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The goal of this paper is to study bifurcations of asymptotically stable 2π-
periodic solutions in the forced asymmetric oscillator ü + εcu̇ + u + εau+ =
ελ cos t by means of a Lipschitz generalization of the second Bogolubov’s theo-
rem due to the authors. The small parameter ε > 0 is introduced in such a way
that any solution of the system corresponding to ε = 0 is 2π-periodic. We show
that exactly one of these solutions whose amplitude is 2|λ|/√a2 + 4c2 gener-
ates a branch of 2π-periodic solutions when ε > 0 increases. The solutions of
this branch are asymptotically stable provided that c > 0.

Keywords: Differential equations with jumping nonlinearities; Asymptotically
stable periodic solutions; Bifurcation.

1. Introduction

The differential equation for the coordinate u of the mass attached via
nonlinear spring to an immovable beam drawn at Fig. 1 is written down as
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follows

mü + cu̇ + k1u + k2u
+ = f(t), (1)

where f is a force applied to the mass in the vertical direction.
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Fig. 1. (a) A driven mass attached to an immovable beam via a spring with piecewise
linear stiffness, see e.g. Ref. 5, (b) the jumping nonlinearity u 7→ u+.

A complete theory for studying bifurcation of asymptotically stable periodic
solutions in the following form of equation (1)

mü + εcεu̇ + k1u + k2u
+ = εf(t), (2)

has been developed by Glover, Lazer and McKenna in their pioneer work
Ref. 4 provided that cε → 0 as ε → 0. They showed that if the unperturbed
system mü + k1u + k2u

+ = 0 has a T -periodic orbit u0, the function f is
T -periodic and for some α ∈ [0, T ] we have that

∫ T

0
u̇0(τ)f(τ − α)dτ = 0

and d =
∫ T

0
ü0(τ)f(τ − α)dτ > 0, then the T -periodic solution u0 persists

and becomes asymptotically stable as ε > 0 increases. In other words the
authors of Ref. 4 showed that the conclusion of the second Bogolubov’s
theorem1 is valid also for equation (2), even this is not C1.

Second Bogolubov’s theorem. Consider the perturbed system

ẋ = εg(t, x, ε), (3)

where g ∈ C1(R × Rn × [0, 1],Rn) is T -periodic in the first variable. If
v0 ∈ Rn is a zero of the bifurcation function

g0(v) =
∫ T

0

g (τ, v, 0) dτ (4)

and det (g0)′(v0) 6= 0, then for any ε > 0 sufficiently small system (3) has
a unique T -periodic solution xε such that xε(0) → v0 as ε → 0. If, in
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addition, all the eigenvalues of the matrix (g0)′(v0) have negative real part,
then xε is asymptotically stable.

We note that equation (2), after a convenient change of variables can
be written into the standard form (4) of averaging theory (see a similar
example in Section 3).

In our talk at the Equadiff 2007 we presented a general class of Lipschitz
systems (which includes, in particular, equation (2)) for which the conclu-
sion of the second Bogolubov’s theorem holds. This result is formulated
in detail in the next section of the paper. Though it allows to treat more
complex equations than (2), we study in Section 3 the following particular
case:

ü + εcu̇ + u + εau+ = ελ cos t . (5)

On one hand, this equation cannot be formally studied by the theorems
from Ref. 4, and on the other hand, applying our result (see Theorem 2.1
below) we obtain explicit conditions for the coefficients c, a and λ that
guarantee the bifurcation of a branch of periodic solutions. In this way we
answer to the question of Jean Mawhin about the values of the parameters
for which the bifurcation occurs.

Using other conditions for the parameters of (1) Lazer-McKenna6 and
Fabry3 also studied the existence and stability of 2π-periodic solutions of
(1). We mention that in Ref. 6 it is assumed that the amplitude of the forc-
ing term f is sufficiently large, while in Ref. 3 the authors address periodic
solutions whose amplitude goes to +∞ as a suitable small parameter ε > 0

2. Lipschitz generalization of the second Bogolubov’s
theorem.

Throughout the paper Ω ⊂ Rk is some open set. For any δ > 0 we denote
Bδ(v0) =

{
v ∈ Rk : ‖v − v0‖ ≤ δ

}
. For any set M ⊂ [0, T ] measurable in

the sense of Lebesgue we denote by mes(M) the Lebesgue measure of M .
We have the following main result proved in Ref. 2.

Theorem 2.1. Let g ∈ C0(R × Ω × [0, 1],Rk) and v0 ∈ Ω. Let g0 be the
averaging function given by (4) and consider v0 ∈ Ω such that g0(v0) = 0.

Assume that:

(i) For some L > 0 we have that ‖g(t, v1, ε)− g(t, v2, ε)‖ ≤ L ‖v1 − v2‖ for
any t ∈ [0, T ], v1, v2 ∈ Ω, ε ∈ [0, 1] ;

(ii) given any γ > 0 there exist δ > 0 and M ⊂ [0, T ] measurable in the
sense of Lebesgue with mes(M) < γ such that for every v ∈ Bδ(v0),
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t ∈ [0, T ] \M and ε ∈ [0, δ] we have that g(t, ·, ε) is differentiable at v

and ‖g′v(t, v, ε)− g′v(t, v0, 0)‖ ≤ γ ;

(iii) g0 is continuously differentiable in a neighborhood of v0 and the real
parts of all the eigenvalues of (g0)′(v0) are negative.

Then there exists δ1 > 0 such that for every ε ∈ (0, δ1], system (3) has
exactly one T–periodic solution xε with xε(0) ∈ Bδ1(v0). Moreover the so-
lution xε is asymptotically stable and xε(0) → v0 as ε → 0.

3. Bifurcations of asymptotically stable periodic solutions
in differential equations with jumping nonlinearities

In this section we apply Theorem 2.1 to studying the bifurcation of asymp-
totically stable 2π-periodic solutions in equation (5).
Some function u is a solution of (5) if and only if (z1, z2) = (u, u̇) is a
solution of the system

ż1 = z2 ,

ż2 = −z1 + ε[−az+
1 − cz2 + λ cos t] .

(6)

After the change of variables
(

z1(t)
z2(t)

)
=

(
cos t sin t

− sin t cos t

)(
x1(t)
x2(t)

)
,

system (6) takes the form

ẋ1 = ε sin t [a(x1 cos t + x2 sin t)+ + c(−x1 sin t + x2 cos t)− λ cos t] ,
ẋ2 = ε cos t [−a(x1 cos t + x2 sin t)+ + c(x1 sin t− x2 cos t) + λ cos t] .

(7)

The corresponding averaged function g0, calculated according to the for-
mula (4), is

g0(x1, x2) =
( −πc πa/2
−πa/2 −πc

)(
x1

x2

)
+

(
0
πλ

)
.

It can be easily checked that the unique zero of g0 is(
2aλ

a2 + 4c2
,

4cλ

a2 + 4c2

)

and

the eigenvalues of (g0)′ are − πc± iπa . (8)

The amplitude of this zero is

A =
2|λ|√

a2 + 4c2
.
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To apply Theorem 2.1 it remains to prove the following proposition.

Proposition 3.1. Let v0 ∈ R2 \ {0}. Then the right hand side of (7)
satisfies (ii) for any c, a, λ ∈ R.

Proof. Let [v]i be the i–th component of the vector v ∈ R2. Let
g(t, v) = ([v]1 cos t + [v]2 sin t)+ and notice that it is enough to prove
that g : [0, 2π] × R2 → R satisfies (ii). In the case that [v0]2 6= 0, denote
θ(v) = arctan(−[v]1/[v]2), while when [v0]2 = 0, denote

θ(v) =





arctan(−[v]1/[v]2) if [v0]1[v]2 < 0,

π/2 if v = v0,

arctan(−[v]1/[v]2) + π if [v0]1[v]2 > 0.

In any case notice that the function v 7→ θ(v) is continuous in every suf-
ficiently small neighborhood of v0. Fix γ > 0. Let M be the union of
the interval M1 centered in θ(v0) (when θ(v0) < 0, take θ(v0) + 2π in-
stead of θ(v0)) and of the interval M2 centered in θ(v0) + π, each of length
γ/2. Take δ > 0 such that θ(v) ∈ M1 for all v ∈ Bδ(v0). Of course, also
θ(v)+π ∈ M2 for all v ∈ Bδ(v0). This implies that for fixed t ∈ [0, 2π] \M ,
[v]1 cos t + [v]2 sin t has constant sign for all v ∈ Bδ(v0). Therefore, g(t, ·)
is differentiable and g′v(t, v) = g′v(t, v0) for all v ∈ Bδ(v0). Hence (ii) is
fulfilled.

The main result of this section can be now summarized as follows.

Theorem 3.1. Assume that c > 0 and A = 2|λ|/√a2 + 4c2 6= 0 and take
an arbitrary R > 0. Then for each ε > 0 sufficiently small, equation (5) has
an asymptotically stable 2π-periodic solution whose amplitude goes to A as
ε → 0. Moreover, there are no other 2π-periodic solutions with amplitudes
in the interval [1/R,R].

Proof. The hypotheses of Theorem 2.1 holds because (i) is immediate, (ii)
is proved in Proposition 3.1 and (iii) follows by (8). Hence, the existence
of a unique branch of asymptotically stable 2π-periodic solution whose am-
plitude goes to A as ε → 0 is proved. The absence of other 2π-periodic
solutions follows from a Mawhin’s result7 and the fact that the averaged
function g0 has a unique zero. Indeed, the result of Mawhin assures that
the initial value of a 2π-periodic solution of (5) must converges to a zero of
the averaged function g0 as ε → 0.

By Theorem 3.1 the curves of dependence of the amplitude of asymptot-
ically stable 2π-periodic oscillations in (5) upon the parameters are drawn



January 15, 2008 18:39 WSPC - Proceedings Trim Size: 9in x 6in Makarenkov˙Oleg

6

in Fig. 2. Particularly one can see that this amplitude tends to +∞ as√
a2 + 4c2 → 0 and λ ∈ R \ {0} is fixed.
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Fig. 2. The curves of dependence of the amplitude of asymptotically stable 2π-periodic
oscillations in (5) upon the parameter a ∈ R constructed for λ = 1 and distinct c’s.
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