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We study a particular class of Lotka-Volterra 3-dimensional systems called May-Leonard systems, which

depend on two real parameters a and b, when a+b =−1. For these values of the parameters we shall describe

its global dynamics in the compactification of the non-negative octant of R3 including its infinity. This can be

done because this differential system possesses a Darboux invariant.
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1. Introduction

Polynomial ordinary differential systems are often used in various branches of applied mathematics,

physics, chemist, engineering, etc. Models studying the interaction between species of predator-prey

type have been extensively analyzed as the classical Lotka-Volterra systems. For more information

on the Lotka-Volterra systems see for instance [8] and the references quoted there. In particular, one

of these competition models between three species inside the class of 3-dimensional Lotka-Volterra

systems is the May-Leonard model given by the polynomial differential system in R
3

ẋ = x(1− x−ay−bz),

ẏ = y(1−bx− y−az),

ż = z(1−ax−by− z),

(1.1)

where a and b are real parameters and the dot denotes derivative with respect to the time t. See for

more details on the May-Leonard system the papers [10] and [2] and on Lotka-Volterra systems [9],

and the references quoted there.

The Lotka-Volterra systems in R
3 have the property that the three coordinate planes are invariant

by the flow of these systems. Moreover, at points of straight line x= y= z, system (1.1) is reduced to

ẋ= x−(1+a+b)x2, because the other equations do not provide any further information. Therefore,

the bisectrix of the non-negative octant is an invariant straight line for this differential system.
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