
Noname manuscript No.
(will be inserted by the editor)

A note on forced oscillations in differential equations
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Abstract The goal of this paper is to study bifurcations of asymptotically
stable 2π-periodic solutions in the forced asymmetric oscillator ü+ εcu̇+ u+
εau+ = 1+ελ cos t by means of a Lipschitz generalization of the second Bogol-
ubov’s theorem due to the authors. The small parameter ε > 0 is introduced
in such a way that any solution of the system corresponding to ε = 0 is
2π-periodic. We show that exactly one of these solutions whose amplitude is

λ√
a2+c2

generates a branch of 2π-periodic solutions when ε > 0 increases. The

solutions of this branch are asymptotically stable provided that c > 0.

Keywords Asymptotic stability · Periodic solutions · Jumping nonlinearity ·
Method of averaging

1 Introduction

The differential equation for the coordinate u of the mass attached via non-
linear spring to an immovable beam drawn at Fig. 1 reads as

mü+ cu̇+ k1u+ k2u
+ = f(t), (1)

where f is a force applied to the mass in the vertical direction, see [1,15,11].
The case where equation (1) takes the form

mü+ εcεu̇+ k1u+ k2u
+ = εf(t), (2)
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Fig. 1 (a) A driven mass attached to an immovable beam via a spring with piecewise linear
stiffness, (b) the jumping nonlinearity u 7→ u+.

where cε → 0 as ε → 0, the bifurcation of asymptotically stable periodic
solutions is studied in Glover-Lazer-McKenna [8]. In the setting where the
unperturbed system mü + k1u + k2u

+ = 0 has a T -periodic orbit u0, these
authors related the existence of asymptotically stable T -periodic solutions near

u0([0, T ]) to the existence of α ∈ [0, T ] such that
∫ T
0
u̇0(τ)f(τ − α)dτ = 0 and

d =
∫ T
0
ü0(τ)f(τ − α)dτ > 0. By the other words, the authors of [8] showed

that the conclusion of the second Bogolubov’s theorem holds for equation (2),
even though it is not C1. We quote this theorem for completeness, see [4].

Second Bogolubov’s theorem. Consider the perturbed system

ẋ = εg(t, x, ε), (3)

where g ∈ C1(R×Rn× [0, 1],Rn) is T -periodic in the first variable. If v0 ∈ Rn
is a zero of the bifurcation function

g0(v) =

∫ T

0

g (τ, v, 0) dτ (4)

and det (g0)′(v0) 6= 0, then for any ε > 0 sufficiently small system (3) has a
unique T -periodic solution xε such that xε(0) → v0 as ε → 0. If, in addition,
all the eigenvalues of the matrix (g0)′(v0) have negative real part, then xε is
asymptotically stable.

Note, the change of variables(
u(t)
u̇(t)

)
=

(
cos t sin t
− sin t cos t

)(
x1(t)
x2(t)

)
transforms equation (2) to the standard form (3) of averaging theory (see a
similar example in Section 3).

In the next section of the paper we discuss a general class of Lipschitz
systems (which includes, in particular, equation (2)) for which the conclusion
of the second Bogolubov’s theorem holds. The Lipschitz analogue of the second
Bogolyubov’s theorem (theorem 1) is then applied to the asymmetric oscillator

ü+ εcu̇+ u+ εau+ = ελ cos t (5)
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in section 3, where we obtain (theorem 2) explicit conditions for the coefficients
c, a and λ that guarantee the bifurcation of a branch of asymptotically stable
2π-periodic solutions.

Our theorem 2 complements the previous studies. Indeed, equation (5) is
formally different from (2), so the result from [8] cannot be readily applied.
The existence and stability of 2π-periodic solutions of (1) are also discussed
in Lazer-McKenna[10] and Fabry[7]. However, it is assumed in [10] that the
amplitude of the forcing term f is sufficiently large, while the authors of [7]
address those periodic solutions whose amplitude tends to +∞ as a suitable
small parameter ε > 0 approaches 0. A degree theoretic approach is developed
in [12]. See our survey [11] for a broad analysis of the research around equations
of type (5). Extending the range of conclusions about the dynamics of (5) is
important as this equation occurs in a variety of applications, e.g. offshore
structures [15], resonant screening [16], drilling [6] and others (see [5]).

2 Lipschitz generalization of the second Bogolubov’s theorem

Throughout the paper Ω ⊂ Rk is some open set. For any δ > 0 we denote
Bδ(v0) =

{
v ∈ Rk : ‖v − v0‖ ≤ δ

}
. For any set M ⊂ [0, T ] measurable in

the sense of Lebesgue we denote by mes(M) the Lebesgue measure of M . We
proved the following result in [5].

Theorem 1 Let g ∈ C0(R×Ω × [0, 1],Rk). Let g0 be the averaging function
given by (4) and consider v0 ∈ Ω such that g0(v0) = 0. Assume that:

(i) For some L > 0 we have that ‖g(t, v1, ε)− g(t, v2, ε)‖ ≤ L ‖v1 − v2‖ for
any t ∈ [0, T ], v1, v2 ∈ Ω, ε ∈ [0, 1] ;

(ii) given any γ > 0 there exist δ > 0 and M ⊂ [0, T ] measurable in the
sense of Lebesgue with mes(M) < γ such that for every v ∈ Bδ(v0), t ∈
[0, T ] \ M and ε ∈ [0, δ] we have that g(t, ·, ε) is differentiable at v and
‖g′v(t, v, ε)− g′v(t, v0, 0)‖ ≤ γ ;

(iii) g0 is continuously differentiable in a neighborhood of v0 and the real parts
of all the eigenvalues of (g0)′(v0) are negative.

Then there exists δ1 > 0 such that for every ε ∈ (0, δ1], system (3) has exactly
one T–periodic solution xε with xε(0) ∈ Bδ1(v0). Moreover the solution xε is
asymptotically stable and xε(0)→ v0 as ε→ 0.

To prove theorem 1 we represent the Poincaré map Pε of (3) as

Pε(v) = v + ε

∫ T

0

g(τ, x(τ, v, ε), ε)dτ,

where x(·, v, ε) is the solution x of (3) with the initial condition x(0) = v. We
then show that condition (iii) ensures that the map

P ε(v) = v + ε

∫ T

0

g(τ, v, 0)dτ
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contracts in a neighborhood of v0, which, in combination with (i) and (ii),
allows to conclude that Pε contracts in a neighborhood of v0 too. The later
is known to be equivalent to the existence of such a T -periodic solution to
(3) which originates in the above-mentioned neighborhood of v0 and which
attracts all other solutions of (3) that originate in this neighborhood. Thus
the statement of theorem 1.

3 Bifurcations of asymptotically stable periodic solutions in
differential equations with jumping nonlinearities

In this section we apply Theorem 1 to studying the bifurcation of asymptot-
ically stable 2π-periodic solutions in equation (5). A function u is a solution
of (5) if and only if (z1, z2) = (u, u̇) is a solution of the system

ż1 = z2 ,
ż2 = −z1 + ε[−az+1 − cz2 + λ cos t] .

(6)

After the change of variables(
z1(t)
z2(t)

)
=

(
cos t sin t
− sin t cos t

)(
x1(t)
x2(t)

)
,

system (6) takes the form

ẋ1 = ε sin t [a(x1 cos t+ x2 sin t)+ + c(−x1 sin t+ x2 cos t)− λ cos t] ,
ẋ2 = ε cos t [−a(x1 cos t+ x2 sin t)+ + c(x1 sin t− x2 cos t) + λ cos t] .

(7)

The corresponding averaging function g0, calculated according to the formula
(4), is

g0(x1, x2) =

(
−πc πa/2

−πa/2 −πc

)(
x1
x2

)
+

(
0
πλ

)
.

It can be easily checked that the unique zero of g0 is(
2aλ

a2 + 4c2
,

4cλ

a2 + 4c2

)
and

the eigenvalues of (g0)′ are − πc± iπa . (8)

The amplitude of this zero is

A =
2|λ|√
a2 + 4c2

. (9)

To apply Theorem 1 it remains to prove the following proposition.

Proposition 1 Let v0 ∈ R2 \ {0}. Then the right hand side of (7) satisfies
(ii) for any c, a, λ ∈ R.
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Proof Let [v]i be the i–th component of the vector v ∈ R2. Let g(t, v) =
([v]1 cos t + [v]2 sin t)+ and notice that it is enough to prove that g : [0, 2π]×
R2 → R satisfies (ii). Define θ(v) = arctan(−[v]1/[v]2), if [v0]2 6= 0, and put

θ(v) =

arctan(−[v]1/[v]2) if [v0]1[v]2 < 0,
π/2 if v = v0,
arctan(−[v]1/[v]2) + π if [v0]1[v]2 > 0,

if [v0]2 = 0. In any case notice that the function v 7→ θ(v) is continuous in
every sufficiently small neighborhood of v0. Fix γ > 0. Let M be the union of
the interval M1 centered in θ(v0) (when θ(v0) < 0, take θ(v0) + 2π instead of
θ(v0)) and of the interval M2 centered in θ(v0) + π, each of length γ/2. Take
δ > 0 such that θ(v) ∈M1 for all v ∈ Bδ(v0). Of course, also θ(v)+π ∈M2 for
all v ∈ Bδ(v0). This implies that for fixed t ∈ [0, 2π] \M , [v]1 cos t + [v]2 sin t
has constant sign for all v ∈ Bδ(v0). Therefore, g(t, ·) is differentiable and
g′v(t, v) = g′v(t, v0) for all v ∈ Bδ(v0). Hence (ii) is fulfilled.

The result of this section can be now summarized as follows.

Theorem 2 Assume that c > 0 and A = 2|λ|/
√
a2 + 4c2 6= 0 and take ar-

bitrary R, δ > 0. Then for each ε > 0 sufficiently small, equation (5) has an
asymptotically stable 2π-periodic solution whose amplitude goes to A as ε→ 0.
Moreover, (5) doesn’t have 2π-periodic solutions with amplitudes in

(0, R]\ (A− δ, A+ δ) . (10)

Proof The hypotheses (i) of Theorem 1 is immediate to verify, (ii) is proved in
Proposition 1 and (iii) follows from (8). Hence, the existence of a unique branch
of asymptotically stable 2π-periodic solutions whose amplitudes approache A
as ε→ 0 follows from Theorem 1.

To prove that none of 2π-periodic solutions of (5) have amplitudes within
(10), we recall that the initial conditions of 2π-periodic solutions of (5) must
converge to a zero of the averaging function g0 as ε → 0, see Buica-Llibre-
Makarenkov [2, theorem 7 (C13)] (same result under a formal assumption of
analiticity was proved in Makarenkov-Ortega [14, lemma 2]). This completes
the proof because we earlier noticed that the only zero of g0 is that of the
amplitute A.

Theorem 2 allows deriving the curves of the dependence of the amplitudes
of asymptotically stable 2π-periodic oscillations in (5) upon the parameters,
that we have drawn in Fig. 2. In particular, one can see that, for any fixed
λ ∈ R \ {0}, the amplitude tends to +∞ as

√
a2 + 4c2 → 0.

Finally, we note that the case where the period of the perturbation in (5)
deviates from π slightly (i.e. when we have a detuning, as in the classical Van
der Pol oscillator) can be approach over theorem 2 too. Indeed, the change of
the variables

v(t) = u((1 + γε)t)
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Fig. 2 The curves of dependence of the amplitude of asymptotically stable 2π-periodic
oscillations in (5) upon the parameter a ∈ R drawn for fixed λ = 1 and varying values of c.

brings the equation with detuning in time

ü+ εcu̇+ u+ εau+ = ελ cos
t

1 + γε

to the equation with detuning in the rest of the coefficients

v̈ + εc(1 + εγ)v̇ + (1 + εγ)2v + εa(1 + εγ)2v+ = ελ(1 + εγ)2 cos t. (11)

Literally same arguments as in section 3 apply to investigate asymptotically
stable π-periodic oscillations of equation (11). The only difference is that (11)
gives a simple additional term −γz1 in the square brackets of system (6), thus
formula (9) will contain the parameter γ now.

Theorem 1 can be also used for establishing stable resonance oscillations in
the case where the unperturbed oscillator is Hamiltonian, e.g. when (5) is of
more generic form

ü+ εcu̇+ sinu+ εau+ = ελ cos t

or
ü+ sinu = εF (t, u, u̇, ε), (12)

where F is continuous and piecewise smooth in a suitable sense (see Makarenkov
[13]). This can be done alone the same lines as the classical Second Bo-
golyubov’s theorem is used for establishing stable resonance oscillations in
mechanical oscillators (12) with smooth F , see Greenspan-Holmes [9] or Burd
[3].
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