HERMAN RINGS AND ARNOLD DISKS

XAVIER BUFF, NÚRIA FAGELLA, LUKAS GEYER
and CHRISTIAN HENRIKSEN

Abstract

For $(\lambda, a) \in \mathbb{C}^{*} \times \mathbb{C}$, let $f_{\lambda, a}$ be the rational map defined by $f_{\lambda, a}(z)=\lambda z^{2}(a z+1) /(z+a)$. If $\alpha \in \mathbb{R} / \mathbb{Z}$ is a Brjuno number, we let \mathcal{D}_{α} be the set of parameters (λ, a) such that $f_{\lambda, a}$ has a fixed Herman ring with rotation number α (we consider that $\left(e^{2 i \pi \alpha}, 0\right) \in \mathcal{D}_{\alpha}$). Results obtained by McMullen and Sullivan imply that, for any $g \in \mathcal{D}_{\alpha}$, the connected component of $\mathcal{D}_{\alpha} \cap\left(\mathbb{C}^{*} \times\right.$ ($\mathbb{C} \backslash\{0,1\})$) that contains g is isomorphic to a punctured disk. We show that there is a holomorphic injection $\mathcal{F}_{\alpha}: \mathbb{D} \longrightarrow \mathcal{D}_{\alpha}$ such that $\mathcal{F}_{\alpha}(0)=\left(e^{2 i \pi \alpha}, 0\right)$ and $\mathcal{F}_{\alpha}^{\prime}(0)=\left(0, r_{\alpha}\right)$, where r_{α} is the conformal radius at 0 of the Siegel disk of the quadratic polynomial $z \longmapsto e^{2 i \pi \alpha} z(1+z)$.

As a consequence, we show that for $a \in(0,1 / 3)$, if $f_{\lambda, a}$ has a fixed Herman ring with rotation number α and if m_{a} is the modulus of the Herman ring, then, as $a \rightarrow 0$, we have $e^{\pi m_{a}}=$ $\left(r_{\alpha} / a\right)+\mathcal{O}(a)$. We finally explain how to adapt the results to the complex standard family $z \longmapsto$ $\lambda z e^{(a / 2)(z-1 / z)}$.

1. Introduction

In this paper, we are mainly concerned with the dynamics of rational maps of the form

$$
f_{\lambda, a}(z)=\lambda z^{2} \frac{a z+1}{z+a}, \quad \lambda \in \mathbb{C}^{*}, a \in \mathbb{C}
$$

Note that $f_{\lambda, a}$ is conjugate to $f_{\lambda,-a}$ via the conjugacy $z \longmapsto-z$. If $\lambda \in S^{1}$ and $a=0$, then the map $f_{\lambda, a}$ is the rotation $z \longmapsto \lambda z$. Observe that when a is real and $|\lambda|=1$, the map $f_{\lambda, a}$ is a Blaschke fraction $z \longmapsto \lambda z^{2}(z+b) /(1+\bar{b} z)$ with $b=1 / a$. However, as opposed to families of Blaschke fractions which only depend \mathbb{R}-analytically on parameters, our family depends \mathbb{C}-analytically on the parameters λ and a and is, in some sense, the simplest one that exhibits families of Herman rings.

For all $\alpha \in \mathbb{R} / \mathbb{Z}$, we denote by \mathcal{R}_{α} the rigid rotation of the complex plane $\mathcal{R}_{\alpha}(z)=e^{2 i \pi \alpha} z$. When $\lambda \in S^{1}$ and $a \in(-1 / 3,1 / 3)$, the map $f_{\lambda, a}$ restricts to a diffeomorphism of S^{1} which has a rotation number $\rho(\lambda, a) \in \mathbb{R} / \mathbb{Z}$. Given $a \in$ $(-1 / 3,1 / 3)$, the function $t \longmapsto \rho\left(e^{2 i \pi t}, a\right)$ is continuous and weakly increasing [15]. Moreover, for each fixed $a \in(-1 / 3,1 / 3)$ and for each irrational number α, there is a unique angle $t \in \mathbb{R} / \mathbb{Z}$ such that $\rho\left(e^{2 i \pi t}, a\right)=\alpha$ (see for example $[\mathbf{6}]$). By a theorem of Denjoy [7], when $\alpha=\rho(\lambda, a)$ is irrational, $f_{\lambda, a}: S^{1} \longrightarrow S^{1}$ is topologically conjugate to the rotation $\mathcal{R}_{\alpha}: S^{1} \longrightarrow S^{1}$.

[^0]
[^0]: Received 19 May 2004; revised 8 March 2005.
 2000 Mathematics Subject Classification 37F10, 30D20.
 The second author was partially supported by CIRIT grant 2001SGR-70 and MCyT grants BFM2002-01344 and BFM2003-9504. The third author was partially supported by the Alexander von Humboldt Foundation. The fourth author was supported by an SNF Steno stipend.

