] + ωEI

[E]

N − [I]
[EI],

d

dt
[ER] = βz

[SR]

[S]
[SI] +

(
γ + ωEI

[R]

N − [I]

)
[EI]− ϕ[ER],

d

dt
[II] = ϕ[EI]− 2γ[II],

d

dt
[IR] = ϕ[ER] + γ (2[II]− [IR]) ,
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with [S]+[E]+[I]+[R] = N , [SS]+[SE]+[SI]+[SR]+[EE]+[EI]+[ER]+[II]+[IR]+[RR] = L,
z = (E(D̃) − 1)/µ, and µ = 2L/N . Moreover, F ([S], [E], [R]) = [S] + [E] + [R] = N − [I] and
α = 1 if ωSE = 0, whereas F ([S], [E], [R]) = [S] + [R] and α = 0 otherwise. In the first
case, susceptible individuals do not disconnect from exposed individuals and can reconnect to
the latter when they rewire away from an infectious neighbor. In the second case (ωSE > 0),
susceptible individuals recognize exposed ones, rewire away from them, and only reconnect to
other susceptibles or to recovered (so, α = 0). Note that, in both cases, F ([S], [E], [R]) → N at
the early stage of an epidemic.

If ωEI > 0, exposed individuals who break off a link with an infectious neighbor randomly
reconnect to any susceptible, recovered, or exposed individual with a probability [S]/(N − [I]),
[R]/(N − [I]), and [E]/(N − [I]), respectively. This corresponds to the situation where latent
individuals are asymptomatic and, so, they do not know they have already got the infection.
Therefore, one can also assume that susceptible individuals do not know the disease status of
the exposed neighbours and take ωSE = 0. Hence, susceptibles who break off a link with an
infected neighbor reconnect to any susceptible, exposed or recovered individual with the same
probabilities as the exposed ones, namely, [x]/(N − [I]) with x ∈ {[S], [E], [R]}.

It is illustrative to check that the limit system for the dynamics of the local densities of
disease status around an infectious individual (see Appendix) only contains one positive term
with a rewiring rate, namely, the one with ωEI as a prefactor. Therefore, the other positive
contributions from the remaining rewiring rates in (16) will not appear when we restrict ourselves
at the early stage of an epidemic. In other words, the precise rules for reconnecting susceptibles
who have rewired away from an infectious neighbor, even if there is no reconnection at all of
those individuals (dropping of edges), does not affect the epidemic dynamics during the initial
phase. This claim, however, is not true for exposed individuals. The positiveness of the last
term of the equation for [SE]/[I] tells us that exposeds enhance the spread of the disease by
rewiring away from infectious neighbors (because they will replace the latter with susceptible
ones) and, hence, RPA

0 must increase under this rewiring. To illustrate this fact, in Fig. 2, we
show the predicted and observed R0 as a function of the infection rate β. The values of the
parameters are the same in both panels except for ωEI , which is zero in the left panel and equals
3 in the right one.

The expression of R0 defined by (10), and computed from the corresponding positive equi-
librium of the limit system for the local densities (see Appendix) is given by

RPA
0 =

ϕ

γ
ξ∗
(
ξ∗ − γ

ϕ
+ 1

)
(17)

with ξ∗ being the positive solution of Eq. (19) (in the Appendix) satisfying ξ∗ > γ/ϕ − 1. If
such a solution ξ∗ does not exist, then ([SI]/[I])∗ = 0 is the only equilibrium value of [SI]/[I]
at the early stage of an epidemic and, hence, RPA

0 = 0. From this expression, the expression of
RBA

0 , and Eq. (19) one obtains the following relationships between estimations of the epidemic
thresholds (see Appendix for details):

• If ωEI = 0, then RPA
0 = 1 ⇐⇒ RBA

0 = 1.

• If ωEI > 0, then RPA
0 = 1 =⇒ RBA

0 > 1, and RBA
0 = 1 =⇒ RPA

0 < 1.
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Figure 2: Basic reproduction number, as a function of the transmission rate β, of an SEIR-ω epidemic with
ωEI = 0 (left) and ωEI = 3 (right). Dashed line corresponds to R0 = 1. PA: pair approximation. BA: braching
process approximation. Open circles (solid dots) correspond to R0 computed from stochastic simulations of the
epidemic on a Poisson (scale-free) network. Each network has a degree sequence with an average size-biased
degree very close to E(D̃) = 10. Parameters: ϕ = 1, γ = 2, ωSI = 1, ωSE = 1. Note that, when ωEI > 0, RBA

0 is
supercritical (i.e. larger than 1) for smaller β than RPA

0 .

That is, both approaches predict the same epidemic threshold when exposed individuals do
not rewire (ωEI = 0), but pair approximation predicts a higher epidemic threshold than the
one obtained from the branching process approximation when ωEI > 0 (see the right panel
in Fig. 2). Moreover, simulations show that RPA

0 always overestimates the basic reproduction
number when RBA

0 > 1. Finally, from Eq. (19) it follows that ξ∗ increases with ωEI , which
implies that RPA

0 also increases with ωEI as expected.
On the other hand, from the positive equilibrium of the limit system for the local densities,

E(DPA
I ) is computed as ([SI]/[I])∗ + (2[II]/[I])∗ + ([EI]/[I])∗ + ([IR]/[I])∗ which gives

E(DPA
I ) = ((1 + ξ∗)ϕ− γ)

ξ∗

β
+

((1 + ξ∗)ϕ− γ)(ξ∗ + 2) + γ)

(1 + ξ∗)ϕ+ ωEI
. (18)

Note that, when there is no rewiring (ωSI = ωSE = ωEI = 0), it follows that E(DPA
I ) = E(D̃), as

expected. Moreover, when ωEI = 0, ξ∗ is given by (20) and E(DPA
I ) can be explicitly expressed

in terms of the model parameters.
For ωEI > 0 and ωSE = 0, the numerical evaluation of the previous expression and its

comparison with that of E(DBA
I ) show that both predictions are very close to each other (see

Fig. 3). Indeed, they are graphically distinguishable only for low values of β (left panel) or for
high values of the rewiring rate ω (right panel), i.e., for those parameter values that give R0

close to 1. In these cases, differences occur at the second decimal place of the predicted mean
degree. For ωEI = 0 and ωSE ≥ 0, both expressions give the same value for E(DI) (at least
until the twentieth decimal digit).
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Figure 3: Expected degree of the infectious individuals, E(DI), at the early stage of an SEIR-ω epidemic with
ϕ = 1, γ = 2, ωSE = 0, ωSI = ωEI = ω, and E(D̃) = 10. Both predictions curves, E(DBA

I ) and E(DPA
I ), are

graphically indistinguishable (the lower the thickness of the lines, the higher the overlap of the curves). Dashed
horizontal line in the left panel corresponds to E(DI) without rewiring.

6. Stochastic simulations

To carry out continuous-time stochastic simulations we generated Poisson networks with
E(D) = 9 and scale-free (SF) networks with characteristic exponent 4 and minimum degree
kmin = 5, i.e. p(k) = 3k3mink

−4. So, in both cases, E(D̃) = 10. All the networks had N = 10000
nodes. The SF networks were generated using the configuration model algorithm. For each
network and each combination of parameters, we averaged the outputs over 250 initial sets of
10 individuals infected uniformly at random (primary cases). The stochastic time evolution of
the infection spread was simulated by means of the Gillespie algorithm [7].

As mentioned in the introduction, since primary cases are selected at random regardless of
their degree, a correct empirical computation of R0 relies on counting the mean number of infec-
tions produced by the secondary cases (individuals infected by the primary cases). So, for each
experiment (that is, for each initial set of 10 random primary cases) we let the epidemic evolve
until all primary and secondary cases have recovered. In Figs. 1 and 2, corresponding respec-
tively to SIR-ω and SEIR-ω models, we compare the value of R0 predicted by Eqs. (1) and (5)
with that obtained from Eqs. (14) and (17) respectively, and with the outputs of stochastic sim-
ulations carried out on a Poisson and a scale-free network. Since the variance of the theoretical
SF degree distribution is quite high (it equals 3k2m/4 = 18.75), there is a high variability among
generated SF networks. Therefore, in order to compare the results for both types of networks in
the same figure, we have chosen a random SF network whose degree sequence leads to a value
of E(D̃) very close to the expected one (µ = 7.5262, σ2 = 18.6399, and hence E(D̃) = 10.0029).

We have also tested the accuracy of the analytical predictions for E(DI). Recall that, for the
SIR-ω model, both approaches lead to the same value of E(DI) (cf. Eq. (4) and (15)) whereas,
for the SEIR-ω model, both predictions are very close to each other if ωEI > 0, and are the
same if ωEI = 0. As it was mentioned, the predicted mean degree of the infectious individuals
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Figure 4: Mean degree (left) and total number (right) of infectious nodes in an SIR-ω epidemic with γ = 1 and
β = 0.4, over a Poisson network of mean degree µ = 9 and for ω ∈ {0.5, 1}. Dashed horizontal lines correspond
to the predicted E(DI) according to (4). Outputs averaged over 250 runs. Network size is N = 10000 and the
initial fraction of infected nodes is 0.1%. The predicted mean degree during the exponential phase is close to the
observed one.

should be valid after a couple of generations, only as long as the growth of the epidemic is
in its initial exponential phase, after which the depletion of susceptibles makes the hypothesis
of the derivation no longer valid. In Figs. 4-5 and Fig. 6-7 we show, for two values of ω, the
evolution of the total number I(t) of infectious individuals at time t, the average degree DI(t)
of the infected individuals, and the corresponding analytical predictions. At any given time t,
the value of DI(t) is computed as the total number of links containing an infected individual
(the edges joining two infected are counted twice) over I(t). The right panels of these figures
show that the curve I(t) fits to an exponential function (initial phase) on an interval [0, te] with
te less than the time I(t) attains its maximum. It is precisely on this interval that the mean
degree DI(t) on Poisson networks keeps almost stationary around a value close to the predicted
one (see left panels of Fig. 4 and 6). Such a plateau in the profile of DI(t) is not so nicely
observed when simulations are carried out on scale-free networks.

7. Discussion

It is known that pairwise models for the spread of SIR-type diseases through static homoge-
neous networks predict the same epidemic threshold as the one obtained from the probabilistic
computation of R0 when infectious periods are exponentially distributed [12, 13]. By using a
pairwise model with a triple closure introduced in [11, 18], and a branching process approxima-
tion of a stochastic network epidemic, we have seen that the same epidemic threshold is also
predicted for dynamic networks whose topology evolves according to the preventive rewiring of
susceptible individuals. As expected from a preventive rewiring, the higher ω, the lower R0 for
both predictions. However, for any rewiring rate ω ≥ 0, the pair approximation overestimates
R0 when its value is larger than 1 as compared to stochastic simulations as well as the branching
process approximation.
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Figure 5: Mean degree (left) and total number (right) of infectious nodes in an SIR-ω epidemic over a SF network
with p(k) ∼ k−4 and kmin = 5 which gives a mean degree µ = 3kmin/2 = 7.5. Outputs averaged over 250
runs. Dashed horizontal lines correspond to E(DI) according to (4). Parameters: γ = 1, β = 0.4, ω ∈ {0.5, 1}.
N = 10000 and the initial fraction of infected nodes is 0.1%.

The same relationships between estimates of R0, and between epidemic thresholds, also hold
for SEIR-ω models when susceptible (but not exposed/latent) individuals break off connections
to their infectious/exposed neighbours at given rates, and reconnect to randomly chosen suscep-
tible or recovered individuals (ωEI = 0). However, if exposed individuals also disconnect from
infectious neighbours and reconnect to randomly chosen non-infectious individuals (ωEI > 0),
then the epidemic thresholds from the two approaches differ from each other, with RBA

0 > 1
when RPA

0 = 1. Interestingly, the rewiring of exposeds is not preventive but harmful since it
does not help to contain the disease: sooner or later exposed individuals will become infectious
and, when an exposed replaces an infectious neighbour with a susceptible one, the number of
infections he/she can produce increases. This is why R0 increases with ωEI , in contrast to what
happens with the other two rewiring rates, ωSI and ωSE (compare panels in Fig. 2).

Both estimates of R0 have been checked by obtaining, from stochastic simulations carried
out on random networks, the mean number of infections produced not by the first infectious
individuals landing in the population (primary cases), but by the second generation of infectives
(secondary cases) and some generations thereafter. It has been recognized elsewhere ([6, 12, 22])
that this “redefinition” of R0 for epidemics on networks is the suitable one because it takes into
account the local correlations of disease status developed around infectives during the epidemic
exponential growth (initial phase). Simulation results clearly indicate that the estimation of R0

obtained from the branching process approximation is much better than the one derived from
pairwise models, and gives the correct epidemic threshold when ωEI > 0. In particular, for the
SEIR-ω model there is an excellent agreement for all the shown values of β (Fig. 2), whereas for
the SIR-ω model the agreement is not as good when β is not close to its critical value (Fig. 1).

For the SIR-ω model, we have also seen that both approaches predict the same expected
degree E(DI) of infectives at the early stage of an epidemic. In particular, it follows that
E(DI) is a linear decreasing function of the rewiring rate ω. Its computation from stochastic
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simulations clearly shows that, for moderately large values of ω and β, the mean degree of
the infectious nodes DI(t) remains quite constant during the exponential phase of the disease.
Moreover, the agreement between theoretical predictions and observations using both ω and β
as tunable parameters is very good in Poisson networks for low values of the rewiring rates and
moderate values of β. For high values of β, the exponential phase is so fast that the time window
where DI(t) is roughly constant is hardly noticeable. Similarly, when rewiring is high, DI(t)
decreases monotonously without any plateau during this initial phase. For scale-free networks
and moderate values of β and ω, however, the predicted E(DI) overestimates the observed DI(t)
(cf. Fig. 4 and Fig. 5).
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Figure 6: Mean degree (left) and total number (right) of infectious nodes in an SEIR-ω epidemic over a Poisson
network with mean degree µ = 9. Outputs averaged over 250 runs. Dashed horizontal lines correspond to
the predicted E(DI): 9.75 for ω = 0.1, and 8.84 for ω = 0.5 (both approaches lead to these rounded values).
Parameters: ϕ = 1, γ = 2, β = 1.2, ωSE = 0, and ωSI = ωEI = ω ∈ {0.1, 0.5}. N = 10000 and the initial fraction
of infected nodes is 0.1%.

As for the SEIR-ω model, the values of E(DI) computed from both approaches are very
close to each other (see Fig. 3) and show a very good agreement with the simulations on Poisson
networks (see Fig. 6). However, the corresponding expressions are not easily manageable (they
are long and, when ωEI > 0, both depend on the solution of a cubic equation) and, therefore,
they have been evaluated numerically. From these evaluations, when ωEI = 0 it follows that both
approaches lead to the same values of E(DI). For ωEI > 0, predictions are almost graphically
undistinguishable from each other (in the worst cases, differences occur at second decimal place).
As with the SIR-ω model, when the simulations take place on scale-free networks, the predicted
E(DI) overestimates the observed DI(t) (see Fig. 7).

As mentioned in the introduction, a related model would be to assume that individuals
rather than rewiring away from infectious (and exposed) individuals simply drop these dangerous
connections. Because we are concerned with the initial stage of an epidemic, such a rewiring will,
with a high probability, be to susceptible individuals. Therefore, the propagation of the disease
is not affected by rewiring as compared to simply dropping dangerous connections. This is true
except when the individual who rewires has already been infected and is currently exposed,
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which can happen when ωEI > 0. In such a case, the individual has a chance of infecting
the rewired (susceptible) neighbor, whereas this would not be possible if instead the edge was
dropped. Therefore, as far as one is concerned with the early stages of an epidemic outbreak, the
SIR-ω and SEIR-ω models are applicable when susceptible and exposed individuals drop edges
to infectives if we take ωEI = 0. In particular, the dropping model with exposeds breaking off
their connections to infectious neighbors also corresponds to the SEIR-ω model with ωEI = 0.
Under the pairwise approach, this equivalence is reflected by the fact that, when ωEI = 0, the
equations of the limit system governing the early dynamics of the local density [SI]/[I] become
independent of the equation for [EI]/[I] (see Appendix).
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Figure 7: Mean degree (left) and total number (right) of infectious nodes in an SEIR-ω epidemic over a SF
network with p(k) ∼ k−4 and kmin = 5 which amounts to a mean degree µ = 3kmin/2 = 7.5. Outputs averaged
over 250 runs. Dashed horizontal lines correspond to the predicted E(DI): 9.75 for ω = 0.1, and 8.84 for
ω = 0.5 (both approaches lead to these rounded values). Parameters: ϕ = 1, γ = 2, β = 1.2, ωSE = 0, and
ωSI = ωEI = ω ∈ {0.1, 0.5}. N = 10000 and the initial fraction of infected nodes is 0.1%.

Finally, it is important to note that, for dynamic heterogeneous networks whose degree
distribution evolves in time, the value of R0 does not determine the final epidemic size. While
the computation of R0 is based on the initial degree distribution, the final epidemic size depends
on the whole evolution of the degree distribution. In particular, since reconnection is assumed
to be uniform with respect to the degree of nodes, the variance of the degree distribution
decreases over time whenever the initial network is highly heterogeneous (see [11]). Determining
an expression for the final epidemic size, using any approximation method, and studying how it
depends on model parameters, remains a highly interesting open problem.
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Appendix

The limit system for the SEIR-ω model and its equilibria

The limit system for the local densities involved in the computation of E(DI) for the SEIR
pairwise model when 2[SS]/[S] → 2L/N (the mean degree), [SE]/[S] → 0, [SI]/[S] → 0, and
[SR]/[S] → 0, i.e., at the beginning of an epidemic, is

d

dt

(
[SI]

[I]

)
= −

(
β + ωSI + ϕ

[E]

[I]

)
[SI]

[I]
+ ϕ

[SE]
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d

dt
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(
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[I]

d

dt

(
[E]

[I]

)
= β

[SI]
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[I]
−
(
ϕ

(
1 +

[E]
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)
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)
[EI]
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+ ϕ
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d
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(
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)
= 2ϕ
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−
(
ϕ
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d
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(
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(
ϕ

(
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[E]
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where q̄ := E(D̃). Note that only one positive term contains a rewiring rate, namely, the last
one in the second equation which has ωEI as a prefactor. Since [SE]/[I] increases with ωEI

and, in turn, the first equation tells us that [SI]/[I] increases with [SE]/[I], the presence of
such a positive term means that also R0 increases with ωEI . On the other hand, since the first
three equations of the limit system are decoupled from the other five when ωEI = 0, the same
three equations (with ωEI = 0) will also govern the dynamics of [SI]/[I] when individuals drop
connections to infectious neighbours. In particular, the fact that an exposed individual drops
the connection to an infectious neighbor or not does not affect the early dynamics of [SI]/[I].

For a given value ξ of ([E]/[I])∗, the equilibrium equations (i.e., the equations obtained by
making the right-hand side (rhs) of the previous system equal to 0) define a linear system for the
remaining variables and, hence, the equilibrium can be easily expressed in terms of ξ. A simple
inspection of the equations shows that there are two equilibria, P1 = (0, 0, 0, 0, 0, 0, 0, 0) and
P2 = (0, 0, γ/ϕ − 1, 0, 0, 0, 0, 0), where the local densities around infectious nodes, ([SI]/[I])∗,
(2[II]/[I])∗, ([EI]/[I])∗, and ([IR]/[I])∗, are zero. Moreover, from the third equation we see
that there exists an equilibrium with ([SI]/[I])∗ > 0 if and only if ([E]/[I])∗ > γ/ϕ − 1, which
in turn implies that (2[EE]/[I])∗ = 0. Consequently, the first four equations at equilibrium do
not depend on the last four.

Expressing ([SI]/[I])∗, ([SE]/[I])∗, and ([EI]/[I])∗ in terms of ξ, and replacing them into
the second equation, it follows that there will be an equilibrium with positive local densities
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around infectious nodes if there exists a solution ξ∗ > 0 of the equation

(q̄ − 1)(1 + ξ)ϕ+ q̄ ωEI =
ϕ2

β

(
ξ +

ϕ+ ωSE − γ

ϕ

)(
ξ +

ωSI + β

ϕ

)(
ξ +

ϕ+ ωEI

ϕ

)
(19)

such that ξ∗ > γ/ϕ− 1 if γ > ϕ. Note that, for ωEI = 0, Eq. (19) becomes a quadratic equation
in ξ with a positive solution ξ∗ given by (see [18])

ξ∗ =
1

2ϕ

(
γ − β − ϕ− ωSI − ωSE +

√
(γ + β − ϕ+ ωSI − ωSE)2 + 4ϕβ(q̄ − 1)

)
(20)

with the proviso that ϕβ(q̄− 1) > (ϕ+ωSE − γ)(β+ωSI). Moreover, in this case it follows that
ξ∗ > γ/ϕ− 1 when γ > ϕ if ϕβ(q̄ − 1) > ωSE(γ + β + ωSI − ϕ).

If γ ≥ ϕ and ωEI > 0, a necessary and sufficient condition for the existence of a unique
solution ξ∗ of (19) such that ξ∗ > γ/ϕ− 1 is that the straight line defined by the left-hand side
(lhs) of (19) intersects the vertical line ξ = γ/ϕ− 1 above the intersection with this vertical line
of the cubic polynomial defined by the rhs of (19). This polynomial has two negative roots, ξ1
and ξ2, and the third root ξ3 can be positive or negative depending on the sign of γ − ϕ− ωSE .
The resulting condition on the parameters is

ϕβ((q̄ − 1)γ + q̄ ωEI) > ωSE(γ + β + ωSI − ϕ)(γ + ωEI).

Note that this condition is fulfilled when ωSE = 0 which was, indeed, what we assumed in the
model if ωEI > 0.

If γ < ϕ, then ξ3 < 0 and a sufficient condition for the existence of a ξ∗ > 0 is that the
intersection of the lhs of (19) with the y-axis is above the intersection with this axis of the rhs
of (19). This condition leads to

ϕβ((q̄ − 1)ϕ+ q̄ ωEI) > (ϕ− γ + ωSE)(ωSI + β)(ϕ+ ωEI).

Since we are assuming ωEI > 0, then ωSE = 0, and from this inequality it follows a simpler
sufficient condition for the existence of ξ∗ > 0, namely, q̄β > ωSI .

Relationship between the basic reproduction numbers RBA
0 and RPA

0 for the SEIR-ω model

From (17), it follows that the only positive value of ξ∗ for which RPA
0 = 1 is ξ∗ = γ/ϕ. After

replacing ξ∗ by this value, expression (19) can be rewritten as

ϕβ

(ϕ+ ωSE)(γ + β + ωSI)

(
E(D̃)− 1 +

ωEI

γ + ϕ+ ωEI

)
= 1.

Comparing this expression and that of R0 given by (5), it follows that RPA
0 = 1 ⇔ RBA

0 = 1
if ωEI = 0, and that RPA

0 = 1 ⇒ RBA
0 > 1 (and RBA

0 = 1 ⇒ RPA
0 < 1) if ωEI > 0. So, both

approximations lead to the same epidemic threshold when ωEI = 0.

23



References

[1] Anderson, R.M., May, R.M., 1991 Infectious diseases of humans: dynamics and control.
Oxford University Press, New York.

[2] Ball F. G., Donnelly, P., 1995. Strong approximations for epidemic models. Stoch. Proc.
Appl. 55, 1-21.
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networks: Coevolution of disease and topology. Phys. Rev. E 82, 036116.

[20] McCarthy, M., Haddow, L.J., Furner, V., Mindel, A., 2007. Contact tracing for sexually
transmitted infections in New South Wales, Australia, Sexual Health 4, 21–25.

[21] Miller, J.C., Slim, A.C., Volz, E.M., 2012. Edge-based compartmental modelling for infec-
tious disease spread. J. R. Soc. Interface 9, 890–906.

[22] Pellis, L., Ball, F., Trapman, P., 2012. Reproduction numbers for epidemic models with
households and other social structures. Definition and calculation of R0. Math. Biosci. 235,
85–97.

[23] Riley, S., et al., 2003. Transmission dynamics of the etiological agent of SARS in Hong
Kong: Impact of public health interventions, Science 300, 1961–1966.

[24] Risau-Gusman, S., Zanette, D.H., 2009. Contact switching as a control strategy for epi-
demic outbreaks. J. Theor. Biol. 257, 52–60.

[25] Schwartz, I.B., Shaw, L.B., 2010. Rewiring for adaptation, Physics 3, 17.

[26] Schwarzkopf, Y., Rákos, A., Mukamel, D., 2010. Epidemic spreading in evolving networks.
Phys. Rev. E 82, 036112.

[27] Springborn, M., Chowell, G., MacLachlan, M., Fenichel, E.P., 2015. Accounting for be-
havioral responses during a flu epidemic using home television viewing. BMC Infectious
Diseases 15:21. DOI 10.1186/s12879-014-0691-0

[28] Taylor, M., Taylor, T.J., Kiss, I.Z., 2012. Epidemic threshold and control in a dynamic
network. Phys. Rev. E 85, 016103.

[29] Volz, E., Meyers, L.A., 2007. Susceptible-infected-recovered epidemics in dynamic contact
networks. Proc. R. Soc. B 274, 2925–2933.

[30] Volz, E., Meyers, L.A. 2009. Epidemic thresholds in dynamic contact networks. J. R. Soc.
Interface 6, 233–241.

[31] Zanette, D.H., Risau-Gusmán, S., 2008. Infection spreading in a population with evolving
contacts. J. Biol. Phys. 34, 135–148.

25


