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Chapter 1

Introduction and statements of the
results

The averaging theory basically consists in replacing a vector field

x′ = F (t, x, ε), with (t, x, ε) ∈ R× Rn × (−ε0, ε0),

by its average over the time or over an angular variable with the goal to obtain asymptotic
approximations to the solutions of the original system and to obtain periodic solutions.
Although this theory was originated in the 18th century, until 1928 it was not proved
rigorously by Fatou(see [30]).

The averaging theory for finding periodic solutions consists in providing sufficient
conditions for the existence of periodic solutions in a vector field by studying the equilibrium
points of its associated averaged system.

This theory becomes a classical tool for studying periodic solutions of nonlinear differential
systems, see for instance [28, 56, 64, 67, 86]. Moreover, remarkable contributions to it
were made by Krylov and Bogoliubov [45] in the 1930s and Bogoliubov [5] in 1945. For
a brief historical review, the interested reader is referred to [68, Appendix A].

In this work we will improve the averaging theory for finding periodic solutions. Then
we will propose a method for studying the stability of periodic solutions that are non
linearly hyperbolic. Finally, using these new results we present several applications of the
theory. In particular we shall apply the new theoretical result here presented to differential
systems that could not be studied with the classical results.

The system x′ = F (t, x, 0) is called the unperturbed system. Concerning the averaging
theory for finding limit cycles, two main hypotheses are usually assumed: (i) F is T -
periodic in the first variable; and (ii) there exists a sub-manifold W ⊂ Rn such that each
solution of the unperturbed system with initial condition inW is T -periodic. Under these
hypotheses the averaging theory provides sufficient conditions for the existence of limit
cycles of x′ = F (t, x, ε).

The classical averaging theorem for the existence of limit cycles can be stated as
follows. Consider the initial value problem

ẋ = εF1(t,x) + ε2F̃ (t,x, ε), x(0) = x0, (1.1)

and
ẏ = εg1(y), y(0) = x0, (1.2)

1



Introduction

with x, y, and x0 in some open Ω of Rn, t ∈ [0,∞), ε ∈ [−ε0, ε0]. We assume that F1, F̃
are T–periodic in the variable t, and we set

g1(y) =
1

T

∫ T

0

F1(t,y)dt. (1.3)

Theorem 1. Assume that F1, F̃ , DxF1, DxxF1 and DxF̃ are continuous and bounded by
a constant M independent of ε in [0,∞)×Ω× [−ε0, ε0], and that y(t) ∈ Ω for t ∈ [0, 1/|ε|].
Then the following statements hold:
(a) For t ∈ [0, 1/|ε|] we have x(t)− y(t) = O(ε) as ε→ 0.
(b) If s is a singular point of system (1.2) and detDyg1(s) 6= 0, then there exists a T–
periodic solution ϕ(t, ε) for system (1.1) which is close to s and such that ϕ(0, ε) − s =
O(ε) as ε→ 0.
(c) The stability of the periodic solution ϕ(t, ε) is given by the stability of the singular
point.

For a proof of Theorem 1 see [81, Theorem 11.5], where it is stated on the ε ∈ [0, ε0)
but in fact following the proof the same result works for ε ∈ [−ε0, ε0] as it is stated here.

In the last decade this theory has increased immensely. Several works have been
dedicated to extend the averaging theory to a wider class of differential systems. For
instance, in [11], taking advantage of the Browder degree theory, it was developed a
topological version of the first-order averaging method to study the existence of limit
cycles in continuous vector fields. Their stability properties were investigated in [7], and
in [54] topological version of the averaging method was extended at any order. The
averaging theory has also been considered in a discontinuous context. For instance, in
[54, 50], the averaging method was developed up to order 2 for discontinuous differential
system, and in [40, 52] the averaging method was extend at any order for a class of
discontinuous differential system.

The first result here presented (see Theorem 2) provides sufficient conditions to assure
the persistence of some zeros of smooth functions g : Rn × R→ Rn having the form

g(z, ε) = g0(z) +
k∑
i=1

εigi(z) +O(εk+1). (1.4)

The second one (see Theorem 5) provides sufficient conditions to assure the existence of
periodic solutions of the following differential system

x′ = F (t, z, ε) = F0(t, x) +
k∑
i=1

εiFi(t, x) +O(εk+1), (t, z) ∈ S1 ×D. (1.5)

Here S1 = R/T , for some T > 0, and the assumption t ∈ S1 means that the system is
T -periodic in the variable t. As usual δ1(ε) = O (δ2(ε)) means that there exists a constant
c0 > 0, which does not depends on ε, such that |δ1(ε)| ≤ c0 |δ2(ε)| for ε sufficiently small
(see [68]).

The problem of existence of periodic solutions in system (1.5) can often be reduced
to the problem of persistence of zeros of equation (1.4). Usually it is assumed that either
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g(z, 0) vanishes in a submanifold of Z ⊂ D, or that the unperturbed differential system
x′ = F0(t, x) has a submanifold Z ⊂ D of T -periodic solutions. In both cases dim(Z) ≤ n.

We assume that for some z∗ ∈ Z, g(z∗, 0) = 0. We shall study the persistence of
this zero for the function (1.4), g(x, ε), assuming that |ε| 6= 0 is sufficiently small. By
persistence we mean the existence of continuous branches χ(ε) of simple zeros of g(x, ε)
(that is g(χ(ε), ε) = 0) such that χ(0) = z∗. It is well known that if the n × n matrix
∂xg(z∗, 0) (the Jacobian matrix of the function g with respect to the variable x evaluated at
x = z∗) is nonsingular then, from a direct consequence of the Implicit Function Theorem,
there exists a unique smooth branch χ(ε) of zeros of g(x, ε) such that χ(0) = z∗. However
if the matrix ∂xg(z∗, 0) is singular (has non trivial kernel) we have to use the Lyapunov–
Schmidt reduction method to find branches of zeros of g (see, for instance, [23]). Here we
generalize some results from [8, 9, 51], providing a collection of functions fi, i = 1, . . . , k,
each one called bifurcation function of order i, which control the persistence of zeros
contained in Z.

The problem of existence of periodic solutions of the differential system (1.5) goes
back to the works of Malkin [56] and Roseau [67]. They have studied the case k = 1.
Let x(t, z, ε) denote the solution of system (1.5) such that x(0, z, ε) = z. In order to find
initial conditions z ∈ D such that the solution x(t, z, ε) is T -periodic we may consider the
function g(z, ε) = z−x(T, z, ε), and then try to use the results previously obtained about
the persistence of zeros. Indeed, if Z ⊂ D is a submanifold of T -periodic solutions of the
unperturbed system x′ = F0(t, x), then g(z, 0) vanishes on Z. When dim(Z) = n this
problem is studied at an arbitrary order of ε, see [33, 53], even for nonsmooth systems.
When dim(Z) < n, this approach has already been used in [8], up to order 1, and in [9, 10],
up to order 2. In [51] this approach was used up to order 3 relaxing some hypotheses
assumed in those previous 3 works. In [34] assuming the same hypotheses of [8, 9, 10]
the authors studied this problem at an arbitrary order of ε. Here, following the ideas
from [53, 51], we improve the results of [34] relaxing some hypotheses and developing the
method in a more general way.

In summary, we use the Lyapunov–Schmidt reduction method for studying the zeros
of functions like (1.4) when the Implicit Function Theorem cannot be directly applied.
Another useful tool that we shall use to deal with this problem is the Browder degree
theory (see Appendix B), which will allow to provide estimates for these zeros. Then we
apply these previous results for studying the periodic solutions of differential systems like
(1.5) through their bifurcation functions, provided by the higher order averaging theory.

The results are organized as follows. In Chapter 1 we present our main results on
averaging theory. In Chapter 2 we provide the proofs of the main results. Then we start
apply our results to study the periodic solutions of some relevant physical systems. In
Chapter 3 we study the Maxwell-Bloch system and a 3D polynomial differential system.
In Chapter 4 we study 17 differential systems, including the Fitzhugh-Nagumo system,
the Noose-Hover system, the Wang-Chen system and the Wei system. In Chapter 5 we
study the existence and stability of periodic solutions in the Lorenz differential system
and the Thomas differential system. In Chapter 6 we study the periodic solutions and
invariant tori in the generalized Van der Pol - Duffing differential system using Lyapunov
coefficients and averaging theory. Finally, in Chapter 7 we study the periodic solutions
in a hyperchaotic Lorenz differential system.

The results presented in Chapter 1, 2 and 3 were based on the preprint [18] and
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published papers [17] and [14]. The results presented in Chapter 4 are published in [13]
and [15]. Chapter 5 contains results from [13] and [14]. The results in Chapter 6 are
submited for publication. The results in Chapter 7 are published in [16].

1.1 Statements of the main results

Before we state our main results we need some preliminary concepts and definitions.
Given p, q and L positive integers, γj = (γj1, . . . , γjp) ∈ Rp for j = 1, . . . , L and z ∈ Rp.
Let G : Rp → Rq be a sufficiently smooth function, then the L-th Frechet derivative of
G at z is denoted by ∂LG(z), it is a symmetric L–multilinear map, which applied to a
“product” of L p-dimensional vectors denoted as

⊙L
j=1 γj ∈ RpL gives

∂LG(z)
L⊙
j=1

γj =

(
p∑

i1,...,iL=1

∂LG1(z)

∂zi1 · · · ∂ziL
γ1i1 · · · γLiL , · · · ,

p∑
i1,...,iL=1

∂LGq(z)

∂zi1 · · · ∂ziL
γ1i1 · · · γLiL

)
.

(1.6)
The above expression is indeed the Gâteaux derivative

∂LG(z)
L⊙
j=1

γj =
∂

∂τ1∂τ2 . . . ∂τL
G (z + τ1γ1 + τ2γ2 + · · ·+ τLγL)

∣∣∣
τ1=···=τL=0

= ∂
(
. . . ∂

(
∂G(z)γ1

)
γ2 . . .

)
γL.

We take ∂0 as the identity operator.

1.1.1 The Lyapunov–Schmidt reduction method

We consider the function

g(z, ε) =
k∑
i=0

εigi(z) +O(εk+1), (1.7)

where gi : D → Rn is a Ck+1 function, k ≥ 1, for i = 0, 1, . . . , k, being D an open bounded
subset of Rn. For m < n, let V be an open bounded subset of Rm and β : Cl(V )→ Rn−m

a Ck+1 function, such that

Z = {zα = (α, β(α)) : α ∈ Cl(V )} ⊂ D. (1.8)

As usual Cl(V ) denotes the closure of the set V .
As the main hypothesis we assume that

(Ha) the function g0 vanishes on the m–dimensional submanifold Z of D.

Using the Lyapunov–Schmidt reduction method we shall develop the bifurcation functions
of order i, for i = 1, 2, . . . , k, which control, for |ε| 6= 0 small enough, the existence
of branches of zeros z(ε) of (1.7) bifurcating from Z, that is from z(0) ∈ Z. With
this purpose we introduce some notation. The functions π : Rm × Rn−m → Rm and
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π⊥ : Rm × Rn−m → Rn−m denote the projections onto the first m coordinates and
onto the last n − m coordinates, respectively. For a point z ∈ D we also consider
z = (a, b) ∈ Rm × Rn−m. We define ∂Lb πgi−l(zα) by following the notation (1.6), taking
p = n−m, q = m, z = β(α) andG : b→ πgi−l(α, b). Let Sl be the set of all l-tuples of non–
negative integers (c1, c2, · · · , cl) satisfying c1+2c2+· · ·+lcl = l, L = c1+c2+· · ·+cl, and S ′i
is the set of all (i−1)-tuples of non–negative integers satisfying c1+2c2+· · ·+(i−1)ci−1 = i,
I ′ = c1 + c2 + · · ·+ ci−1. From (1.6) we define

∂Lb πgi−l(zα)
l⊙

j=1

γj(α)cj =

(
n−m∑

i1,...,iL=1

∂Lπg1
i−l(a, b)

∂bi1 · · · ∂biL
(γ1i1(α))c1 · · · (γlil(α))cl , · · · ,

n−m∑
i1,...,iL=1

∂Lπgmi−l(a, b)

∂bi1 · · · ∂biL
(γ1i1(α))c1 · · · (γlil(α))cl

)∣∣∣
(a,b)=zα

and

∂Lb π
⊥gi−l(zα)

l⊙
j=1

γj(α)cj =

(
n−m∑

i1,...,iL=1

∂Lπ⊥gm+1
i−l (a, b)

∂bi1 · · · ∂biL
(γ1i1(α))c1 · · · (γlil(α))cl , · · · ,

n−m∑
i1,...,iL=1

∂Lπ⊥gni−l(a, b)

∂bi1 · · · ∂biL
(γ1i1(α))c1 · · · (γlil(α))cl

)∣∣∣
(a,b)=zα

.

For i = 1, 2, . . . , k we define the bifurcation functions fi : Cl(V )→ Rm of order i as

fi(α) = πgi(zα) +
i∑
l=1

∑
Sl

1

c1! c2!2!c2 · · · cl!l!cl
∂Lb πgi−l(zα)

l⊙
j=1

γj(α)cj , and (1.9)

Fk(α, ε) =
k∑
i=1

εifi(α),

where γi : V → Rn−m, for i = 1, 2, . . . , k, are defined recurrently as

γ1(α) = −∆−1
α π⊥g1(zα) and

γi(α) = −i!∆−1
α

(∑
S′i

1

c1! c2!2!c2 · · · ci−1!(i− 1)!ci−1
∂I
′

b π
⊥g0(zα)

i−1⊙
j=1

γj(α)cj

+
i−1∑
l=1

∑
Sl

1

c1! c2!2!c2 · · · cl!l!cl
∂Lb π

⊥gi−l(zα)
l⊙

j=1

γj(α)cj

)
.

(1.10)

with ∆α =
∂π⊥g0

∂b
(zα).

We clarify that S0 = S ′0 = ∅, and when cj = 0, for some j, then the term γj does not

appear in the “product”
⊙l

j=1 γj(α)cj .
The next theorem is the first main result of this chapter. For sake of simplicity, we

take f0 = 0.
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Theorem 2. Let ∆α denote the lower right corner of the (n −m) × (n −m) matrix of
the Jacobian matrix D g0(zα). In additional to hypothesis (Ha) we assume that

(i) for each α ∈ Cl(V ), det(∆α) 6= 0;

(ii) for some r ∈ {1, . . . , k}, f1 = f2 = · · · = fr−1 = 0 and fr is not identically zero;

(iii) there exists a small parameter ε0 > 0 such that for each ε ∈ [−ε0, ε0] there exists
aε ∈ V satisfying Fk(aε, ε) = 0; and

(iv) there exist a constant P0 > 0 and a positive integer l ≤ (k + r + 1)/2 such that∣∣∂αFk(aε, ε) · α∣∣ ≥ P0|ε|l|α|, for α ∈ V.

Then, for |ε| 6= 0 sufficiently small, there exists z(ε) such that g(z(ε), ε) = 0 with |π⊥z(ε)−
π⊥zaε| = O(ε) and |π z(ε)− π zaε| = O(εk+1−l).

In the next corollary we present a classical result in the literature, which is a direct
consequence of Theorem 2.

Corollary 3. In addiction to hypothesis (Ha), assume that f1 = f2 = · · · = fk−1 = 0
and that for each α ∈ Cl(V ), det(∆α) 6= 0. If there exists α∗ ∈ V such that fk(α

∗) = 0
and det (Dfk(α

∗)) 6= 0, then there exists a branch of zeros z(ε) with g(z(ε), ε) = 0 and
|z(ε)− zα∗| = O(ε).

Theorem 2 and Corollary 3 are proved in Section 2.1.

1.1.2 Continuation of periodic solutions

We consider the following Ck+1 differential system

x′ = F0(t, x) +
k∑
i=1

εiFi(t, x) +O(εk+1), (t, z, ε) ∈ S1 ×D × (−ε0, ε0). (1.11)

Here D ⊂ Rn is an open and bounded set, ε0 > 0, and the prime denotes derivative with
respect to the time t. We denote the right–hand side of equation (1.11) by F (t, x, ε). We
say that the differential system (1.11) is in the normal form for applying the averaging
theory. Given z ∈ D we denote by x(t, z, ε) the solution of the differential system (1.11)
such that x(0, z, ε) = z. As our basic hypothesis we assume that:

(H) There exists a manifold W ⊂ D such that, for each z ∈ W , the solution x(t, z, 0) of
the unperturbed system is T -periodic.

Thus we have the following result.

Lemma 4 (Fundamental Lemma). Let x(t, z, ε) be the solution of the Ck+1 T -periodic
differential system (1.11) such that x(0, z, ε) = z. Then the equality

x(t, z, ε) = x(t, z, 0) +
k∑
i=1

εi
yi(t, z)

i!
+O(εk+1) (1.12)

6
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holds for (t, z) ∈ S1 ×D. Here the functions yi for 1 ≤ i ≤ k, are given recursively as

y1(t, z) =Y (t, z)

∫ t

0

Y (s, z)−1F1(s, x(s, z, 0))ds,

yi(t, z) =i!Y (t, z)

∫ t

0

Y (s, z)−1

(
Fi(s, x(s, z, 0))

+
∑
S′i

1

b1! b2!2!b2 · · · bi−1!(i− 1)!bi−1
∂I
′
F0(s, x(s, z, 0))

i−1⊙
j=1

yj(s, z)
bj

+
i−1∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂LFi−l(s, x(s, z, 0))

l⊙
j=1

yj(s, z)
bj

)
ds,

where Y (t, z) is a fundamental matrix solution of the linear differential system y′ =
∂xF0(t, x(t, z, 0))y, being ∂xF0(t, x) the Jacobian matrix of the function F0(t, x).

From hypothesis (H) we see that there exists an open set U1 ⊂ D and ε1 > 0 such
that, for each z ∈ U1 and ε ∈ [−ε1, ε1], the solution x(t, z, ε) is defined on the interval
[0, t(z,ε)), with t(z,ε) > T .

A displacement function d : U1×(−ε1, ε1)→ Rn can be defined as d(z, ε) = x(T, z, ε)−
z. Notice that a solution (z∗, ε∗) of the equation d(z, ε) = 0 corresponds to a T -periodic
solution of the differential system (1.11) with ε = ε∗ and initial condition z∗. From (1.12),
the displacement function reads

d(z, ε) = x(T, z, 0)− z +
k∑
i=1

εi
yi(T, z)

i!
+O(εk+1). (1.13)

The equation d(z, ε) = 0 is equivalent to

g(z, ε)
def
= Y (T, z)−1d(z, ε) = 0, (1.14)

and from (1.13) equation (1.14) writes

g(z, ε) = g0(z) +
k∑
i=1

εigi(z) +O(εk+1),

where g0(z) = Y (T, z)−1 (x(T, z, 0)− z) and

gi(z) = Y (T, z)−1yi(T, z)

i!
, i = 1, 2 . . . , k, (1.15)

are usually called the averaged function of order i. By abuse of notation, the function
g0 is called the averaged function of order 0. Notice that g0(z) = 0 if, and only if, the
solution x(t, z, 0) of the unperturbed system is T–periodic. Therefore, from hypothesis
(H), g0(z) = 0 for every z ∈ Z.

The averaging theory for finding periodic solutions consists in providing sufficient
conditions for the existence of periodic solutions of system (1.11) by studying the solutions
of equation (1.14).

In [17] it was assumed that g0 6≡ 0. Here we assume that gs 6≡ 0 is the first nonvanishing
averaged function, where 0 ≤ s < k. As our main hypotheses we assume that
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(H) Let gs 6≡ 0, for 0 ≤ s < k, be the first nonvanishing averaged function. Assume
that there exist m < n, V an open bounded subset of Rm, and a Ck+1 function
β : V → Rn−m such that Z = {zα = (α, β(α)) : α ∈ V } ⊂ D, and gs(zα) = 0 for
every α ∈ V .

Notice that (H) implies (H). Indeed, if s = 0, then (H) holds by taking Z = W .
Otherwise (H) holds by taking Z = D.

From hypothesis (H) and Lemma 4 equation (1.13) is equivalente to

h(z, ε)
def
=
g(z, ε)

εs
= gs(z) +

k−s∑
i=1

εigs+i(z) +O(εk−s+1) = 0. (1.16)

From Theorem 2 the bifurcation functions corresponding to equation (1.16) are

fi(α) = πgs+i(zα) +
i∑
l=1

∑
Sl

1

c1! c2!2!c2 · · · cl!l!cl
∂Lb πgs+i−l(zα)

l⊙
j=1

γj(α)cj , (1.17)

Fk−s(α, ε) =
k−s∑
i=1

εifi(α), (1.18)

where γi : V → Rn−m, for i = 1, 2, . . . , k − s, are defined recurrently as

γ1(α) =−∆−1
α π⊥gs+1(zα) and

γi(α) =− i!∆−1
α

(∑
S′i

1

c1! c2!2!c2 · · · ci−1!(i− 1)!ci−1
∂I
′

b π
⊥gs(zα)

i−1⊙
j=1

γj(α)cj

+
i−1∑
l=1

∑
Sl

1

c1! c2!2!c2 · · · cl!l!cl
∂Lb π

⊥gs+i−l(zα)
l⊙

j=1

γj(α)cj

)
,

with ∆α =
∂π⊥gs
∂b

(zα).

In what follows we shall state a slightly improvement of Theorem B from [17], which
is suitable to a wider range of applications.

Theorem 5. Assume hypothesis (H) holds. Consider the Jacobian matrix

∂gs(zα) =

(
Λα Γα
Bα ∆α

)
,

where Λα = ∂aπgs(zα), Γα = ∂bπgs(zα), Bα = ∂aπ
⊥gs(zα) and ∆α = ∂bπ

⊥gs(zα). In
additional to hypothesis (H) we suppose that

(i) for each α ∈ V , det(∆α) 6= 0;

(ii) for some r ∈ {0, . . . , k− s}, f1 = f2 = · · · = fr−1 = 0 and fr is not identically zero;

(iii) there exists ε > 0 such that for each ε ∈ (−ε, ε) there exists aε ∈ V satisfying
Fk−s(aε, ε) = 0; and
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(iv) there exist a constant P0 > 0 and a positive integer l ≤ (k − s+ r + 1)/2 such that∣∣∂αFk−s(aε, ε) · α∣∣ ≥ P0|εl||α|, for α ∈ V.

Then for |ε| 6= 0 sufficiently small there exists a T -periodic solution ϕ(t, ε) of system
(1.11) such that |π ϕ(0, ε)− π zaε| = O(εk−s+1−l), and |π⊥ϕ(0, ε)− π⊥zaε| = O(ε).

In the next corollary we present a classical result in the literature, which is a direct
consequence of Corollary 3.

Corollary 6. In addiction to hypothesis (H) we assume that f1 = f2 = · · · = fr−1 = 0,
r = k − s and that for each α ∈ Cl(V ), det(∆α) 6= 0. If there exists α∗ ∈ V such that
fr(α

∗) = 0 and det (Dfr(α
∗)) 6= 0, then there exists a T -periodic solution ϕ(t, ε) of (1.11)

such that |ϕ(0, ε)− zα∗| = O(ε).

Lemma 4, Theorem 5 and Corollary 6 are proved in Section 2.2.
It is worth to emphasize that Theorem 5 is still true when m = n. In fact, assuming

that V is an open subset of Rn then Z = Cl(V ) ⊂ D and the projections π and π⊥ become
the identity and the null operator respectively. Moreover, in this case the bifurcation
functions fi : V → Rn, for i = 1, 2, . . . , k, are the averaged functions fi(α) = gi(α)
defined in (1.15). Consider m = n, zα = α ∈ Z and the hypothesis (H). Thus the
result of Theorem 5 holds without any assumption about ∆α. Thus we have the following
corollary, which recover the main result from [53].

Corollary 7. Assume that gs ≡ 0. If there exists z∗ ∈ Ω such that gs+1(z∗) = 0 and
Dgs+1(z∗) 6= 0, then there exists a T -periodic solution x(t, z(ε), ε) for system (1.11) such
that z(0) = z∗.

Now we use functions α(ε), γi and fi to study the stability of the periodic solution
ϕ(t, ε).

1.2 Stability of the periodic solutions

A fundamental notion in qualitative theory of differential equations is the hyperbolicity.
Here a constant matrix will be called hyperbolic if its eigenvalues lie out of the unitary
circle of the complex plane, in which case its index is the number of eigenvalues outside
the unitary circle.

Consider a matrix function A(ε) = A0 + εA1 + · · · + εkAk depending on a parameter
ε. If A0 is hyperbolic of index i, then one can see that for ε > 0 sufficiently small A(ε)
will be hyperbolic with the same index i.

If A0 is not hyperbolic the placement of the eigenvalues of A(ε) may be hard to
determine. To deal with this problem we use a method introduced by Murdock and
Robinson in [62, 61]. The matrix A(ε) is called k-hyperbolic of index i if for every smooth
matrix function B(ε) there exists an ε0 > 0 such that A(ε)+εkB(ε) is hyperbolic of index
i for all ε in the interval 0 < ε < ε0.

The stability properties of the periodic solution ϕ(t, ε) will be provided using the
k-determined hyperbolicity method, as it was presented in [60, Chapter 3].

9
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For |ε| 6= 0 sufficiently small let ϕ(t, ε) = x(t, z(ε), ε) be a T−periodic solution of the
differential system (1.11) given by Theorem 5 such that z(0) = zα∗ ∈ Z. The Poincaré
Map related to ϕ(t, ε) is given by

Π(z, ε)
def
= x(T, z, ε) = z + d(z, ε). (1.19)

Clearly z(ε) is a fixed point of Π(·, ε). It is well known that the stability of the fixed point
z(ε) of the Poincaré map Π(·, ε) yields the stability of the T -periodic solution ϕ(t, ε). More
specifically, if the norm of each eigenvalue of ∂zΠ(z(ε), ε) is less than 1, then the periodic
solution ϕ(t, ε) is stable. On the other hand, if there exists an eigenvalue of ∂zΠ(z(ε), ε)
with norm greater than 1, then the periodic solution ϕ(t, ε) is unstable. From (1.19),
our goal in is to show how the power series of z(ε) around ε = 0 can be used to provide
the stability of the T−periodic solutions x(t, z(ε), ε) provided in Theorem 5. As these
solutions are essentially non-hyperbolic, due to existence of a continuum of zeros of the
first coefficient function of (1.16), the question about its stability can be reduced to the
study of the k-determined hyperbolicity of the Jacobian matrix ∂zd(z(ε), ε).

For the sake of further applications the first result of this section is to write the formal
power series of the initial condition z(ε) = ϕ(0, ε) around ε = 0, where ϕ(t, ε) is the
T−periodic solution provided in Theorem 5.

The next result reveals how the higher order averaged functions can be used for
determining the stability of the periodic solution x(t, z(ε), ε).

Lemma 8. Let aε be the one given in hypothesis (iii) of Theorem 5 and let x(t, z(ε), ε) =
ϕ(t, ε) be the periodic solution of the differential system (1.11) provided in Theorem 5. If

aε = α0 + εα1 + · · ·+ εk−s−lαk−s−l +O(εk−s−l+1), (1.20)

with αi ∈ Rm for all 0 ≤ i ≤ k− s− l. Then we can write initial condition of the periodic
orbit as

z(ε) =
k−s−l∑
i=0

εi
(
αi, βi

)
+O

(
εk−s−l+1

)
, (1.21)

where β0 = β(α0) and for all 1 ≤ i ≤ k − s− l,

βi = γi(α0) +
i∑

j=1

∑
Sj

1

c1! c2!2!c2 · · · cj!j!cj
γ

(J)
i−j(α0)

j⊙
s=1

(s!αs)
cs . (1.22)

The next result provides the Taylor expansion at ε = 0 of the Jacobian matrix of the
displacement function (1.13) evaluated at z(ε) = ϕ(0, ε), where ϕ(t, ε) is the T -periodic
function provided in Theorem 5.

Lemma 9. We assume that system (1.11) satisfies the hypotheses of Theorem 5 having
the T -periodic solution ϕ(t, ε). Moreover, let z(ε) = ϕ(0, ε) and aε from statement (iii)
of Theorem 5 written in the form (1.20). Thus the Jacobian matrix of displacement map
(1.13) at z = z(ε) can be written as

∂zd(z(ε), ε) = εsA(ε) +O(εk−l+1),

10
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where A(ε) = A0 + εA1 + · · ·+ εk−s−lAk−s−l where Aj is an n× n constant matrix for all
0 ≤ j ≤ k − s− l. More precisely, we have A0 = ∂ys(T, z0) and

Aj =

j∑
i=0

1

(j − i)!
∑
Si

1

b1! · · · bi!(i− 1)!bi
∂I+1
z ys+j−i(T, z0)

i⊙
u=1

(u!zu)
bu ,

for 1 ≤ j ≤ k − s− l, with zi = (αi, βi) given in (1.21) and l as in Theorem 5.

Consequently the Jacobian matrix of the Poincaré map becomes

DΠ(z, ε)
def
= M(ε) +O(εk−l+1), (1.23)

with M(ε) = Id + εsA(ε). Now we can present our result on the stability of the non-
hyperbolic T -periodic solution x(t, z(ε), ε) provided in Theorem 5.

Theorem 10. We assume that system (1.11) has a T -periodic solution x(t, z(ε), ε) as
stated in Lemma 9, and that the Jacobian matrix of the Poincaré map at z(ε) has the
form (1.23) with M(ε) hyperbolic for |ε| sufficiently small. If there exists a matrix T (ε)
such that T (ε)−1M(ε)T (ε) = Λ(ε), where

Λ(ε) =


λ1(ε)

. . .
. . .

λn(ε)

 = εr1Λ1 + · · ·+ εrjΛj;

with r1 < r2 < · · · < rj < R = k − l + 1 rational numbers, and Λ1, . . . ,Λj diagonal
matrices. Then there exists an ε0 > 0 such that for 0 < ε < ε0 the eigenvalues of the
Jacobian matrix DΠ(z, ε) are approximately equal to λi(ε) with error O(εR). Consequently
the matrices M(ε) and DΠ(z, ε) have the same hyperbolicity type.

The result of Theorem 10 is strongly related with the Theorem 3.7.7 of [60]. Obtaining
the matrix T (ε) may be the main difficulty of applying Theorem 10. In some cases it may
be necessary a sequence of linear transformations and normalization in order to obtain
T (ε), see [60, Section 3.7]. This task always comes down to the solution of a homological
equation such as

LUj = Kj −Bj,

where
L = LY : gl(n)→ gl(n),

Kj is known at the jth stage of the calculation, and Bj and Uj are to be determined
and LY is the Lie operator, i.e. LYX = [X, Y ] = X Y − Y X. In this work we shall
use Theorem 5 to study the Hopf or the zero–Hopf bifurcation in some three dimensional
systems. Moreover Corollary 19 in Appendix 2.7 provides sufficient conditions for the
existence of the matrix T (ε). This will allow to use Theorem 10 for studying the stability
of the bifurcated periodic orbits detected by Theorem 5.

Finally we shall show that the hypotheses of Lemma 8 are not very restrictive. We
shall provide the expressions of the α′is in Lemma 8 in terms of the bifurcation functions
(1.17).
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Proposition 11. Assume that 0 ≤ r < k is the first subindex such that fr(α) 6≡ 0 as
given by hypothesis (ii) of Theorem 5. If there exist α∗ ∈ V ⊂ Rm such that fr(α

∗) = 0
and det (∂fr(α

∗)) 6= 0. Then there exists a unique aε ∈ V such that:

(a) aε = α0 + εα1 + · · · + εkαk + O(εk+1) with αi ∈ Rn for all 1 ≤ i ≤ k satisfying
Fk(aε, ε) = 0, and

(b) where the coefficients are α0 = α∗, α1 = −Dfr(α∗)−1fr+1(α∗) and for 2 ≤ i ≤ k− 1

αi =
−Dfr
i!

(α∗)−1

(∑
S′i

1

c1! c2!2!c2 · · · ci−1!(i− 1)!ci−1
f (I′)
r (α∗)

i−1⊙
j=1

α(j)(0)cj

+
i−1∑
l=0

∑
Sl

1

c1! c2!2!c2 · · · cl!l!cl
f

(L)
i−l+r(α

∗)
l⊙

j=1

α(j)(0)cj

)
,

Proposition 11 is particularly useful to study the stability of the periodic orbits
detected by Corollary 6. This result will be applied several times in this work. Thus
we present now a reformulation of Corollary 6 and Theorem 10 that will be used in the
applications presented in the next chapters.

Theorem 12. Let s ∈ R such that s is the first subindex such that gs 6≡ 0. In addition
to hypothesis (H) assume that

(i) the averaged function gs vanishes on the manifold (1.8). That is gs(zα) = 0 for all
α ∈ V , and

(ii) the Jacobian matrix

Dgs(zα) =

(
Λα Γα
Bα ∆α

)
,

where Λα = Daπgs(zα), Γα = Dbπgs(zα), Bα = Daπ
⊥gs(zα) and ∆α = Dbπ

⊥gs(zα),
satisfies that det(∆α) 6= 0 for all α ∈ V .

We define the functions

f1(α) =− Γα∆−1
α π⊥gs+1(zα) + πgs+1(zα),

f2(α) =
1

2
Γαγ2(α) +

1

2

∂2πgs
∂b2

(zα)γ1(α)2 +
∂πgs+1

∂b
(zα)γ1(α) + πgs+2(zα),

γ1(α) =−∆−1
α π⊥gs+1(zα), (1.24)

γ2(α) =−∆−1
α

(
∂2π⊥gs
∂b2

(zα)γ1(α)2 + 2
∂π⊥gs+1

∂b
(zα)γ1(α) + 2π⊥gs+2(α)

)
.

Then the following statements hold.

(a) If there exists α∗ ∈ V such that f1(α∗) = 0 and det (Df1(α∗)) 6= 0, for |ε| 6= 0
sufficiently small there is an initial condition z(ε) ∈ U such that z(0) = zα∗ and the
solution x(t, z(ε), ε) of system (1.11) is T -periodic.
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(b) Assume that f1 ≡ 0. If there exists α∗ ∈ V such that f2(α∗) = 0 and det (Df2(α∗)) 6=
0, for |ε| 6= 0 sufficiently small there is an initial condition z(ε) ∈ U such that
z(0) = zα∗ and the solution x(t, z(ε), ε) of system (1.11) is T -periodic.

The next result provides the stability type of the periodic solutions detected by
Theorem 12(a). Here diagonalizable means that the matrix has n distinct eigenvalues.

Theorem 13. Consider s, Γα, ∆α, f1 and f2 as defined in Theorem 12 and the Jacobian
matrices Dys(T, z) = (pij(z)) and Dys+1(T, z) = (qij(z)). Assume that there exists α∗ ∈ V
such that f1(α∗) = 0 and det (Df1(α∗)) 6= 0. We define the matrix function

A(ε) = A0 + εA1, (1.25)

where

A0 =Dys(T, zα∗), (1.26)

A1 = (Dpij(zα∗).z1 + qij(zα∗)) , (1.27)

z1 =
(
−Df1(α∗)−1f2(α∗), Dβ(α∗)

(
−Df1(α∗)−1f2(α∗)

)
+ γ1(α∗)

)
. (1.28)

We assume that A(ε) satisfies the following statements:

(s1) A0 is diagonalizable and s > 0, or Id+ A0 is diagonalizable and s = 0; and

(s2) Id+ εsA0 + εs+1A1 is hyperbolic for all ε sufficiently small.

Thus the Poincaré map of the periodic solution x(t, z(ε), ε) is s+ 2−hyperbolic.

In other words this last result says that the hyperbolicity of the x(t, z(ε), ε) can be
investigated using the λi(ε) + O(εs+2), where λi′s(ε) are the eigenvalues of Id + εsA0 +
εs+1A1. In the next chapter we prove the results here presented.
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