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Abstract. We investigate the parameter plane of the Newton’s method applied to the family
of quartic polynomials pa,b(z) = z4 +az3 + bz2 +az+ 1, where a and b are real parameters. We
divide the parameter plane (a, b) ∈ R2 into twelve open and connected regions where p, p′ and
p′′ have simple roots. In each of these regions we focus on the study of the Newton’s operator
acting on the Riemann sphere.
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1. Introduction

Newton’s method is the universal root finding algorithm in all scientific areas of knowledge. It
is also the seed of what we know as holomorphic dynamics and it goes back to Ernest Schröder
and Artur Caley who investigated the global dynamics of Newton’s method applied to low
degree polynomials as a rational map defined on the Riemann sphere. This global study is not
only theoretical but it also has important implications at computational level (see for instance
[HSS01]).

Given a rational map f : Ĉ → Ĉ, where Ĉ denotes the Riemann sphere, we consider the
dynamical system given by the iterates of f . The Riemann sphere splits into two totally
f−invariant subsets: the Fatou set F(f), which is defined to be the set of points z ∈ Ĉ where
the family {fn, n ≥ 1} is normal in some neighborhood of z, and its complement, the Julia

set J (f) = Ĉ \ F(f). The Fatou set is open and therefore J (f) is closed. Moreover, if the
degree of the rational map f is greater than or equal to 2, then the Julia set J (f) is not empty
and it is the closure of the set of repelling periodic points of f .

The connected components of F(f), called Fatou components, are mapped under f among
themselves. If follows from the Classification Theorem ([Mil06], Theorem 13.1) that any pe-
riodic Fatou component of a rational map is either the basin of attraction of an attracting or
parabolic cycle or a simply connected rotation domain (a Siegel disk) or a doubly connected
component rotation domain (a Herman ring). Moreover, the basin of attraction of an attracting

or parabolic cycle contains, at least, one critical point i.e. a point z ∈ Ĉ such that f ′(z) = 0.
For a background on the dynamics of rational maps we refer to [Mil06, Bea91, CG93].

Given p a polynomial of degree d ≥ 2 we define the Newton’s map as

Np(z) := z − p(z)

p′(z)
.

Clearly, roots of p correspond to attracting fixed points of Np. It is well-known (see [Shi09])
that J (Np) is connected (see also [BFJK14, BFJK]) and consequently, all Fatou components
are simply connected. Although, as we claimed, Newton’s method is the universal root finding
algorithm it reveals limitations. Precisely, for some polynomials of degree d ≥ 3, there are open
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sets of initial conditions in the dynamical plane not converging to any root of p. The reason
for this is the existence of at least one free critical point which allows the Newton’s map of p
(for an open set of polynomials in parameter space) to have attracting basins of period k ≥ 2.
Of course for all seeds on those basins the iterates are not converging to any of the roots of p.
See [McM87] for a remarkable discussion in this direction.

η1 η2 ν1 ν2

Figure 1. Dynamical plane of Na,b for a = 0.0013 and b = −1.73729 in the
region R4. We can see in red the four basins of attractions of the complex roots
of pa,b and in black the two attracting cycles of period two, {η1, η2} and {ν1, ν2},
to which the free critical points are attracted.

There are also several results about the dynamical plane as well as the parameter plane of
Newton’s method applied to some concrete families of polynomials. The most studied case is
Newton’s method of cubic polynomials q(z) = z(z − 1)(z − a), a ∈ C, for which the only free
critical point is located at (a+ 1)/3. See [Tan97, Roe08] and references therein.

However, there is not a general study on Newton’s method for quartic polynomials. Since
the degree of Np in this case is d = 4 (we assume no double roots of p to keep inside the
family), we know there are 2d − 2 = 6 critical points. Of course four of them correspond to
the four roots of p but we have two free extra critical points and hence the parameter space is
C2. In our approach we decrease the dimension of the parameter space but somehow we keep
the difficulty. Indeed, we consider the family of symmetric quartic polynomials with two real
parameters. Thus, although the parameter space is R2, the number of free critical points is still
two. Figure 1 illustrates one case where the two critical points are attracted by two different
period two attracting cycles.

Precisely, the main goal of this paper is to study some topological properties of the param-
eter and dynamical plane of Newton’s method applied to the family of four degree symmetric
polynomials:

(1) pa,b := pa,b(z) = z4 + az3 + bz2 + az + 1,

when a and b are real parameters. Symmetric polynomials frequently appear along the dynam-
ical study of others families of iterative methods (see [CCTV15], for example). We will split
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the parameter plane into regions in which the roots of the polynomials p, p′ and p′′ have simple
zeroes and determine in which of those parameter regions we can guarantee that, except for a
measure zero set (which is no relevant from the numerical point of view), any seed in dynam-
ical plane converges to a root of p (Proposition 1 and Proposition 2). We also give numerical
evidences that in other regions a more complicated and chaotic dynamics is possible. From
the theoretical point of view these results are a first step in the direction of having a better
understanding of Newton’s method applied to quartic polynomials.

The expression of the Newton’s map applied to pa,b writes as

(2) N := Na,b(z) = z − pa,b(z)

p′a,b(z)
= z − z4 + az3 + bz2 + az + 1

4z3 + 3az2 + 2bz + a
.

The critical points of N are the solutions of N ′(z) = 0; that is, the roots of p and p′′. For each
root ri(a, b) := ri, i = 1, · · · , 4 we define its basin of attraction, Aa,b(ri), as the set of points in
the complex plane which tend to ri under the Newton’s map iteration. That is

Aa,b(ri) = {z ∈ C , Nk
a,b(z)→ ri as k →∞}.

In general, Aa,b(ri) may have infinitely many connected components but only one of them,
denoted by A∗a,b(ri) and called immediate basin of attraction of ri, contains z = ri. See Figure
1.

The paper is structured as follows. In Section 2 we investigate in the parameter plane
(a, b) ∈ R2 the bifurcation curves where the roots of p, p′ or p′′ have multiple roots. We
call regions the complement of these curves. The regions are open and connected sets in the
parameter plane where the roots of p, p′ and p′′ are simple. In Sections 3, 4, 5 we study in turn
the Newton’s operator depending on the number of real roots of the polynomial p.

Acknowledgements. The authors would like to thank N. Fagella and J. Canela for their useful
comments during the preparation of this manuscript.

2. Parameter Plane

As we pointed out, our main goal is to describe some primary (see below for a precise meaning
of this) bifurcations occurring in the (real) parameter plane (a, b) ∈ R2 when considering the
dynamical system given by the iterates of the Newton’s method applied to the polynomial
pa,b(x) = x4 + a(x3 + x) + bx2 + 1, denoted by Na,b.

We firstly observe that we can restrict to (a, b)-parameters with a ≥ 0 and that the Newton’s
method dynamical plane is symmetric under the transformation z 7→ z̄.

Lemma 1. Let pa,b(x) = x4 + a(x3 + x) + bx2 + 1 and p−a,b(x) = x4− a(x3 + x) + bx2 + 1, then

N(pa,b) is conjugate of N(p−a,b). Moreover, Na,b(z̄) = Na,b(z).

Proof. We consider the map τ(x) = −x, easy computations show that

N(p−a,b)(x) = (τ−1 ◦N(pa,b) ◦ τ)(x).

Using the expression of the Newton map (Eq. 2) and the fact that a and b are real numbers

we have that Na,b(z) = Na,b(z), so the dynamical plane is symmetric with respect to the real
line. �

Primary bifurcations correspond to parameters (a, b) ∈ R2 for which the roots of p, p′ or
p′′ collide. That is, the connected components of the complement of this set of parameters
define regions in the parameter plane where the polynomials p, p′, and p′′ have simple roots.
We notice, however, that in each of those regions the Newton’s methods Na,b need not be, in
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general, dynamically equivalent. We will give precise results in this direction in next section;
see, for instance, Proposition 1 or Proposition 2 and discussions therein.

We begin by studying the real and complex roots of p (x). To obtain these roots we introduce
a change of variable y = x+ 1

x
. Then, the roots of p (x) are given by

x =
y± ±

√
y2± − 4

2
, where y± =

−a±
√
a2 − 4b+ 8

2
.

From the study of these two discriminants we obtain the curves

L1 : = {(a, b) ∈ R2 | a2 − 4b+ 8 = 0},
L2 : = {(a, b) ∈ R2 | b = 2a− 2},
L3 : = {(a, b) ∈ R2 | b = −2a− 2},

separating the plane into different regions, depending on the number of real and complex roots
contained in each of them.

There are one specific choice of the parameters, (a, b) = (4, 6), for which p4,6(x) has a unique
root of multiplicity four. The bifurcations of the roots along the curves L1 ∪ L2 ∪ L3 are of
different nature. On the one hand, when the parameters (a, b) 6= (4, 6) are in L1 the polynomial
pa,b exhibits two roots of multiplicity two. These two double roots are complex for 0 ≤ b < 4
and are real for b > 4. On the other hand, when the parameters (a, b) 6= (4, 6) are in L2 ∪ L3

the polynomial pa,b has three real roots, two simple and one double.
Secondly, we study the roots of p′(x) = 4x3 + 3ax2 + 2bx + a. The number of real roots of

p′ (x) gives us the number of vertical asymptotes of the Newton’s operator. Easily, on the curve

L4 := {(a, b) ∈ R2 | 27a4 + 108a2 − 108a2b− 9a2b2 + 32b3 = 0}

p′ (x) has two real roots, one simple and one double. This curve delimits the regions where
p′ (x) has one or three real roots.

Finally, the roots of p′′(x) = 12x2 + 6ax+ 2b are given by

(3) c1 =
−3a−

√
9a2 − 24b

12
, c2 =

−3a+
√

9a2 − 24b

12
.

We observe that according to the used notation when c1 and c2 are real numbers we have that
c1 < 0 since a > 0, c1 ≤ c2 and c1 and c2 collide on the curve

L5 := {(a, b) ∈ R2 | b = 3a2/8}.

From construction, the curves L1 ∪ · · · ∪ L5 define the primary bifurcation parameters and
the connected components of the complement in parameter plane

{(a, b) ∈ R2 , a ≥ 0} \
5⋃
i=1

Li,

which we denote by R, are formed by parameter values where the polynomials p, p′ and p′′

have a constant number of simple roots. More precisely,

Remark 1. Let R be a region. The number of real roots of p in R is 0, 2 or 4, the number of
real roots of p′ in R is 1 or 3, and the number of real roots of p′′ in R is 0 or 2.

Moreover, in R the roots of p, p′ and p′′ cannot collide themselves. Consequently, in R,
the roots of p cannot collide with roots of p′, and the roots p′′ cannot collide with roots of p′.
However R can have parameters corresponding to collisions of the roots of p and p′′ since those
collisions do not imply the existence of a multiple root (see Lemma 2 below).
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In the following table we summarize the number of real roots of p, p′ and p′′ in each region.
To distinguish among regions we label them with a subscript.

Regions Roots of p (x) Roots of p′ (x) Roots of p′′ (x)
R1 2 1 2
R2 0 1 0
R3 0 1 2
R4 0 3 2
R5 4 3 2
R6 2 3 2
R7 2 1 0
R8 0 1 2
R9 0 3 2
R10 4 3 2
R11 2 3 2
R12 0 1 0

Table 1. Regions where the zeroes of p, p′ and p′′ are simple.

In Figure 2 we show the parameter plane (a, b), the bifurcation curves L1 ∪ · · · ∪ L5 and the
12 regions.

Lemma 2. The curves

L6 : = {(a, b) ∈ R2 | 288− 9a4 + 3a
(
a2 − 4b+ 8

)√
9a2 − 24b− 40b2 + 24a2 (−3 + 2b) = 0}

L7 : = {(a, b) ∈ R2 | 288− 9a4 − 3a
(
a2 − 4b+ 8

)√
9a2 − 24b− 40b2 + 24a2 (−3 + 2b) = 0}

correspond to values of the parameters where the roots of p and p′′ collide. Moreover, for
(a, b) ∈ L6 ∪ L7 the common root of p and p′′ is an inflection point of the Newton operator.

Proof. The points w that are roots of p and p′′ (but not roots of p′) are the solutions of

p(w) = 0; p′(w) 6= 0; p′′(w) = 0.

If the expression (3) of the critical points c1 and c2 is placed in the polynomial equation p (x) = 0
we obtain the expressions defining L6 and L7, respectively.

The second statement follows from direct computations, since N ′′′(w) 6= 0 and N ′(w) =
N ′′(w) = 0, as long as w satisfies p(w) = p′′(w) = 0. So, w is an inflection point of the Newton
operator. �

Next lemma is an auxiliary result that we will use in the study of the dynamics of the
Newton’s operator. However we state this result for a general iterated system.

Lemma 3. Let f : I ⊂ R→ R be a continuous function such that f(r) = r.

• If I = [r, x0] and r < f(x) < x for all x ∈ (r, x0], then lim
n→∞

fn(x) = r for all x ∈ I.

• If I = [x0, r] and x < f(x) < r for all x ∈ [x0, r), then lim
n→∞

fn(x) = r for all r ∈ I.

Proof. Let x ∈ (r, x0]. We consider the iterates of x under f , i.e. the sequence of real numbers
fn(x) for all n ≥ 0. As, by hypothesis, r < f(x) < x for all x ∈ (r, x0], we have that r <
fn+1(x) = f(fn(x)) < fn(x) proving thus that the sequence {fn(x)}n≥0 is strictly decreasing.
Since r < fn(x) for all n ≥ 0 we conclude that the sequence of iterates converge to a limit point
` ≥ r. Using the continuity of f we have that f(`) = ` hence ` = r.

The other item is proved by a similar reasoning. �
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Figure 2. Regions in parameter plane bounded by the curves L1, L2, L3, L4 and L5

and two zooms. The curves L6 and L7, corresponding to a collision of the roots of p
and p′′, are also drawn since they play an important role in the arguments.

3. The polynomial p has four real roots

In this section we assume that p has four real roots r1 < r2 < r3 < r4. Thus p′ has exactly
three real roots αj, j = 1, 2, 3 satisfying r1 < α1 < r2 < α2 < r3 < α3 < r4, and p′′ has
exactly two real roots cj, j = 1, 2 (that is, the two free critical points of Na,b) satisfying
α1 < c1 < α2 < c2 < α3; this case corresponds to regions R5 and R10. In Figure 3 we show the
graph of Na,b for (a, b) = (1,−8) ∈ R5.

Proposition 1. If the polynomial pa,b has four different real roots then, except for a measure
zero set, all initial conditions converge to one of them, that is:

F(Na,b) = A(r1) ∪ A(r2) ∪ A(r3) ∪ A(r4).

Proof. According to Table 1 the case when p has four real roots corresponds to regions R5 and
R10. The difference between these two regions is the relative position of the roots respect to 0.
Indeed, since p(0) = 1, in region R5 there are two negative and two positive roots while in the
region R10 all the roots are negative.

In order to show that F (Na,b) = A(r1) ∪ A(r2) ∪ A(r3) ∪ A(r4), it is enough to prove that
the two free critical points c1 and c2 (see Eq. (3)) are captured by the roots of the polynomial
pa,b. Precisely, we should show that

lim
n→∞

Nn(c2) = r3 and lim
n→∞

Nn(c1) = r2.

In fact we will show the first equality. The argument for the critical point c1 is completely
symmetric and details are left to the reader. The idea is to determine the behaviour of N := Na,b

on the real line. The simple roots of p are fixed points of N . Moreover, N exhibits either a
local maximum or minimum at simple, non common, zeros of p and p′′. We also know that
y = 3

4
x− a

16
is an oblique asymptote of N . With this in mind, we split the proof into two cases

according to the relative position of the critical points and the roots of p, (notice that c2 6= r3,
otherwise we are done).

First we assume that α2 < c2 < r3 < α3 < r4 and we claim that lim
n→∞

Nn(c2) = r3. To see

the claim we first observe that N exhibits a local maximum at r3 and a local minimum at c2
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Figure 3. Graphics of Newton map N−1,8 in region R5

and the mapping N is non decreasing in the interval I = [c2, r3]. Moreover, x < N(x) < r3 for
all x ∈ [c2, r3). So Lemma 3 applies to conclude that lim

n→∞
Nn(c2) = r3.

Otherwise we assume that α2 < r3 < c2 < α3 < r4 and we (also) claim that lim
n→∞

Nn(c2) = r3.

It is easy to check that N exhibits a local maximum at c2 and a local minimum at r3. Moreover,
r3 < N(x) < x for all x ∈ (r3, c2]. So, as above, Lemma 3 applies and lim

n→∞
Nn(c2) = r3.

�

4. The polynomial p has two real roots

In this section we assume that p has two real roots r1 < r2. According to Table 1, this
assumption corresponds to regions R1,R6,R7 and R11. In this case, depending on the region
under consideration, the dynamics of Na,b can be from simple (that is, the free critical points
are captured and the Fatou set coincide with the union of the attracting basins of the zeroes of
pa,b), see Proposition 2, to rich (that is either one or both of the free critical points are allowable
to do their own dynamics and the Fatou set is not reduced to points whose orbits converge
to one of the roots of pa,b), see Proposition 3. We exemplify the later case by means of some
numerical experiments.

Proposition 2. Let (a, b) ∈ R7. Then, except for a measure zero set, all initial conditions
converge to one of the roots of p, that is:

F(Na,b) = A(r1) ∪ A(r2) ∪ A(r3) ∪ A(r4).

Proof. In this case p has two real roots r1 < r2 and two complex (conjugated) roots r3 and
r4 = r3, p

′ one real root α and two complex (conjugated) roots α2 and α3 = α2, and p′′ has
two complex (conjugated) roots c1 and c2 = c1. We assume that Im(r3) > 0, Im(α2) > 0 and
Im(c1) > 0. Moreover the Julia and Fatou sets of Na,b are symmetric with respect to the real
line, since p has real coefficients (see Lemma 1).

The idea of the proof is the following. Since the Julia set of Na,b is a connected set of the

Riemann sphere Ĉ we know that the four immediate basins of attraction of ri for i = 1, 2, 3, 4 are
simply connected and we will study the degree of Na,b in every immediate basin of attraction,
proving that in fact Na,b : A∗(r2) → A∗(r2) has degree four. This situation forces the two
critical points c1 and c2 to belong to it. So, lim

n→∞
Nn
a,b(ci) = r2 for i = 1, 2.

There is a unique configuration for the real roots of p and p′ given by r1 < α < r2, so N
has a local maximum at x = r1 and a local minimum at x = r2. From Lemma 3, we have that
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∀ x0 ∈ (−∞, r1) then limn→∞N
n(x0) = r1. On the other hand, ∀ x0 ∈ (r1, α), as r1 is a local

maximum, N(x0) < r1, that is, N(x0) ∈ (−∞, r1) and therefore Lemma 3 is also applied. So,

lim
n→∞

Nn(x0) = r1, ∀ x0 ∈ (−∞, α).

Similarly, we have that

lim
n→∞

Nn(x0) = r2, ∀ x0 ∈ (α,∞).

In particular, A∗(r1) ∩R = (−∞, α), A∗(r2) ∩R = (α,+∞) and Na,b(α) =∞. Thus, A∗(r3) is
contained in the upper half plane and the A∗(r4) is contained in the lower half plane.

We recall that Na,b is a rational map defined on the Riemann sphere Ĉ with degree 4. Let
Γ = (−∞, r1]∪ (r2,∞)∪{∞} and consider N−1a,b (Γ). This set consists into four pieces: the first
one is Γ itself, the second one is [r1, r2] and the two other preimages are two curves γ1 and γ2
containing α2 and α3, respectively. We notice that these two curves are symmetric respect to
the real line. Thus, they divide the complex plane into two doubly connected components

A+ = {z ∈ C ; Im(z) > 0} \ γ1 and A− = {z ∈ C ; Im(z) < 0} \ γ2.

By construction Na,b maps A± onto Ĉ \ Γ. Using the Riemann-Hurwitz formula (see [Mil06])

we have that every point in Ĉ \ Γ has exactly two preimages in A+ and two preimages in A−.
We consider now the immediate basin of attraction of r3 denoted by A∗(r3), by construction we
have that A∗(r3) ⊂ A+, since A∗(r3) cannot cross the real line and r3 ∈ A+. Thus, the other
two preimages of A∗(r3) belong to A−. More precisely one preimage attached to α and the
other attached to α3. By symmetry, A∗(r4) ⊂ A− and the other two preimages belong to A+,
one attached to α and the other attached to α2. Concluding thus that Na,b : A∗(ri) → A∗(ri)
has degree 2 for i = 3, 4.

We claim that Newton’s map has degree four in A∗(r2). To see the claim we assume that
Na,b : A∗(r2) → A∗(r2) has degree two. In this case the dynamics of Na,b is conformally
conjugate to z → z2 defined in the unit disc and we can define internal rays of angle θ in
the immediate basin. These rays are defined as the image, under the conformal conjugacy,
of the segment reiθ for 0 ≤ r < 1. The conjugacy z → z2 induces a conjugacy between the
internal rays θ → 2θ. Since α is a preimage of ∞ by construction at least three rays land at α.
One of these three rays is [α, r2] and the other two rays are symmetric respect to the real line
separating A∗(r2) from the preimages of A∗(r3) and A∗(r4) attached to it. These three rays are
mapped under the doubling map to the fixed ray [r2,∞). This is a contradiction with the fact
that the map has degree two, since the only preimage of the angle 0 under the doubling map
θ → 2θ is the unique angle θ = 1/2.

For parameter values (a, b) with a < 0 we obtain the symmetric situation, i.e. the degree of
Newton’s map in A∗(r1) is four. �

Proposition 3. Let assume (a, b) ∈ R1 ∪R6. Then c1 ∈ A(r2).

Proof. Let assume (a, b) ∈ R1. In this region the polynomial p := pa,b has two real roots r1 < r2,
the polynomial p′ has only one real root α, and the polynomial p′′ has two real roots c1 < c2.
We obviously have that r1 < α < r2. If c1 = r2 the statement is trivial. So, in what follow we
assume c1 6= r2.

Taking a concrete value of the parameter in R1 it is easy to check that r1 < α < r2 < c1 < c2.
Consequently, for all parameters in R1 we have α < c1, since otherwise we should be crossing a
bifurcation curve. Hence there are only three possible configurations depending on the relative
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positions of the points c1, c2 and r2 which indeed correspond to the three connected components
of R1 \ L6.

Case (a). r1 < α < r2 < c1 < c2. The Newton’s map N has a local minimum at r2 and a
local maximum at c1. Defining I = [r2, c1] we have that r2 < N(x) < x for all x ∈ (r2, c1] and
Lemma 3 concludes that lim

n→∞
Nn(c1) = r2.

Case (b). r1 < α < c1 < r2 < c2. The Newton’s map exhibits a local minimum at c1 and a
local maximum at r2. Taking I = [c1, r2] we have that x < N(x) < r2 for all x ∈ [c1, r2) and
applying Lemma 3 we conclude that lim

n→∞
Nn(c1) = r2.

Case (c). r1 < α < c1 < c2 < r2. In fact under this configuration we will show that ci ∈
A (r2) , i = 1, 2.
The Newton’s map has local minima at r2 and c1, and local maxima at c2 and r1. Since
r2 < N(x) < x for all x ∈ (r2,+∞), Lemma 3 implies that Nn(x)→ r2 for all x > r2. The first
iterate N(c2) ∈ (r2,+∞), and then lim

n→∞
Nn(c2) = r2. This proves c2 ∈ A (r2).

On the other hand, N is increasing in (c1, c2). If N(c1) ≥ c2 then lim
n→∞

Nn(c1) = r2 and we are

done. So, we assume that N(c1) < c2. We claim that there exists a minimal index k > 0 such
that Nk(c1) > c2. To see the claim, we assume that Nk(c1) ≤ c2 for all k ≥ 0, so this increasing
sequence is bounded and has a limit ` which is a fixed point of N in the interval (c1, c2] which
is a contradiction.

To finish the proof we deal with (a, b) ∈ R6. In this region the polynomial p := pa,b has two
real roots r1 < r2, the polynomial p′ has three roots α1 < α2 < α3, and the polynomial p′′ has
two real roots c1 < c2. Arguing as before, since there are no multiple zeroes of the polynomials
p, p′ and p′′ in this region, we take one concrete parameter in R6 to show that for all parameters
in R6 we have

r1 < α1 < r2 < α2 < c2 < α3.

Considering the value of c1, there are only two possible configurations: c1 < r2 or r2 < c1,
which correspond to the two connected components of R6 \ L6.

Case (a). r1 < α1 < c1 < r2 < α2 < c2 < α3. The Newton’s map exhibits a local minimum
at c1 and a local maximum at r2. Taking I = [c1, r2] we have that x < N(x) < r2 for all
x ∈ [c1, r2) and applying Lemma 3 we conclude that lim

n→∞
Nn(c1) = r2.

Case (b). r1 < α1 < r2 < c1 < α2 < c2 < α3. Now, the Newton’s map exhibits a local minimum
at r2 and a local maximum at c1. Defining I = [r2, c1] we have that r2 < N(x) < x for all
x ∈ (r2, c1] and by Lemma 3 we conclude that lim

n→∞
Nn(c1) = r2.

So the Proposition follows. �

4.1. Further numerical experiments. From the above results we know that for most of
initial conditions Na,b, (a, b) ∈ R7 orbits converge to one of the roots of p. In other words, for
every parameter in R7, except for a measure zero set of initial conditions, the Fatou set is the
union of the basins of the roots of p.

In R1 and R6 the situation is quite different. Although the smallest free critical point, c1, is
captured by r2 we still do not know in general the dynamics of the critical point c2. In fact,
the following numerical examples illustrate that, for some parameters, there are open sets of
initial conditions (in the dynamical plane) where the orbit do not converge to any of the roots.
Moreover, by means of the Implicit Function Theorem, those bad parameter values form an
open set in parameter plane.

Example 1. Let (a, b) = (1.45577,−2.10306) ∈ R1. The (biggest, real) critical point of Na,b

is c2 ≈ 0.3310137. Doing some numerics it is possible to show that the sequence Nn
a,b (c2) is



10 BEATRIZ CAMPOS, ANTONIO GARIJO, XAVIER JARQUE, AND PURA VINDEL

attracted by the attracting 2-cycle (see Figure 4(a))

{η1 ≈ −1.5846742, η2 ≈ 0.33143177}.
Example 2. Let (a, b) = (0.129845,−1.99029) ∈ R6. The (biggest, real) critical point of Na,b is
c2 ≈ 0.5444. Doing some numerics it is possible to show that the sequence Nn

a,b (c2) is attracted
by the attracting 2-cycle (see Figure 4(b))

{η1 ≈ 0.557, η2 ≈ 1.008}.
Example 3. In case of region R11 the polynomials p and p′′ has two real roots and p′ has three
real roots. The relative configuration of those roots is unique: r1 < α1 < c1 < α2 < c2 < α3 < r2.
The following numerical example shows that there are parameter values (in fact, as before, open
sets of them in parameter plane) for which none of the free critical points is captured by any of
the attracting basins of the roots of p.

Let (a, b) = (5.93336, 9.80305) ∈ R11. The real critical points of Na,b are c1 ≈ −2.236 and
c2 = −0.7307. The sequence Nn

a,b (ci) , i = 1, 2 is attracted by the attracting 2-cycle (see Figure
4(c))

{η1 ≈ −1.0233, η2 ≈ −0.7199}.

(a) Parameters in R1 (b) Parameters in R6 (c) Parameters in R11

η2η1 η2η1 η2η1

Figure 4. Dynamical planes for parameters in R1, R6 and R11. In all three cases
the Fatou set is different from the union of all the basin of attraction of the roots of p.

5. p has no real roots

According to Table 1, we consider parameter values in Ri with i ∈ {2, 3, 4, 8, 9, 12}. In all
these regions we will show that the orbit of the two free critical points, c1 and c2 need not be
captured by the roots of the polynomial p. So, in some cases, the Fatou set will be larger than
the union of the attracting basins of the roots of p. Our main goal is to give concrete possible
scenarios and configurations in the dynamical plane.

The main argument is to study in detail the bifurcation curve L5. We recall that the bifurca-
tion curve L5 = {(a, b) ∈ R2 |, b = 3a2/8} consists of the set of parameter values for which the
two simple critical points c1 and c2 collide in a double critical point located at c1 = c2 = −a/4.
Under this assumption we can treat the Newton’s map

Na := Na,b where b =
3a2

8
as a one complex parameter family of rational maps in the Riemann sphere. By construction
Na has a unique free critical point of multiplicity two located at −a/4. Moreover,
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Na(z) = z −
pa,3a2/8(z)

p′a,3a2/8(z)
= z −

z4 + a(z3 + z) + 3
8
a2z2 + 1

4z3 + a(3z2 + 1) + 3
4
a2z

, a ∈ C

depends holomorphically on a.

Remark 2. We notice that studying Na on the real line we are studying Na,b on the bifurcation
parabola b = 3a2/8 in the (a, b)−parameter plane. In Figure 5 (a) and (b) we plot the parameter
plane of Na.

We first state that the a−plane has two symmetries. The proof is direct.

Lemma 4. Let a ∈ C. Then Na(z) is conjugate to Na(z) and N−a(z). Hence it is enough to
study the closed first quadrant.

Following [McM00], it is clear that our family is non-trivial, that is the bifurcation locus,
given by the parameter values for which the number of attracting cycles is not locally constant,
is non empty. Hence, it follows from Theorem 1.1 and Corollary 1.2 in [McM00] and taking
into account that the critical point z = −a/4 has multiplicity two, that our bifurcation locus
contains, densely, copies of small copies of the generalized Mandelbrot set M3, defined as

M3 = {c ∈ C , J (z3 + c) is connected }.
To illustrate this claim we plot in Figure 5(c) the parameter plane of z3 + c and in Figure

5 (b) a small copy of M3 in the parameter plane of Na. For the hyperbolic a-parameter
values belonging to the interior of these small copies of M3 the critical point is attracted by
an attracting k-cycle, k ≥ 2, and hence its dynamics is not captured by the attracting basins
of the roots of p. In other words, for all these bad parameters the Fatou set is larger than the
union of the attracting basins of the roots of p.

Remark 3. It follows from the symmetries described in Lemma 1 that those small copies of
M3 in the parameter plane of Na are symmetrically located with respect the real (and complex)
line. Moreover, it is possible to find numerically some real parameters a ∈ R such that the
critical point −a/4 belongs a superattracting cycle of period k ≥ 2 (at least for some values of
k) since such parameters are real solutions of the equation Gk(a) = 0, where

Gk(a) = N k
a (−a

4
) +

a

4
= 0.

Consequently, infinitely many of them, of arbitrarily high period, cross the real line, and are
symmetric with respect to it. See again Figure 5(a-b). Numerical computations show that for
a1 = 1.1047321 the map Na1 exhibits a superattracting cycle at {−0.276183,−0.9742426} and
for a2 = 4.24023195 and Na2 a superattracting cycle at {−0.5008507,−1.060058}. We notice
that a1 and a2 correspond to real solutions of G2(a) = 0.

Remark 2 implies that (a, b) = (a1,
3
8
a21) and (a, b) = (a2,

3
8
a22) correspond to parameter

values in L5 having an attracting cycle of period two (and so the free critical point belongs to
its immediate basin). These are only two points in L5 but we know from [McM00] that those
hyperbolic parameters are dense in the bifurcation locus intersection with R, and so in the
corresponding pieces of L5.

Set (â, 3
8
â2) ∈ L5 a parameter in the (a, b)-plane such that â ∈ R is a (real) parameter

belonging to a small copy ofM3. Consequently, for this parameter the dynamical plane has an
attracting k-cycle (k ≥ 2) and the free critical point belongs to its immediate basin. Applying
the Implicit Function Theorem we deduce that for (a, b)-parameters in a sufficiently small
neighbourhood of (â, 3

8
â2) the same dynamical behaviour occurs and the continuation of the

attracting k-cycle should remain. As a corollary, we know that for all the regions R bounded
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(a) Parameter plane of Na. (b) Zoom of (a). (c) Parameter plane of z3 + c.

Figure 5. The parameter plane of Na for complex values of a (figures (a) and (b))
and the parameter plane of z3 + c. (figure (c)).

by L5 (see Figure 2) we will find parameters for which the Fatou set contains open sets of initial
conditions which does not converge to any of the roots of p.

However, we have proven in Proposition 2 that in R7 all parameters satisfies that

F(Na,b) = A(r1) ∪ A(r2) ∪ A(r3) ∪ A(r4).

Hence, the piece of L5 in the boundary of R7 should correspond precisely to the piece of R in
the a-plane which does not intersect the bifurcation locus. We have proven that

Proposition 4. There are parameters values (a, b) ∈ R2,R3,R8,R12 such that

A(r1) ∪ A(r2) ∪ A(r3) ∪ A(r4)  F(Na,b).

5.1. Further numerical experiments. We finish the study of the (a, b)-parameter plane with
the the remainder regions: R4 and R9. In both cases the polynomial p has no real roots while
p′′ has two real roots. Since the polynomial p has real coefficients, the real line is forward
invariant. Thus, on the one hand neither c1 nor c2 could tend under iteration to any root of
p, and on the other hand none of the basins of attraction of the roots of p intersect the real
line. Moreover, Lemma 1 concludes that the Fatou and Julia sets of Na,b need to be symmetric
with respect to the real and imaginary line. Above arguments imply that the free (real) critical
points, c1 < c2, cannot be captured by the basin of attractions of the root of p. Next numerical
examples show that in fact each of the free critical points may have it own dynamics.

Example 4. Let (a, b) = (0.0013,−1.7373) ∈ R4. The critical points of Na,b are c1 ≈ −0.5384
and c2 ≈ 0.5378. The sequence Nn

a,b (c1) is attracted by the attracting 2-cycle

{η1 ≈ −0.52347, η2 ≈ −1.003},
while Nn

a,b (c2) is attracted by the attracting 2-cycle

{ν1 ≈ 0.54304, ν2 ≈ 1.0058}.
In Figure 1 we illustrate this dynamical plane.
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