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a b s t r a c t 

We study the Chebyshev-Halley family of root finding algorithms from the point of view 

of holomorphic dynamics. In this paper we provide a criterion which guarantees the sim- 

ple connectivity of the basins of attraction of the roots. We use the criterion for the 

Chebyshev-Halley methods applied to the degree n polynomials z n + c, obtaining a char- 

acterization of the parameters for which all Fatou components are simply connected and, 

therefore, the Julia set is connected. We also study how increasing n affects the dynamics. 

© 2019 Elsevier B.V. All rights reserved. 

1. Introduction 

Most of the problems faced by scientists and engineers involve equations that do not have a known analytical solution. 

Numerical methods are a good option to tackle and solve real world problems. In particular, iterative methods are used to 

find approximations of the solutions of f (z) = 0 . 

The best-known root-finding algorithm is Newton’s method, which has order of convergence 2. Many numerical methods 

of order three or more are derived from Newton’s scheme: Chebyshev method, also known as super-Newton method (see 

[15] , for example), Halley’s method and super-Halley method. A more detailed study of the construction and evolution 

of these numerical methods can be seen in [13] . These methods belong to a family of numerical algorithms called the 

Chebyshev-Halley family, which is given by 

x n +1 = x n −
(

1 + 

1 

2 

L f ( x n ) 

1 − αL f ( x n ) 

)
f ( x n ) 

f ′ ( x n ) 
, (1) 

where 

L f ( x n ) = 

f ( x n ) f ′′ ( x n ) 
( f ′ ( x n ) ) 2 

and α ∈ C . Within this family, Chebyshev method is obtained for α = 0 , Halley’s method is obtained for α = 

1 
2 and super- 

Halley method is obtained for α = 1 . Moreover, as α tends to ∞ these algorithms converge to Newton’s method. 
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