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For every positive integer N ≥ 2 we consider the linear differential center ẋ = Ax in R
4

with eigenvalues ±i and ±Ni. We perturb this linear center inside the class of all polynomial
differential systems of the form linear plus a homogeneous nonlinearity of degree N , i.e.
ẋ = Ax + εF (x) where every component of F (x) is a linear polynomial plus a homogeneous
polynomial of degree N . Then if the displacement function of order ε of the perturbed system
is not identically zero, we study the maximal number of limit cycles that can bifurcate from
the periodic orbits of the linear differential center.
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1. Introduction and statement of the main results

In the qualitative theory of differential equations the study of their limit cycles
became one of the main topics. For a given differential equation E a limit cycle is
a periodic orbit of E isolated in the set of all periodic orbits of E .

Many questions arise on the limit cycles of the planar differential equations. Two
main lines of research for such equations are, first the 16th Hilbert problem see for
instance [3, 4], and second the study of how many limit cycles emerge from the
periodic orbits of a center when we perturb it inside a given class of differential
equations, see for example the book [2] and the references there in. More precisely
the problem of consider the planar linear differential center

ẋ = −y, ẏ = x
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and perturb it

ẋ = −y + εP (x, y), ẏ = x + εQ(x, y),

inside a given class of polynomial differential equations and study the limit cycles
bifurcating from the periodic orbits of the linear center has been attracted the
interest and the research of many mathematicians. Of course ε is a small parameter.
Here our main concerning is to bring this problem to higher dimension.

In this paper we consider the 4–dimensional linear differential center

ẋ = Ax, (1)

where

A =


0 −1 0 0
1 0 0 0
0 0 0 −N
0 0 N 0

 ,

with N a positive integer, and we perturb it

ẋ = Ax + εF (x), (2)

where ε is a small parameter and F : R4 → R
4 is a polynomial of the form F (x) =

F1(x) + FN (x) with Fk a homogeneous polynomial of degree k in the variables
x = (x1, x2, x3, x4).

Our two main results are given in the next two theorems.

Theorem 1.1 : Assume that N ≥ 2 is even.

(a) If ε 6= 0 is sufficiently small, then the maximum number of limit cycles of
the differential equation (2) bifurcating from the periodic orbits of the linear
differential center (1) if the displacement function of order ε is not identically
zero is at most 2N .
(b) For ε 6= 0 sufficiently small the differential equation

ẋ1 = −x2 + ε
(
2a1x1 − 2Nb1x

N−2
1 x2x3

)
,

ẋ2 = x1 + ε
(
− 2a3x1 − 2Nc1x

N−2
1 x2x3

)
,

ẋ3 = −Nx4 + ε
(
2a2x1 − 2Nb2x

N−1
1 x2

)
,

ẋ4 = Nx3 + ε 2Nc2x
N−1
1 x2.

(3)

has 2N limit cycles bifurcating from the periodic orbits of the linear differential
center (1).

Theorem 1.1 is proved in Section 5. See Section 2 for the definition of displace-
ment function of order ε.

Theorem 1.2 : Assume that N ≥ 3 is odd.

(a) If ε 6= 0 is sufficiently small, then the maximum number of limit cycles of
the differential equation (2) bifurcating from the periodic orbits of the linear
differential center (1) if the displacement function of order ε is not identically
zero is at most N(N + 2).
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(b) For ε 6= 0 sufficiently small there are differential equations (2) having N(N +
2) limit cycles bifurcating from the periodic orbits of the linear differential center
(1) if N = 3, 5, 7, 9.

Theorem 1.2 is proved in Section 6. Unfortunately we are not able to extend the
results of statement (b) of Theorem 1.2 to all N ≥ 3 odd, but we conjecture:
Conjecture. Statement (b) of Theorem 1.2 holds for every N ≥ 3 odd.

We must remark that Theorem 1.2 has no meaning for N = 1 because then we
are perturbing the linear differential center (1) inside the class of linear differential
equations, and it is well known that linear differential equations have no limit
cycles.

We note that the polynomial perturbation F (x) of the form linear terms plus
homogeneous nonlinearities of degree N that we are considering covers completely
all the polynomial perturbations of system (2) of degree N = 2, 3. For N = 2 this
is obvious, and for N = 3 this follows from the fact that using normal forms we
can eliminate all the terms of degree 2 in the perturbation. For more details about
these normal forms see [6].

In Section 2 we introduce the basic results on the averaging theory that we need
for proving Theorems 1.1 and 1.2. The differential equation (2) is written into the
normal form for applying the averaging theory in Section 3. In Section 4 we did
the main computations related with the application of the averaging theory to our
differential equations (2).

2. First order averaging theory

The aim of this section is to present the first order averaging method as it was
obtained in [1]. Averaged function are given in terms of the Brouwer degree. In
fact the Brouwer degree theory is the key point in the proof of this theorem.
We remind here that continuity of some finite dimensional function is a sufficient
condition for the existence of its Brouwer degree (see [5] for precise definitions).

Theorem 2.1 : We consider the following differential system

ẋ(t) = εH(t, x) + ε2R(t, x, ε), (4)

where H : R×D → R
n, R : R×D× (−εf , εf ) → R

n, are continuous functions, T–
periodic in the first variable, and D is an open subset of Rn. We define h : D → R

n

as

h(z) =
∫ T

0
H(s, z)ds, (5)

and assume that:

(i) H and R are locally Lipschitz with respect to x;
(ii) for a ∈ D with h(a) = 0, there exists a neighborhood V of a such that
h(z) 6= 0 for all z ∈ V \ {a} and dB(h, V, a) 6= 0 (here dB(h, V, a) denote the
Brouwer degree of h at a).

Then for |ε| > 0 sufficiently small there exists an isolated T–periodic solution ϕ(·, ε)
of system (4) such that ϕ(a, 0) = a.

Here we will need some facts from the proof of Theorem 2.1. Hypothesis (i)
assures the existence and uniqueness of the solution of each initial value problem
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on the interval [0, T ]. Hence, for each z ∈ D, it is possible to denote by x(·, z, ε) the
solution of (4) with the initial value x(0, z, ε) = z. We consider also the function
ζ : D × (−εf , εf ) → R

n defined by

ζ(z, ε) =
∫ T

0

(
εH

(
t, x(t, z, ε)

)
+ ε2R

(
t, x(t, z, ε), ε

))
dt.

From the proof of Theorem 2.1 we extract the following facts.

Remark 1 : Under the assumptions of Theorem 2.1 for every z ∈ D the following
relation holds

x(T, z, ε)− x(0, z, ε) = ζ(z, ε).

Moreover the function ζ can be written in the form

ζ(z, ε) = εh(z) + O
(
ε2

)
,

where h is given by (5) and the symbol O(ε2) denotes a bounded function on every
compact subset of D × (−εf , εf ) multiplied by ε2.

Note that from Remark 1 it follows that a zero z of the displacement function
ζ(z, ε) at time T provides initial conditions for a periodic orbit of the system of
period T . We also remark that h(z) is the displacement function up to terms of
order ε. Consequently the zeros of h(z), when h(z) is not identically zero, also
provides periodic orbits of period T .

For a given system there is the possibility that the function ζ is not globally
differentiable, but the function h is. In fact only differentiability in some neighbor-
hood of a fixed isolated zero of f could be enough. When this is the case, one can
use the following remark in order to verify the hypothesis (ii) of Theorem 2.1.

Remark 2 : Let h : D → R
n be a C1 function, with h(a) = 0, where D is an

open subset of Rn and a ∈ D. Whenever a is a simple zero of h (i.e. the Jacobian
of f at a is not zero), then there exists a neighborhood V of a such that h(z) 6= 0
for all z ∈ V \ {a}. Then dB(f, V, a) ∈ {−1, 1}.

3. Averaged System

Writing F1 =
(
F 1

1 , F 2
1 , F 3

1 , F 4
1

)
and FN =

(
F 1

N , F 2
N , F 3

N , F 4
N

)
, system (2) becomes

x′1 = −x2 + ε
(
F 1

1 (x) + F 1
N (x)

)
,

x′2 = x1 + ε
(
F 2

1 (x) + F 2
N (x)

)
,

x′3 = −Nx4 + ε
(
F 3

1 (x) + F 3
N (x)

)
,

x′4 = Nx3 + ε
(
F 4

1 (x) + F 4
N (x)

)
.

(6)

Lemma 3.1: Changing the variables (x1, x2, x3, x4) to (θ, r, ρ, s) by

x1 = r cos θ, x2 = r sin θ,
x3 = ρ cos

(
N(θ + s)

)
, x4 = ρ sin

(
N(θ + s)

)
,
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system (6) is transformed into the system

dr

dθ
= εH1(θ, r, ρ, s) + O

(
ε2

)
,

dρ

dθ
= εH2(θ, r, ρ, s) + O

(
ε2

)
,

ds

dθ
= εH3(θ, r, ρ, s) + O

(
ε2

)
,

(7)

where

H1 =
(
F 1

1 + F 1
N

)
cos θ +

(
F 2

1 + F 2
N

)
sin θ,

H2 =
(
F 3

1 + F 3
N

)
cos

(
N(θ + s)

)
+

(
F 4

1 + F 4
N

)
sin

(
N(θ + s)

)
,

H3 = 1
Nρ

((
F 4

1 + F 4
N

)
cos

(
N(θ + s)

)
−

(
F 3

1 + F 3
N

)
sin

(
N(θ + s)

))
−

1
r

((
F 2

1 + F 2
N

)
cos θ −

(
F 1

1 + F 1
N

)
sin θ

)
.

Proof : System (6) in the variables (θ, r, ρ, s) becomes

θ′ = 1 + ε
1
r

(
cos θ

(
F 2

1 + F 2
N

)
− sin θ

(
F 1

1 + F 1
N

))
r′ = εH1(θ, r, ρ, s),
ρ′ = εH2(θ, r, ρ, s),
s′ = εH3(θ, r, ρ, s).

(8)

We notice that for |ε| sufficiently small, θ′(t) > 0 for each (t, (θ, r, ρ, s)) ∈ R ×D.
Now we eliminate the variable t in the above system by considering θ as the new
independent variable. It is easy to see that the right hand side of the new system
is well defined and continuous in R×D × (−εf , εf ), it is 2π-periodic with respect
to the independent variable θ and locally Lipschitz with respect to (r, ρ, s). From
(8) is obtained after an expansion with respect to the small parameter ε. �

In what follows we assume that

F g
1 + F g

N =
∑

i+j+k+l=1

ag
ijklx

i
1x

j
2x

k
3x

l
4 +

∑
i+j+k+l=N

ag
ijklx

i
1x

j
2x

k
3x

l
4

for g = 1, 2, 3, 4.

Now we will prove a technical result that will need later on.

Lemma 3.2: Let n be a non–negative integer and α and β be real numbers. The
following statements hold.

(a) cosn α =
[n/2]∑
i=0

bi cos
(
(n− 2i)α

)
;

(b) sinn α =



n/2∑
i=0

bi cos
(
(n− 2i)α

)
if n is even,

(n−1)/2∑
i=0

bi sin
(
(n− 2i)α

)
if n is odd.

(c) The expression cosi α sinj α cosk β sinl β, where i, j, k and l are non–negative
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integers, is equal to

[ i+j

2
]∑

m=0

[ k+l

2
]∑

M=0

cmM cos
((

(i + j − 2m)α
)
±

(
(k + l − 2M)β

))
,

or

[ i+j

2
]∑

m=0

[ k+l

2
]∑

M=0

dmM sin
((

(i + j − 2m)α
)
±

(
(k + l − 2M)β

))
,

if j + l is even or odd, respectively.

Proof : The proof of the statements (a) and (b) follows immediately from the
identities:

(I1) 2 cos α cos β = cos(α + β) + cos(α− β),
(I2) 2 sinα sinβ = cos(α− β)− cos(α + β),
(I3) 2 cos α sinβ = sin(α + β) + sin(α− β).

In order to analyze the expression given in (c), from statements (a) and (b), we
have to consider only two cases: (1) j and l odd; (2) j + l odd. This is because in
the others cases it is a sum of cosines.

(1) We consider j = 2µ + 1 and l = 2σ + 1 and rewrite the product as

cosi α sin2µ α cosk β sin2σ β sinα sinβ.

The four first terms of this product are sum of cosines using again statements (a)
and (b). Now using (I2) we conclude the proof in this case.

(2) It is sufficient consider the case j = 2µ + 1 and l = 2δ. So we have

cosi α sin2µ α cosk β sin2σ β sinα.

By statements (a) and (b) the four first terms of this product are sum of cosines,
and using (I3) we conclude the proof. �

4. The functions hi(r, ρ, s) for i = 1, 2, 3.

Now we shall compute the function h(r, ρ, s) =
(
h1(r, ρ, s), h2(r, ρ, s), h3(r, ρ, s)

)
given in (5) for our system (7).

Lemma 4.1: The following statements hold.

(a) If N is even then

h1(r, ρ, s) = a1r + rN−1ρ(b1 sinNs + c1 cos Ns).

(b) If N is odd then

h1(r, ρ, s) = a1r + rN−1ρ(b1 sinNs + c1 cos Ns) +

N−1
2∑

M=0

d1
MrN−2Mρ2M ,

where a1, b1, c1 and d1
M ’s depend on the coefficients of the perturbation.
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Proof : In order to organize the computations we write the function H1 as

H1 = H1
1 + HN

1 =
(
F 1

1 cos θ + F 2
1 sin θ

)
+

(
F 1

N cos θ + F 2
N sin θ

)
.

We will apply Theorem 2.1 to system (7). Next step is to find the function (5).
Let h1

1 be

h1
1(r, ρ, s) =

1
2π

∫ 2π

0
H1

1 (θ, r, ρ, s)dθ

=
∑

i+j+k+l=1

1
2π

∫ 2π

0

(
a1

ijklx
i
1x

j
2x

k
3x

l
4 cos θ + a2

ijklx
i
1x

j
2x

k
3x

l
4 sin θ

)
dθ

=
a1

1000 + a2
0100

2
r.

Now we calculate

hN
1 (r, ρ, s) =

1
2π

∫ 2π

0
HN

1 (θ, r, ρ, s)dθ =

∑
i+j+k+l=N

1
2π

∫ 2π

0
a1

ijklx
i
1x

j
2x

k
3x

l
4 cos θdθ +

∑
i+j+k+l=N

1
2π

∫ 2π

0
a2

ijklx
i
1x

j
2x

k
3x

l
4 sin θdθ =

∑
i+j+k+l=N

1
2π

∫ 2π

0
a1

ijklr
i+jρk+l cosi+1 θ sinj θ cosk(N(θ + s)) sinl(N(θ + s))dθ+

∑
i+j+k+l=N

1
2π

∫ 2π

0
a2

ijklr
i+jρk+l cosi θ sinj+1 θ cosk(N(θ + s)) sinl(N(θ + s))dθ.

By applying Lemma 3.2 we have that

hN
1 (r, ρ, s) =

∑
i+j+k+l=N

ri+jρk+l 1
2π

∫ 2π

0

[ i+j+1
2

]∑
m=0

[ k+l

2
]∑

M=0

Cijkl
mM (θ)dθ,

where Cijkl
mM (θ) is

cijkl
mM cos

((
(i + j + 1− 2m)θ

)
±

(
(k + l − 2M)N(θ + s)

))
+

dijkl
mM sin

((
(i + j + 1− 2m)θ

)
±

(
(k + l − 2M)N(θ + s)

))
.

All these integrals with respect to θ are zero except when

i + j + 1− 2m = N(k + l − 2M). (9)

Observe that 0 ≤ i+j+1−2m ≤ N+1. So there are two possibilities: k+l−2M = 0
or k + l − 2M = 1.
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The first case to be considered is when N is even. Then we will show that the
possibility k + l − 2M = 0 never occurs. If k + l − 2M = 0 then k + l is even.
So i + j is even because N is even. It is a contradiction with (9). In short we
have k + l − 2M = 1 and it implies from (9) that N − (k + l) + 1 − 2m = N . So
k + l + 2m = 1. Therefore m = 0 and k + l = 1, consequently i + j = N − 1 and
M = 0. Finally we get hN

1 (r, ρ, s) = rN−1ρ(b1 sinNs + c1 cos Ns) and this shows
statement (a).

Now we consider the case N odd. When k + l − 2M = 1 we obtain the same
that obtained in case N even, i.e. rN−1ρ(b1 sinNs + c1 cos Ns). Now we consider
the case k + l − 2M = 0. For each M , from 0 to (N − 1)/2, we obtain the terms
d1

MrN−2Mρ2M . So in this case we get

hN
1 (r, ρ, s) = rN−1ρ(b1 sinNs + c1 cos Ns) +

N−1
2∑

M=0

d1
MrN−2Mρ2M ,

and this proves statement (b). �

Lemma 4.2: The following statements hold.

(a) If N is even then

h2(r, ρ, s) = a2ρ + rN (b2 sinNs + c2 cos Ns).

(b) If N is odd then

h2(r, ρ, s) = a2ρ + rN (b2 sinNs + c2 cos Ns) +

N−1
2∑

M=0

d2
MrN−2M−1ρ2M+1,

where a2, b2, c2 and d2
M ’s depend on the coefficients of the perturbation.

Proof : As in Lemma 4.1 we write the function H2 as

H2 = H1
2 + HN

2 =
(
F 3

1 + F 3
N

)
cos

(
N(θ + s)

)
+

(
F 4

1 + F 4
N

)
sin

(
N(θ + s)

)
.

Applying Theorem 2.1 to system (7) and using the same notation of Lemma 4.1
we get

h1
2(r, ρ, s) =

1
2π

∫ 2π

0
H1

2 (θ, r, ρ, s)dθ

=
∑

i+j+k+l=1

1
2π

∫ 2π

0

(
a3

ijklx
i
1x

j
2x

k
3x

l
4 cos

(
N(θ + s)

)
+

a4
ijklx

i
1x

j
2x

k
3x

l
4 sin

(
N(θ + s)

))
dθ

=
a3

0010 + a4
0001

2
ρ.

Now we calculate hN
2 (r, ρ, s) = 1

2π

∫ 2π
0 HN

2 (θ, r, ρ, s)dθ and obtain an expression
similar to the one obtained in Lemma 4.1 except that the terms which the integrals
are non necessarily zero are given by

i + j − 2m = N(k + l + 1− 2M). (10)
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Observe that 0 ≤ i+ j−2m ≤ N . So there are two possibilities: k + l+1−2M = 0
or k + l + 1− 2M = 1.

Suppose N is even. Then we show that k + l + 1 − 2M = 0 never can occur. If
it occurs then k + l is odd. So i + j is odd because N is even. It is a contradiction
with (10). We have k + l +1− 2M = 1 and it implies, by using (10), that N − (k +
l) − 2m = N and so k + l = 0 = m. If k + l = 0 then i + j = N . Finally we get
hN

2 (r, ρ, s) = rN (b2 sinNs + c2 cos Ns) and this proves statement (a).
Now we consider the case N odd. When k + l + 1− 2M = 1 we obtain the same

that in case N even, i.e., rN (b2 sinNs + c2 cos Ns). When k + l + 1− 2M = 0 for
each M , from 0 to (N − 1)/2, we obtain the terms d2

MrN−2M−1ρ2M+1. So in this
case we get

hN
2 (r, ρ, s) = rN (b2 sinNs + c2 cos Ns) +

N−1
2∑

M=0

d2
MrN−2M−1ρ2M+1,

and this shows statement (b). �

Lemma 4.3: The following statements hold.

(a) If N is even then

h3(r, ρ, s) = a3 + rN−2ρ(b3 sinNs + c3 cos Ns) + rNρ−1(d3 sinNs + e3 cos Ns).

(b) If N is odd then

h3(r, ρ, s) = a3 + rN−2ρ(b3 sinNs + c3 cos Ns)+

rNρ−1(d3 sinNs + e3 cos Ns) +

N−1
2∑

M=0

d3
MrN−2M−1ρ2M ,

where a3, b3, c3, d3, e3 and d3
M ’s depend on the coefficients of the perturbation.

Proof : We have H3 = H1
3 + HN

3 where

H1
3 = 1

Nρ

(
F 4

1 cos
(
N(θ + s)

)
− F 3

1 sin
(
N(θ + s)

))
− 1

r

(
F 2

1 cos θ − F 1
1 sin θ

)
,

HN
3 = 1

Nρ

(
F 4

N cos
(
N(θ + s)

)
− F 3

N sin
(
N(θ + s)

))
− 1

r

(
F 2

N cos θ − F 1
N sin θ

)
.

Applying Theorem 2.1 to system (7) and using the same arguments of Lemmas 4.1
and 4.2 we get

h1
3(r, ρ, s) =

1
2π

∫ 2π

0
H1

3 (θ, r, ρ, s)dθ =
a4

0010 − a3
0001

2N
− a2

1000 − a1
0100

2
.

Now we calculate hN
3 (r, ρ, s) = 1

2π

∫ 2π
0 HN

3 (θ, r, ρ, s)dθ. In a similar way to Lemmas
4.1 and 4.2 we get two sums of the form

hN
3 (r, ρ, s) =

∑
i+j+k+l=N

ri+jρk+l−1 1
2π

∫ 2π

0

[ i+j

2
]∑

m=0

[ k+l+1
2

]∑
M=0

Cijkl
mM (θ)dθ +

∑
i+j+k+l=N

ri+j−1ρk+l 1
2π

∫ 2π

0

[ i+j+1
2

]∑
m=0

[ k+l

2
]∑

M=0

Eijkl
mM (θ)dθ,
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where Cijkl
mM (θ) is

cijkl
mM cos

((
(i + j − 2m)θ)± ((k + l + 1− 2M)N(θ + s)

))
+

dijkl
mM sin

((
(i + j − 2m)θ)± ((k + l + 1− 2M)N(θ + s)

))
,

and Eijkl
mM (θ) is

eijkl
mM cos

((
(i + j + 1− 2m)θ ± ((k + l − 2M)N(θ + s)

))
+

f ijkl
mM sin

((
(i + j + 1− 2m)θ)± ((k + l − 2M)N(θ + s)

))
.

The terms which the integrals are non necessarily zero are given by

i + j − 2m = N(k + l + 1− 2M) (11)

in the first summand and by

i + j + 1− 2m = N(k + l − 2M) (12)

in the second summand.
The same arguments used in Lemmas 4.1 and 4.2 show that if N is even then

the terms that remain are rN−2ρ(b3 sinNs + c3 cos Ns) in the first summand and
rNρ−1(d3 sinNs + e3 cos Ns) in the second summand. If N is odd additionally
to the terms obtained when N is even the first summand has terms of the form
rN−2M+1ρ2M−2 with M from 1 to (N + 1)/2, and the second summand has terms
of the form rN−2M−1ρ2M with M from 0 to (N − 1)/2. �

Lemma 4.4: Let N,α, and β be non–negative integers such that α + β = N .

(a)
∫ 2π

0
cosα t sinβ t cos(N(t + s))dt =


(−1)β/2π

2N−1 cos(Ns) if β even,

(−1)(β+1)/2π
2N−1 sin(Ns) if β odd.

(b)
∫ 2π

0
cosα t sinβ t sin(N(t + s))dt =


(−1)β/2π

2N−1 sin(Ns) if β even,

− (−1)(β+1)/2π
2N−1 cos(Ns) if β odd.

Proof : The expression cosα t sinβ t may be written as

cosα t sinβ t cos(N(t + s)) =
(

eit + e−it

2

)α (
eit − e−it

2i

)β

cos(N(t + s)).

In the expansion of the right hand side we have to consider only terms eit and
e−it such that have the highest degree, i.e., α + β = N , because the integral of the
other terms on the interval [0, 2π] are zero. So we get

1
2N−1

(
eiNt + (−1)βe−iNt

2iβ

)
=


(−1)β/2

2N−1 cos(Nt) if β even,

(−1)(β−1)/2

2N−1 sin(Nt) if β odd.

As cos(N(t + s)) = cos(Nt) cos(Ns)− sin(Nt) sin(Ns), it follows statement (a).
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Now defining I(s) =
∫ 2π
0 cosα t sinβ t cos(N(t + s))dt, we obtain that

∫ 2π

0
cosα t sinβ t sin(N(t + s))dt =

−I ′(s)
N

.

Hence statement (b) follows from statement (a). �

Lemma 4.5: If N is even then the function h3 of Lemma 4.3 is such that
b3 = −c1, c3 = −b1, d3 = −c2/N and e3 = b2/N .

Proof : In order to simplify the proof, let a1
ijklx

i
1x

j
2x

k
3x

l
4 be a monomial of F 1

N such
that i + j = N − 1, k = 0 and l = 1. When we compute the expressions of h1 and
h3, then this monomial appears in h1 as

1
2π

∫ 2π

0
a1

ijkl cosi+1 θ sinj θ sin(N(θ + s))dθ, (13)

and in h3 as

1
2π

∫ 2π

0
a1

ijkl cosi θ sinj+1 θ sin(N(θ + s))dθ. (14)

If k = 0 and l = 1 then, by Lemma 4.4, we have that (13) is equal to (−1)j/2a1
ijkl

sin(Ns)/2N if j even, and to −(−1)(j+1)/2a1
ijkl cos(Ns)2N if j odd, and (14) is equal

to (−1)(j+1)/2a1
ijklsin(Ns)/2N if j + 1 even, and to −(−1)(j+2)/2a1

ijkl cos(Ns)/2N

if j + 1 odd.

For j even the coefficient of the monomial appears in a sum that determines the
coefficient of rN−1ρ cos(Ns) in h1, and also appears in a sum that determines the
coefficient of rN−2ρ sinNs in h3 with the opposite sign. In a similar way for j odd
the coefficient of the monomial appears in a sum that determines the coefficient
of rN−1ρ sinNs in h1, and appears in a sum that determines the coefficient of
rN−2ρ cos Ns in h3 with the same sign.

We can do the same for all monomials of F 2
N , F 3

N and F 4
N , and easily check that

b3 = −c1, c3 = −b1, d3 = −c2/N and e3 = b2/N . �

5. Case N even

In this section we shall prove Theorem 1.1.

Proposition 5.1: If N is even then we have

h1 = h1(r, ρ, s) = a1r + rN−1ρ
(
b1 sin(Ns) + c1 cos(Ns)

)
,

h2 = h2(r, ρ, s) = a2ρ + rN
(
b2 sin(Ns) + c2 cos(Ns)

)
,

h3 = h3(r, ρ, s) = a3 + rN−2ρ
(
− c1 sin(Ns) + b1 cos(Ns)

)
+

rNρ−1
(
−Nc2 sin(Ns) + Nb2 cos(Ns)

)
.

(15)

Proof : It follows from Lemmas 4.1, 4.2, 4.3 and 4.5. �

Proof : [Proof of Theorem 1.1] According to Proposition 5.1, the functions h1, h2

and h3 are given by (15). We call rN−1 = B, ρ/r = A, sinNs = z and cos Ns = w.
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After this change of variables we get

h̃1(A,B, z, w) = h1/r = a1 + AB(b1z + c1w),

h̃2(A,B, z, w) = h2/r = a2A + B(b2z + c2w),

h̃3(A,B, z, w) = ρh3/r = a3A + BA2(−c1z + b1w) + B(−Nc2z + Nb2w),

h̃4(A,B, z, w) = z2 + w2 − 1.

Let h̃i = h̃i(A,B, z, w) for i = 1, 2, 3, 4. Now we solve (h̃1, h̃2, h̃3, h̃4) = (0, 0, 0, 0).
From h̃2 = 0 we obtain

B = − Aa2

b2z + c2w
.

Substituting B in h̃1 = 0, we obtain

A =

√
a1(b2z + c2w)
a2(b1z + c1w)

, and so B = − 1
(b2z + c2w)

√
a1(b2z + c2w)
a2(b1z + c1w)

a2.

Now substituting A and B in h̃3 = 0 we obtain

B1z
2 + B2zw + B3w

2

(b1z + c1w)(b2z + c2w)
= 0, (16)

where

B1 = a3b1b2 + a1b2c1 + a2b1c2N,

B2 = −a1b1b2 + a3b2c1 + a3b1c2 + a1c1c2 − a2b1b2N + a2c1c2N,

B3 = −a1b1c2 + a3c1c2 − a2b2c1N.

The zeros of (16) are just w = z = 0, or a pair of crossing straight lines passing
through the origin. So the maximum number of zeros of (16) and z2+w2 = 1 is four.
Observe that for each zero (A,B, z, w) of (h̃1, h̃2, h̃3, h̃4) = (0, 0, 0, 0), with A > 0
and B > 0, we can find N zeros (r, ρ, s) of (h1, h2, h3) = (0, 0, 0). In our case N
is even, so the zeros (r, ρ, s) obtained from (A,B, z, w) are the same ones obtained
from (A,B,−z,−w). This completes the proof that the maximum number of zeros
of (h1, h2, h3) = (0, 0, 0) is 2N . So, by Theorem 2.1, the maximum number of limit
cycle obtained via averaging theory for system (2) is 2N . This proves statement
(a).

Now we show that system (3) has 2N limit cycle. Computing h1, h2 and h3 for
this system we obtain

h1(r, ρ, s) = −2 sin(
√

2π)r + rN−1ρ
(
sinNs + 2 sin(

√
2π −Ns)

)
,

h2(r, ρ, s) = 2
N

(
sin(

√
2π)ρ− rN

(
2 sinNs + sin(

√
2π −Ns)

))
,

h3(r, ρ, s) = 3 + rN−2ρ
(
cos Ns− 2 cos(

√
2π −Ns)

)
+

rNρ−1
(
− 4 cos Ns + 2 cos(

√
2π −Ns)

)
.



October 5, 2008 21:10 Dynamical Systems buzllimedtor2008

Bifurcation of limit cycles from a center in R
4 in ressonance 1:N 13

The zeros of (h1, h2, h3) = (0, 0, 0) are

(r, ρ, s) =
(

1, 1, k
2π

N

)
for k ∈ {0, 1, . . . , N − 1},

and

(r, ρ, s) =
(

1, 2,
√

2π + k
2π

N

)
for k ∈ {0, 1, . . . , N − 1}.

The Jacobian determinant of h = (h1, h2, h3) computed at
(
1, 1, k 2π

N

)
for k ∈

{0, 1, . . . , N − 1} is

−12(N − 1)
(
− 5 + 4 cos

(√
2π

))
sin

(√
2π

)
6= 0,

and computed at
(
1, 2,

√
2π + k 2π

N

)
for k ∈ {0, 1, . . . , N − 1} is

12(N − 1)
(
− 5 + 4 cos

(√
2π)

)
sin

(√
2π

)
6= 0.

Applying Theorem 2.1, the proof of statement (b) is done. �

6. Case N odd

In this section we shall prove Theorem 1.2.

Proposition 6.1: If N is odd then we have

h1(r, ρ, s) = a1r + rN−1ρ
(
b1 sin(Ns) + c1 cos(Ns)

)
+

N−1
2∑

M=0

d1
MrN−2Mρ2M ,

h2(r, ρ, s) = a2ρ + rN
(
b2 sin(Ns) + c2 cos(Ns)

)
+

N−1
2∑

M=0

d2
MrN−2M−1ρ2M+1,

h3(r, ρ, s) = a3 + rN−2ρ
(
− c1 sin(Ns) + b1 cos(Ns)

)
+

rNρ−1
(
−Nc2 sin(Ns) + Nb2 cos(Ns)

)
+

N−1
2∑

M=0

d3
MrN−2M−1ρ2M .

Proof : It follows from Lemmas 4.1, 4.2, 4.3 and 4.5. �

Proof : [Proof of Theorem 1.2] In Proposition 6.1, the functions h1, h2 and h3 are
given. Now we perform the change rN−1 = B, ρ/r = A, sin Ns = z and cos Ns = w.
The functions h̃1 = h1/r, h̃2 = h2/r, h̃3 = ρh1/r in the new variables are

h̃1 = a1 + AB(b1z + c1w) + BP1(A2),
h̃2 = a2A + NB(b2z + c2w) + ABP2(A2),
h̃3 = a3A + BA2(−c1z + b1w) + B(−c2z + b2w) + ABP3(A2),
h̃4 = z2 + w2 − 1,
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where

Pi(A2) =

N−1
2∑

M=0

di
MA2M , for i = 1, 2, 3.

We solve
(
h̃1, h̃2, h̃3

)
= (0, 0, 0) and find a solution B = B(A2), z = AZ(A2), w =

AW (A2), where B(u) is the quotient of one polynomial of degree 2 by a polynomial
of degree (N+3)/2, and Z(u) and W (u) are the quotient of one polynomial of degree
(N +1)/2 by a polynomial of degree 2. Substituting z and w in the equation h̃4 = 0,
we obtain the quotient of one polynomial of degree N + 2 in the variable A2 by a
polynomial of degree 4 in A2. So the maximum number of positive roots A of the
numerator of h̃4 is N+2. For each solution A0 we have at most one B0 = B(A0) > 0
and just one pair (z0, w0) =

(
z(A0), w(A0)

)
. For each pair (z0, w0) we can find

s1, . . . , sN ∈ [0, 2π) such that sin Nsi = z0 and cos Nsi = w0 for i = 1, . . . , N.
So, by Theorem 2.1, the maximum number of limit cycles obtained via averaging
theory for system (2) is N(N + 2). This completes the proof of statement (a).

In order to prove that the previous bound N(N + 2) is attained for N = 3 we
should prove that for each positive zero of h̃4(A2) the corresponding B(A) is also
positive. To ensure this last condition we impose that B(A) = 1+αA4 with α > 0.
Then choosing a good collection of parameters,

(a1, b1, c1, d
1
0, d

1
1) =

(
100
59

, 0,−13
16

,−100
59

, 0
)

,

(a2, b2, c2, d
2
0, d

2
1) =

(
−119

18
,
16
13

,− 59
131

,
4
5
, 0

)
,

(a3, d
3
0, d

3
1) =

(
161473
113184

,−2821
3930

,−169
960

)
,

we obtain

B(A) = 1 +
3441240088741
6886432512000

A2,

and

h̃4 =
68352442249
76441190400

A10 − 106370960423
8344829952

A8 +
16170645808194605
237833390702592

A6−

923151210666125
5500736967168

A4 +
169693234403855580625

898133515906476096
A− 2233385285852250000

29279429820253561
,

which has 5 simple positive zeros each one contained in a different interval of [0, 1],
[1, 2], [2, 3], [3, 4] and [4, 5].

The Jacobian of (h̃1, h̃2, h̃3) for our concrete case, and considering as a function
of A, is of the form AP6(A2)/P2(A2) and the numerator has no common zeros with
h̃4 for that reason we can ensure that the 15 zeros are simple zeros of (h̃1, h̃2, h̃3).
This proves statement (b) of Theorem 1.2 for N = 3.

The cases N = 5, 7, 9 can be proved using the same arguments choosing a good
selection of the parameters. �
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