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For every positive integer N > 2 we consider the linear differential center £ = Az in R*
with eigenvalues ¢ and = Ni. We perturb this linear center inside the class of all polynomial
differential systems of the form linear plus a homogeneous nonlinearity of degree N, i.e.
& = Az + eF(z) where every component of F(z) is a linear polynomial plus a homogeneous
polynomial of degree N. Then if the displacement function of order € of the perturbed system
is not identically zero, we study the maximal number of limit cycles that can bifurcate from
the periodic orbits of the linear differential center.
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1. Introduction and statement of the main results

In the qualitative theory of differential equations the study of their limit cycles
became one of the main topics. For a given differential equation £ a limit cycle is
a periodic orbit of £ isolated in the set of all periodic orbits of £.

Many questions arise on the limit cycles of the planar differential equations. Two
main lines of research for such equations are, first the 16th Hilbert problem see for
instance [3, 4], and second the study of how many limit cycles emerge from the
periodic orbits of a center when we perturb it inside a given class of differential
equations, see for example the book [2] and the references there in. More precisely
the problem of consider the planar linear differential center
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and perturb it

= —y+eP(x,y), y=xz+eQ(z,y),

inside a given class of polynomial differential equations and study the limit cycles
bifurcating from the periodic orbits of the linear center has been attracted the
interest and the research of many mathematicians. Of course ¢ is a small parameter.
Here our main concerning is to bring this problem to higher dimension.

In this paper we consider the 4-dimensional linear differential center

T = Az, (1)
where
0-10 0
A=l00 0]
00N O

with N a positive integer, and we perturb it
&= Ax + eF(x), (2)

where ¢ is a small parameter and F : R* — R* is a polynomial of the form F(z) =
Fi(z) + Fy(x) with Fj a homogeneous polynomial of degree k in the variables
z = (21,2, T3, T4).

Our two main results are given in the next two theorems.
Theorem 1.1: Assume that N > 2 is even.

(a) If € # 0 is sufficiently small, then the maximum number of limit cycles of
the differential equation (2) bifurcating from the periodic orbits of the linear
differential center (1) if the displacement function of order e is not identically
zero is at most 2N .

(b) For e # 0 sufficiently small the differential equation

i1 = —zs+ ¢ (20121 — 2Vbiz) Pzows),

b= oo~ 2un - Vol o
i3 =—Nxy +¢ (2a2x1 2Nb237N 19”2)’

4= Naxg+e2V 02951

has 2N limit cycles bifurcating from the periodic orbits of the linear differential
center (1).

Theorem 1.1 is proved in Section 5. See Section 2 for the definition of displace-
ment function of order .

Theorem 1.2: Assume that N > 3 s odd.

(a) If € # 0 is sufficiently small, then the mazximum number of limit cycles of
the differential equation (2) bifurcating from the periodic orbits of the linear
differential center (1) if the displacement function of order € is not identically
zero is at most N(N + 2).
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(b) Fore # 0 sufficiently small there are differential equations (2) having N (N +
2) limit cycles bifurcating from the periodic orbits of the linear differential center
(1) if N =3,5,7,9.

Theorem 1.2 is proved in Section 6. Unfortunately we are not able to extend the
results of statement (b) of Theorem 1.2 to all N > 3 odd, but we conjecture:

Conjecture. Statement (b) of Theorem 1.2 holds for every N > 3 odd.

We must remark that Theorem 1.2 has no meaning for N = 1 because then we
are perturbing the linear differential center (1) inside the class of linear differential
equations, and it is well known that linear differential equations have no limit
cycles.

We note that the polynomial perturbation F'(z) of the form linear terms plus
homogeneous nonlinearities of degree N that we are considering covers completely
all the polynomial perturbations of system (2) of degree N = 2,3. For N = 2 this
is obvious, and for N = 3 this follows from the fact that using normal forms we
can eliminate all the terms of degree 2 in the perturbation. For more details about
these normal forms see [6].

In Section 2 we introduce the basic results on the averaging theory that we need
for proving Theorems 1.1 and 1.2. The differential equation (2) is written into the
normal form for applying the averaging theory in Section 3. In Section 4 we did
the main computations related with the application of the averaging theory to our
differential equations (2).

2. First order averaging theory

The aim of this section is to present the first order averaging method as it was
obtained in [1]. Averaged function are given in terms of the Brouwer degree. In
fact the Brouwer degree theory is the key point in the proof of this theorem.
We remind here that continuity of some finite dimensional function is a sufficient
condition for the existence of its Brouwer degree (see [5] for precise definitions).

Theorem 2.1: We consider the following differential system
#(t) = eH(t, x) + e*R(t, z,¢), (4)

where H :Rx D — R", R:Rx D x (—¢ef,ef) — R, are continuous functions, T~
periodic in the first variable, and D is an open subset of R™. We define h : D — R™
as

T
h(z) = /O H(s, 2)ds, (5)

and assume that:

(i) H and R are locally Lipschitz with respect to x;

(ii) for a € D with h(a) = 0, there exists a neighborhood V of a such that
h(z) # 0 for all z € V' \ {a} and dg(h,V,a) # 0 (here dg(h,V,a) denote the
Brouwer degree of h at a).

Then for |e| > 0 sufficiently small there exists an isolated T —periodic solution (-, )
of system (4) such that p(a,0) = a.

Here we will need some facts from the proof of Theorem 2.1. Hypothesis (i)
assures the existence and uniqueness of the solution of each initial value problem
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on the interval [0, T']. Hence, for each z € D, it is possible to denote by z(-, z, €) the
solution of (4) with the initial value z(0, z,e) = z. We consider also the function
¢(:D x (—ey,e5) — R™ defined by

((z,e) = /OT <€H(t, x(t, z,e)) + €2R(t, x(t, z,e),e))dt.

From the proof of Theorem 2.1 we extract the following facts.

Remark 1:
relation holds

Under the assumptions of Theorem 2.1 for every z € D the following

z(T,z,¢e) —x(0,2,¢) = ((2,¢).
Moreover the function ¢ can be written in the form
((2,€) =eh(z) + O(?),

where h is given by (5) and the symbol O(e?) denotes a bounded function on every
compact subset of D x (—¢y,e¢) multiplied by £2.

Note that from Remark 1 it follows that a zero z of the displacement function
((z,e) at time T provides initial conditions for a periodic orbit of the system of
period T. We also remark that h(z) is the displacement function up to terms of
order e. Consequently the zeros of h(z), when h(z) is not identically zero, also
provides periodic orbits of period T

For a given system there is the possibility that the function ( is not globally
differentiable, but the function h is. In fact only differentiability in some neighbor-
hood of a fixed isolated zero of f could be enough. When this is the case, one can
use the following remark in order to verify the hypothesis (ii) of Theorem 2.1.

Remark 2: Let h: D — R" be a C! function, with h(a) = 0, where D is an
open subset of R" and a € D. Whenever a is a simple zero of h (i.e. the Jacobian
of f at a is not zero), then there exists a neighborhood V' of a such that h(z) # 0
for all z € V'\ {a}. Then dp(f,V,a) € {—1,1}.

3. Averaged System

Writing Fy = (F}', F{, F{, F{') and Fy = (Fy, Fy, Fy, Fx ), system (2) becomes

le = —x2+ E(Fli(x) + F];V(a:)),

rh = z1 +e(FE(z) + FR(x)), (6)
2 = —Nzy + e(F(x) + Fy(z)),

zy= Nuzg+e(Fi(z) + F(z)

Lemma 3.1:  Changing the variables (x1,x2,x3,24) to (0,7, p,5) by

x1 =1rcosb, To = rsinb,
x3 = pcos (N(0+s)), x4 = psin (N(0 + s)),
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system (6) is transformed into the system

dr

? = Hl(earv Py S) + 0(62)3

£ = 5H2(97 T P 8) + 0(52)7 (7)
ds 9

25 — cHs0.mp,5) + O(%),

where

Hy = (F} + Fy)cosf + (F + F%) sin#,

Hy = (F}+ F¥)cos (N(@+s)) + (F{f + Fx) sin (N(0 + s)),
p((F4+F4)COS( (9+s))—(F13+F]{’,)sin(]\f(9—|—s))>—
%( (Ff+ F%) cos@—(Fl—i—Fl)sm&)

Proof: System (6) in the variables (6,r, p, s) becomes

1
0 =1+=—(cos0(F + F}) —sin0(F + F))
r
r :5H1(07T7p7 S)a (8)
Pl = EHQ(Q,T, Py 8)7
s’ =eHs(0,r,p,s).

We notice that for |e| sufficiently small, 6'(¢t) > 0 for each (¢, (0,7, p,s)) € R x D.
Now we eliminate the variable ¢t in the above system by considering 6 as the new
independent variable. It is easy to see that the right hand side of the new system
is well defined and continuous in R x D x (—e¢,ey), it is 2m-periodic with respect
to the independent variable 6 and locally Lipschitz with respect to (r, p, s). From
(8) is obtained after an expansion with respect to the small parameter e. O

In what follows we assume that

e R
F} + FY, = Z afjklleaz%x3x4 + Z afjkl:ﬂlx%xgxél
i+j+k+i=1 i+j+k+l=N
for g =1,2,3,4.
Now we will prove a technical result that will need later on.
Lemma 3.2: Letn be a non—negative integer and o and 3 be real numbers. The
following statements hold.
[n/2]
(a) cos™ o = Z bi cos ((n — 2i)a);
n/2
Z bi cos ((n — 2i)a) if n is even,
(b) sin" o = (i;j)l)/?
Z bisin ((n — 2i)a) if n is odd.

(¢) The expression cos' asin? « cos® Bsin' 8, where 1,7,k and | are non-negative
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integers, is equal to

[] [55]
e cos (i 4+ = 2m)a) = ((k+1 - 2M)8)),
m=0 M=0
or
[552] [
dprsin (i 4 j = 2m)a) + ((k+1-2M)8)),
m=0 M=0

if j +1 is even or odd, respectively.

Proof: The proof of the statements (a) and (b) follows immediately from the
identities:

(I1) 2cosacos 3= cos(a+ 3) + cos(a — 3),
(Iy) 2sinasin B = cos(a — 3) — cos(a + f3),
(I3) 2cosasinf = sin(a + () + sin(a — 3).

In order to analyze the expression given in (c), from statements (a) and (b), we
have to consider only two cases: (1) j and [ odd; (2) j + [ odd. This is because in
the others cases it is a sum of cosines.

(1) We consider j = 2p+ 1 and [ = 20 + 1 and rewrite the product as
cos’ asin®* av cos® Bsin?? Bsin asin G.

The four first terms of this product are sum of cosines using again statements (a)
and (b). Now using (I2) we conclude the proof in this case.

(2) It is sufficient consider the case j = 2+ 1 and [ = 26. So we have
cos’ asin? av cos® Bsin?? B sin av.

By statements (a) and (b) the four first terms of this product are sum of cosines,
and using (I3) we conclude the proof. O

4. The functions h;(r, p,s) for i = 1,2, 3.

Now we shall compute the function h(r,p,s) = (hl(r, p,8), ha(r, p,s), ha(r, p, s))
given in (5) for our system (7).

Lemma 4.1: The following statements hold.

(a) If N is even then
hi(r,p,s) = air + 1V "p(bysin Ns + ¢, cos Ns).

(b) If N is odd then

hi(r,p,s) = a;r + 7 "L p(by sin Ns 4 ¢; cos Ns) + Z db VM p2M
=0

—

g

where a1, b1, c1 and d}w ’s depend on the coefficients of the perturbation.
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Proof: In order to organize the computations we write the function H; as
H,=H{ + HY = (Fl1 cosf + Ffsinﬁ) + (F]{[COSQ + Fﬁ,sin@).

We will apply Theorem 2.1 to system (7). Next step is to find the function (5).

Let h% be
1 27
h%(’r,p,s):f Hl(e rp,Ss )da
2
2T
= Z / Um%l’gﬂ?’gu cos 6 + awklxlxﬂ’g.u sin 9) db
z+]+k+l 1
— MT
5 .

Now we calculate

2

hy (r,p,s) = HY(0,7,p,5)df =

om

2
Z / ijl$1x2x3x4 COS 0d0+ Z / ’L]klajl$2x3x4 sin Hde =

iR TI=N RN
Z / ] H—] k+l COSi—H HSiHj QCOSk(N(9+5)) Sinl(N(e—l- S))d9+
i+j+k+l= N
Z / T P cos? 0 sind T 6 cos® (N (6 + s)) sint (N (6 + s))db.
i+j+k+l= N

By applying Lemma 3.2 we have that

(=52 (5]

L 1 2r [
Wps) = 3 rz-&-]pk—i-l/ M (9)do),
0 m=

o 27
i+j+kH=N 0 M=0
igkl .
where C77(0) is
IR cos (((i +j+1—2m)0) £ ((k+1—2M)N(0 + 8)))+
dtlsin (((i-+ 5 +1 - 2m)6) £ ((k+1 - 2M)N(0 +5)) ).
All these integrals with respect to 6 are zero except when
i+j+1—2m=N(k+1—2M). 9)

Observe that 0 < i+j+1—2m < N+1. So there are two possibilities: k+{—2M =0
ork+1—2M =1.
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The first case to be considered is when N is even. Then we will show that the
possibility kK + 1 — 2M = 0 never occurs. If k +1 — 2M = 0 then k£ + [ is even.
So i + j is even because N is even. It is a contradiction with (9). In short we
have k + 1 —2M =1 and it implies from (9) that N — (k+1)+1—2m = N. So
k+1+2m = 1. Therefore m = 0 and k£ 4+ [ = 1, consequently ¢ + j = N — 1 and
M = 0. Finally we get hi¥(r,p,s) = 7N =1p(by sin Ns + c; cos Ns) and this shows
statement (a).

Now we consider the case N odd. When k£ + 1 — 2M = 1 we obtain the same

that obtained in case N even, i.e. 7V ~1p(by sin Ns + ¢1 cos Ns). Now we consider
the case k+ 1 —2M = 0. For each M, from 0 to (N — 1)/2, we obtain the terms

d}\47’N*2Mp2M. So in this case we get
N1
Y (r, p,s) = 1N "1p(by sin Ns 4 ¢y cos Ns) + Z dy N 2M p2M
M=0
and this proves statement (b). O

Lemma 4.2: The following statements hold.
(a) If N is even then

ho(r, p, 8) = agp + rN(bQ sin Ns + ca cos Ns).

(b) If N is odd then

ho(r, p,s) = agp + ¥ (basin Ns 4 co cos Ns) + Z d3 N 2L ML
M=0

where as, by, co and d%w ’s depend on the coefficients of the perturbation.

Proof: Asin Lemma 4.1 we write the function Hs as
Hy=Hy + HY = (F} + Fy) cos (N(0 + 5)) + (F{ + Fy) sin (N (0 + 5)).
Applying Theorem 2.1 to system (7) and using the same notation of Lemma 4.1
we get

1 27
h’%(hﬂ? 5) = % H21<9,7“, P 3>d6

0
1 2w o
= Z o / (a?jklxﬁx;xlgxi cos (N(0+s))+
itjrhpi=1 T /O
it oyl sin (N (0 + s))) df
ao10 + G001
2 P

Now we calculate hév (ryp,s) = % 0% Hév (0,7, p,s)df and obtain an expression

similar to the one obtained in Lemma 4.1 except that the terms which the integrals
are non necessarily zero are given by

i+j—2m=N(k+1+1-2M). (10)
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Observe that 0 < i+ 7 —2m < N. So there are two possibilities: k+14+1—2M =0
ork+I1l4+1—-2M =1.

Suppose N is even. Then we show that k 4+ 1+ 1 —2M = 0 never can occur. If
it occurs then k + 1 is odd. So ¢+ j is odd because N is even. It is a contradiction
with (10). We have k+1+1—2M = 1 and it implies, by using (10), that N — (k +
I)=2m = Nandsok+1=0=m.If k+1 =0 then i +j = N. Finally we get
hY (r,p,s) = N (bysin Ns + ¢z cos Ns) and this proves statement (a).

Now we consider the case N odd. When k+ 1+ 1 —2M = 1 we obtain the same
that in case N even, i.e., 7" (bysin Ns 4+ ca cos Ns). When k + 1+ 1 —2M = 0 for
each M, from 0 to (N — 1)/2, we obtain the terms d%,rN—2M=1p2M+1 Qg in this
case we get

N—-1
B (v, p, s) = N (bysin N's + ¢3 cos Ns) + Z d3 VML 2 ML
M=0
and this shows statement (b). O

Lemma 4.3: The following statements hold.
(a) If N is even then

hs(r, p,s) = az + Y 2 p(bssin Ns + ¢z cos Ns) + ¥ p~(dzsin Ns + e3 cos N's).
(b) If N is odd then
ha(r, p, s) =az+rV (b3SlnN$+C3COSN8)

—1

™ p~!(d3sin Ns + e3 cos N's) + Z 3, rN—2M—12M

where ag, b3, c3, d3, es and d%/[ ’s depend on the coefficients of the perturbation.

Proof: We have Hy = H} + HL where

Hi= ]\%(Fl cos (N (6 + s)) — FP sin (N (6 + 5))) - %(FIQ cos — F} sinﬁ),

HY = N—p(ij,cos (N(6+s)) — Fsin (N(9 + 5))) — %(Fﬁ,cos@ — Fk,sin@).
Applying Theorem 2.1 to system (7) and using the same arguments of Lemmas 4.1
and 4.2 we get

2m

1 4 3 2 1
hi(r,p,s) = o HY 0,7, p, 5)d0 = %0102Na0001 _ %1000 > %0100

Now we calculate kY (r, p, s) = 0 " HYN (0,7, p,s)dd. In a similar way to Lemmas
4.1 and 4.2 we get two sums of the form

[52] [H5H]

1 2
M) = 3 [T S e+
i+j+k+l=N m=0 M=0

[H5E] (5]

Z piti=L gkt 1 1 /27r Z Z B (g

i+j+k+I=N m=0 M=0
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where CM (0) is

c%ﬂzcos (((i—i—j —2m)f) £ ((k+1+1— QM)N(9+S))) +

A9 sin (((i +j—2m)f) £ (k+1+1—2M)N(O+ s))),
and E:i]f\f[(ﬁ) is

eiﬁ&ces (((Z +i+1-2m)0+ ((k+1—2M)N(0+ s))) +
fitisin (G5 +1=2m)0) % ((k +1 - 2M)N(0 + 5)) ).
The terms which the integrals are non necessarily zero are given by
i+j—2m=N(k+I1+1-2M) (11)
in the first summand and by
i+j+1—-2m=N(k+1-2M) (12)

in the second summand.

The same arguments used in Lemmas 4.1 and 4.2 show that if N is even then
the terms that remain are 7V =2p(b3sin Ns + c3 cos Ns) in the first summand and
rNp~1(d3sin Ns + e3cos Ns) in the second summand. If N is odd additionally
to the terms obtained when N is even the first summand has terms of the form
pN=2M+12M=2 with M from 1 to (N + 1)/2, and the second summand has terms
of the form rVN=2M=1,2M with M from 0 to (N —1)/2. O

Lemma 4.4: Let N,«, and 8 be non—negative integers such that o+ 6= N.

(_211\),6/12” cos(Ns)  if B even,

2m
(a) / cos® tsin® t cos(N (t + s))dt =
0 (—1) B+ 27

sv—=— sin(N's) if 3 odd.

(_211\),# sin(Ns) if B even,

2
(b) / cos® tsin” tsin(N(t + s))dt =
0 (—1)B+1/2,

B w— COS(NS) Zf ﬂ odd.

Proof: The expression cos® ¢t sin® ¢ may be written as

it —N\N O it —it\ B
cos®tsin® tcos(N(t + 5)) = <e +2€ ) <e 2.6 > cos(N(t + s)).
i

In the expansion of the right hand side we have to consider only terms et and
e~ such that have the highest degree, i.e., « + 3 = N, because the integral of the
other terms on the interval [0, 27] are zero. So we get

_1)8/2 )
1 Nt 4 (—1)BeiNt (2% cos(Nt)  if B even,
2N—1 ( 24P > - (—1)-1/2

As cos(N(t+ s)) = cos(Nt) cos(Ns) —sin(Nt) sin(Ns), it follows statement (a).
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Now defining I(s) = f027r cos® tsin” t cos(N (t + s))dt, we obtain that

2m !
—TI
/ cos® tsin® tsin(N(t + s))dt = N(S) .
0

Hence statement (b) follows from statement (a). O

Lemma 4.5: If N is even then the function hs of Lemma 4.8 is such that
bg = —(C1, C3 = —bl, dg = —CQ/N and €3 — bQ/N.

Proof: In order to simplify the proof, let a;; ; kla:ﬁz:éa?’?fxi be a monomial of Fy; such
that i+ 7 =N —1, k=0 and [ = 1. When we compute the expressions of h; and
hs, then this monomial appears in hy as

1 21 . .
o= [ alcos™ Bsin Osin(N (6 + 5))db, (13)
T Jo
and in hg as
1 27 ) )
o a}jkl cos’ A sin’ T G sin(N (0 + s))db. (14)
T Jo

If k=0 and [ = 1 then, by Lemma 4.4, we have that (13) is equal to (—1)7/2a lljkl
sin(Ns)/2V if j even, and to —(— )(J+1)/2a1 11 c0s(Ns)2N if j odd, and (14) is equal
to (—1)(j‘*'l)/za%jklsin(Ns)/QN if j + 1 even, and to —(—1)U+2)/2q 1 os(Ns)/2N
if j +1 odd.

For j even the coefficient of the monomial appears in a sum that determines the
coefficient of 7N =1pcos(Ns) in hy, and also appears in a sum that determines the
coefficient of rN~2psin N's in hs with the opposite sign. In a similar way for j odd
the coefficient of the monomial appears in a sum that determines the coefficient
of YN~1psin Ns in hi, and appears in a sum that determines the coefficient of
rN=2pcos Ns in h3 with the same sign.

We can do the same for all monomials of FK,, F ]% and Fﬁ,, and easily check that
b3:—61763:—b1,d3:—62/1\7 and egzbz/N. O
5. Case N even

In this section we shall prove Theorem 1.1.

Proposition 5.1: If N is even then we have

hy = hi(r, p,s) = arr + 7V "1 p(b1 sin(Ns) 4 ¢1 cos(Ns)),
ha = ha(r, p,s) = azp + ¥ (ba sin(Ns) + ¢z cos(N's)),

15
hs = hs(r,p,s) = a3 + " "2p(— cysin(Ns) + by cos(Ns))+ (15)
rNp~1( — Ncgsin(Ns) 4+ Nbg cos(Ns)).
Proof: It follows from Lemmas 4.1, 4.2, 4.3 and 4.5. O

Proof: [Proof of Theorem 1.1] According to Proposition 5.1, the functions hi, hs
and hs are given by (15). We call ¥N~! = B, p/r = A, sin Ns = z and cos Ns = w.
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After this change of variables we get

E(A,B,z,w) =hi/r = a1+ AB(biz + ciw),

ha(A, B, z,w) = ha/r = asA + B(boz + cow),

hs(A, B, z,w) = phs/r = asA + BA%(—c1z + byw) + B(—Neaz + Nbyw),
E(A,B,z,w) 22 4+ w? — 1.

Let h; = hi(A, B, z,w) for i = 1,2,3, 4. Now we solve (h1, ha, hs, hy) = (0,0,0,0).
From ho = 0 we obtain

B— _&.
boz + cow
Substituting B in th = 0, we obtain
1
4 ai(be2z + czw)7 and so B — — ay(b2z + C2w)a2‘
az(b1z + cyw) (boz + cow) \| az(b1z + cyw)

Now substituting A and B in Eg = 0 we obtain

B> +B Baw?
12° + Dozw + D3w o, (16)

(b1z + cyw)(baz + cow)
where

By = asbiby + a1bacy + agbicaN,
By = —a1bi1by 4+ agbacy + agzbico + ajcica — asbibo N + ascica N,
B3 = —aibics + azcica — agbaci N.

The zeros of (16) are just w = z = 0, or a pair of crossing Straight lines passing
through the origin. So the maximum number of zeros of (16) and z?+w? = 1 is four.

Observe that for each zero (A, B, z,w) of (hl,hg,hg,h4) (0,0,0,0), with A > 0
and B > 0, we can find N zeros (r, p,s) of (hi,he,h3) = (0,0,0). In our case N
is even, so the zeros (r, p, s) obtained from (A, B, z,w) are the same ones obtained
from (A, B, —z, —w). This completes the proof that the maximum number of zeros
of (h1,he, h3) =(0,0,0) is 2N. So, by Theorem 2.1, the maximum number of limit
cycle obtained via averaging theory for system (2) is 2N. This proves statement

(a).

Now we show that system (3) has 2N limit cycle. Computing hq, hy and hg for
this system we obtain

hi(r, p,s) = —=2sin(v2m)r + ¥ p(sin Ns + 2sin(v27 — Ns)),
hao(r, p,s) = %(sin(\/ﬁﬂ)p — ¥ (2sin N's + sin(v/2m — Ns))),
hs(r,p,s) =3+ rV"2p(cos Ns — 2cos(v2m — Ns))+

'erfl( —4cos Ns + 2 cos(v/2m — Ns)).
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The zeros of (hi, he, hs) = (0,0,0) are

2
(r,p,s) = (1,1,13]\7;) for k € {0,1,...,N — 1},
and
2
(ryp,s) = <1,2,\/§7r+/<;N) for k € {0,1,...,N — 1}

The Jacobian determinant of h = (hy,ho,h3) computed at (l,l,k%r) for k €
{0,1,...,N—1}is

—12(N — 1)( —5+4cos (\/§7r)> sin (V2m) # 0,
and computed at (1,2, V2r + k:%’r) for k € {0,1,...,N — 1} is
12(N — 1)< —5+4cos (\/577)) sin (\/571') # 0

Applying Theorem 2.1, the proof of statement (b) is done. O

6. Case N odd

In this section we shall prove Theorem 1.2.

Proposition 6.1: If N is odd then we have

N

hi(r, p, s =a17°+7’N71p by sin(INs) + ¢ cos Ns dt N— 2Mp2M
M7

,_.

N— 1
2

hg(r,p,s):a2p+r (b281n(Ns)+CQCos Ns —|—Zd N—2M—1 2M+1,

hs(r, p,s) = as + TN_Qp( —c18in(Ns) + by cos(Ns))—l—

N-1
rNp7t (= Negsin(Ns) + Nbo cos(Ns)) + Z d3 N T2M=1 2M
M=0
Proof: It follows from Lemmas 4.1, 4.2, 4.3 and 4.5. O

Proof: [Proof of Theorem 1.2] In Proposition 6.1, the functions hq, hy and hg are
given. Now we perform the change rN=1 = B, p/r = A,sin Ns = zand cos Ns = w.

The functions h1 = hy/r, h2 ho/r, h3 = phi/r in the new variables are

hy = a1 + AB(biz + ciw) + BPy(A?),

/f;; = (IQA + NB(bQZ + ng) + ABPQ(A2),

hs = asA + BA2(—c1z + byw) + B(—caz + byw) + ABP3(A?),
H =22 +w? -1,
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where

N-—1
2

Pi(A%) =) diy APM, fori=1,2,3.
M=0

We solve (71\1/, ha, BE) = (0,0,0) and find a solution B = B(A2), z = AZ(A?%), w =
AW (A?%), where B(u) is the quotient of one polynomial of degree 2 by a polynomial
of degree (N+3)/2, and Z(u) and W (u) are the quotient of one polynomial of degree
(N+1)/2 by a polynomial of degree 2. Substituting z and w in the equation hy = 0,
we obtain the quotient of one polynomial of degree N + 2 in the variable A? by a
polynomial of degree 4 in A2, So the maximum number of positive roots A of the
numerator of hy is N+2. For each solution A we have at most one By = B(Ap) > 0
and just one pair (z0,wo) = (2(Ao), w(Ap)). For each pair (z,wp) we can find
S1,...,8N € [0,27) such that sin Ns; = zp and cos Ns; = wg for i = 1,..., N.
So, by Theorem 2.1, the maximum number of limit cycles obtained via averaging
theory for system (2) is N(N + 2). This completes the proof of statement (a).

In order to prove that the previous bound N(N + 2) is attained for N = 3 we

should prove that for each positive zero of hy(A?) the corresponding B(A) is also
positive. To ensure this last condition we impose that B(A) = 1+ aA* with a > 0.
Then choosing a good collection of parameters,

(al,bl,cl,d(l),d%): (15090, ,—%,—%, >,
119 16 59 4

S 187137 13175 )

161473 2821 169

1131847 3930’ _960> ’

((12, b27 Co, d%a d%) - <

(a3, di d3) = (

we obtain

3441240088741 22

BA) =14 ——————
(4) +6886432512000 ’

and

~ 68352442249A10 106370960423 ¢ = 16170645808194605

47 76441190400 8344829952 * 237833390702592
923151210666125  , n 169693234403855580625  2233385285852250000
5500736967168 898133515906476096 29279429820253561

which has 5 simple positive zeros each one contained in a different interval of [0, 1],
[1,2], [2,3], [3,4] and [4, 5].

The Jacobian of (hy, he, hg) for our concrete case, and considering as a function
of A, is of the form APg(A%)/Py(A?) and the numerator has no common zeros with
E4 for that reason we can ensure that the 15 zeros are simple zeros of (hi, ha, h3).
This proves statement (b) of Theorem 1.2 for N = 3.

The cases N = 5,7,9 can be proved using the same arguments choosing a good
selection of the parameters. O
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