Hopf bifurcation in the full repressilator equations

Claudio A. Buzzi ${ }^{\text {axt }}$ and Jaume Llibre ${ }^{\text {b }}$

Communicated by I. Stratis

In this paper, we prove that the full repressilator equations in dimension six undergo a supercritical Hopf bifurcation. Copyright © 2014 John Wiley \& Sons, Ltd.

Keywords: limit cycles; oscillatory regulatory networks; repressilator

1. Introduction

Oscillatory networks are a particular kind of regulatory molecular networks, that is, collections of interacting molecules in a cell. The regulatory oscillators can be used to study abnormalities of a process in the cell, from sleep disorders to cancer. So, they attract significant attention among biologists and biophysicists. There are many implementations of artificial oscillatory networks (see, e.g., [1-7]). One of them is the repressilator [8]. Its genetic implementation uses three proteins that cyclically repress the synthesis of one another. The following system of DEs describes the behavior of the repressilator:

$$
\begin{align*}
\dot{m}_{1} & =-m_{1}+\frac{\alpha}{1+v^{n}}+\alpha_{0} \\
\dot{m}_{2} & =-m_{2}+\frac{\alpha}{1+w^{n}}+\alpha_{0} \\
\dot{m}_{3} & =-m_{3}+\frac{\alpha}{1+u^{n}}+\alpha_{0} \tag{1}\\
\dot{u} & =-\beta\left(u-m_{1}\right) \\
\dot{v} & =-\beta\left(v-m_{2}\right) \\
\dot{w} & =-\beta\left(w-m_{3}\right)
\end{align*}
$$

Here, u, v, and w are proportional to the protein concentration, while m_{i} are proportional to the concentration of mRNA corresponding to those proteins. The nonlinear function $f(x)=\frac{\alpha}{1+x^{n}}$ reflects synthesis of the mRNAs from the DNA controlled by regulatory elements. The parameter α_{0} represents uncontrolled part of the mRNA synthesis, and it is usually small. The explicit inclusion of the mRNA concentration variables into the model is given by β. Given that in general $\beta \ll 1$ and α_{0} is very small, we consider $\alpha_{0}=\varepsilon a$ and $\beta=\varepsilon b$, where a and b are positive constants and $\varepsilon>0$ is sufficiently small. So, system (1) becomes

$$
\begin{align*}
\dot{m}_{1} & =-m_{1}+\frac{\alpha}{1+v^{n}}+\varepsilon a, \\
\dot{m}_{2} & =-m_{2}+\frac{\alpha}{1+w^{n}}+\varepsilon a, \\
\dot{m}_{3} & =-m_{3}+\frac{\alpha}{1+u^{n}}+\varepsilon a, \tag{2}\\
\dot{u} & =-\varepsilon b\left(u-m_{1}\right), \\
\dot{v} & =-\varepsilon b\left(v-m_{2}\right), \\
\dot{w} & =-\varepsilon b\left(w-m_{3}\right)
\end{align*}
$$

[^0]
[^0]: a Departamento de Matemática, IBILCE-UNESP, Rua C. Colombo, 2265, CEP 15054-000 S. J. Rio Preto, São Paulo, Brazil
 ${ }^{b}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

 * Correspondence to: Claudio A. Buzzi, Departamento de Matemática, IBILCE-UNESP, Rua C. Colombo, 2265, CEP 15054-000 S. J. Rio Preto, São Paulo, Brazil.
 ${ }^{\dagger}$ E-mail: buzzi@ibilce.unesp.br

