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Chapter 1

Introduction and statements of the
results

The averaging theory basically consists in replacing a vector field

x′ = F (t, x, ε), with (t, x, ε) ∈ R× Rn × (−ε0, ε0),

by its average over the time or over an angular variable with the goal to obtain asymptotic
approximations to the solutions of the original system and to obtain periodic solutions.
Although this theory was originated in the 18th century, until 1928 it was not proved
rigorously by Fatou(see [30]).

The averaging theory for finding periodic solutions consists in providing sufficient
conditions for the existence of periodic solutions in a vector field by studying the equilibrium
points of its associated averaged system.

This theory becomes a classical tool for studying periodic solutions of nonlinear differential
systems, see for instance [28, 56, 64, 67, 86]. Moreover, remarkable contributions to it
were made by Krylov and Bogoliubov [45] in the 1930s and Bogoliubov [5] in 1945. For
a brief historical review, the interested reader is referred to [68, Appendix A].

In this work we will improve the averaging theory for finding periodic solutions. Then
we will propose a method for studying the stability of periodic solutions that are non
linearly hyperbolic. Finally, using these new results we present several applications of the
theory. In particular we shall apply the new theoretical result here presented to differential
systems that could not be studied with the classical results.

The system x′ = F (t, x, 0) is called the unperturbed system. Concerning the averaging
theory for finding limit cycles, two main hypotheses are usually assumed: (i) F is T -
periodic in the first variable; and (ii) there exists a sub-manifold W ⊂ Rn such that each
solution of the unperturbed system with initial condition inW is T -periodic. Under these
hypotheses the averaging theory provides sufficient conditions for the existence of limit
cycles of x′ = F (t, x, ε).

The classical averaging theorem for the existence of limit cycles can be stated as
follows. Consider the initial value problem

ẋ = εF1(t,x) + ε2F̃ (t,x, ε), x(0) = x0, (1.1)

and
ẏ = εg1(y), y(0) = x0, (1.2)
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Introduction

with x, y, and x0 in some open Ω of Rn, t ∈ [0,∞), ε ∈ [−ε0, ε0]. We assume that F1, F̃
are T–periodic in the variable t, and we set

g1(y) =
1

T

∫ T

0

F1(t,y)dt. (1.3)

Theorem 1. Assume that F1, F̃ , DxF1, DxxF1 and DxF̃ are continuous and bounded by
a constant M independent of ε in [0,∞)×Ω× [−ε0, ε0], and that y(t) ∈ Ω for t ∈ [0, 1/|ε|].
Then the following statements hold:
(a) For t ∈ [0, 1/|ε|] we have x(t)− y(t) = O(ε) as ε→ 0.
(b) If s is a singular point of system (1.2) and detDyg1(s) 6= 0, then there exists a T–
periodic solution ϕ(t, ε) for system (1.1) which is close to s and such that ϕ(0, ε) − s =
O(ε) as ε→ 0.
(c) The stability of the periodic solution ϕ(t, ε) is given by the stability of the singular
point.

For a proof of Theorem 1 see [81, Theorem 11.5], where it is stated on the ε ∈ [0, ε0)
but in fact following the proof the same result works for ε ∈ [−ε0, ε0] as it is stated here.

In the last decade this theory has increased immensely. Several works have been
dedicated to extend the averaging theory to a wider class of differential systems. For
instance, in [11], taking advantage of the Browder degree theory, it was developed a
topological version of the first-order averaging method to study the existence of limit
cycles in continuous vector fields. Their stability properties were investigated in [7], and
in [54] topological version of the averaging method was extended at any order. The
averaging theory has also been considered in a discontinuous context. For instance, in
[54, 50], the averaging method was developed up to order 2 for discontinuous differential
system, and in [40, 52] the averaging method was extend at any order for a class of
discontinuous differential system.

The first result here presented (see Theorem 2) provides sufficient conditions to assure
the persistence of some zeros of smooth functions g : Rn × R→ Rn having the form

g(z, ε) = g0(z) +
k∑
i=1

εigi(z) +O(εk+1). (1.4)

The second one (see Theorem 5) provides sufficient conditions to assure the existence of
periodic solutions of the following differential system

x′ = F (t, z, ε) = F0(t, x) +
k∑
i=1

εiFi(t, x) +O(εk+1), (t, z) ∈ S1 ×D. (1.5)

Here S1 = R/T , for some T > 0, and the assumption t ∈ S1 means that the system is
T -periodic in the variable t. As usual δ1(ε) = O (δ2(ε)) means that there exists a constant
c0 > 0, which does not depends on ε, such that |δ1(ε)| ≤ c0 |δ2(ε)| for ε sufficiently small
(see [68]).

The problem of existence of periodic solutions in system (1.5) can often be reduced
to the problem of persistence of zeros of equation (1.4). Usually it is assumed that either
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g(z, 0) vanishes in a submanifold of Z ⊂ D, or that the unperturbed differential system
x′ = F0(t, x) has a submanifold Z ⊂ D of T -periodic solutions. In both cases dim(Z) ≤ n.

We assume that for some z∗ ∈ Z, g(z∗, 0) = 0. We shall study the persistence of
this zero for the function (1.4), g(x, ε), assuming that |ε| 6= 0 is sufficiently small. By
persistence we mean the existence of continuous branches χ(ε) of simple zeros of g(x, ε)
(that is g(χ(ε), ε) = 0) such that χ(0) = z∗. It is well known that if the n × n matrix
∂xg(z∗, 0) (the Jacobian matrix of the function g with respect to the variable x evaluated at
x = z∗) is nonsingular then, from a direct consequence of the Implicit Function Theorem,
there exists a unique smooth branch χ(ε) of zeros of g(x, ε) such that χ(0) = z∗. However
if the matrix ∂xg(z∗, 0) is singular (has non trivial kernel) we have to use the Lyapunov–
Schmidt reduction method to find branches of zeros of g (see, for instance, [23]). Here we
generalize some results from [8, 9, 51], providing a collection of functions fi, i = 1, . . . , k,
each one called bifurcation function of order i, which control the persistence of zeros
contained in Z.

The problem of existence of periodic solutions of the differential system (1.5) goes
back to the works of Malkin [56] and Roseau [67]. They have studied the case k = 1.
Let x(t, z, ε) denote the solution of system (1.5) such that x(0, z, ε) = z. In order to find
initial conditions z ∈ D such that the solution x(t, z, ε) is T -periodic we may consider the
function g(z, ε) = z−x(T, z, ε), and then try to use the results previously obtained about
the persistence of zeros. Indeed, if Z ⊂ D is a submanifold of T -periodic solutions of the
unperturbed system x′ = F0(t, x), then g(z, 0) vanishes on Z. When dim(Z) = n this
problem is studied at an arbitrary order of ε, see [33, 53], even for nonsmooth systems.
When dim(Z) < n, this approach has already been used in [8], up to order 1, and in [9, 10],
up to order 2. In [51] this approach was used up to order 3 relaxing some hypotheses
assumed in those previous 3 works. In [34] assuming the same hypotheses of [8, 9, 10]
the authors studied this problem at an arbitrary order of ε. Here, following the ideas
from [53, 51], we improve the results of [34] relaxing some hypotheses and developing the
method in a more general way.

In summary, we use the Lyapunov–Schmidt reduction method for studying the zeros
of functions like (1.4) when the Implicit Function Theorem cannot be directly applied.
Another useful tool that we shall use to deal with this problem is the Browder degree
theory (see Appendix B), which will allow to provide estimates for these zeros. Then we
apply these previous results for studying the periodic solutions of differential systems like
(1.5) through their bifurcation functions, provided by the higher order averaging theory.

The results are organized as follows. In Chapter 1 we present our main results on
averaging theory. In Chapter 2 we provide the proofs of the main results. Then we start
apply our results to study the periodic solutions of some relevant physical systems. In
Chapter 3 we study the Maxwell-Bloch system and a 3D polynomial differential system.
In Chapter 4 we study 17 differential systems, including the Fitzhugh-Nagumo system,
the Noose-Hover system, the Wang-Chen system and the Wei system. In Chapter 5 we
study the existence and stability of periodic solutions in the Lorenz differential system
and the Thomas differential system. In Chapter 6 we study the periodic solutions and
invariant tori in the generalized Van der Pol - Duffing differential system using Lyapunov
coefficients and averaging theory. Finally, in Chapter 7 we study the periodic solutions
in a hyperchaotic Lorenz differential system.

The results presented in Chapter 1, 2 and 3 were based on the preprint [18] and
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published papers [17] and [14]. The results presented in Chapter 4 are published in [13]
and [15]. Chapter 5 contains results from [13] and [14]. The results in Chapter 6 are
submited for publication. The results in Chapter 7 are published in [16].

1.1 Statements of the main results

Before we state our main results we need some preliminary concepts and definitions.
Given p, q and L positive integers, γj = (γj1, . . . , γjp) ∈ Rp for j = 1, . . . , L and z ∈ Rp.
Let G : Rp → Rq be a sufficiently smooth function, then the L-th Frechet derivative of
G at z is denoted by ∂LG(z), it is a symmetric L–multilinear map, which applied to a
“product” of L p-dimensional vectors denoted as

⊙L
j=1 γj ∈ RpL gives

∂LG(z)
L⊙
j=1

γj =

(
p∑

i1,...,iL=1

∂LG1(z)

∂zi1 · · · ∂ziL
γ1i1 · · · γLiL , · · · ,

p∑
i1,...,iL=1

∂LGq(z)

∂zi1 · · · ∂ziL
γ1i1 · · · γLiL

)
.

(1.6)
The above expression is indeed the Gâteaux derivative

∂LG(z)
L⊙
j=1

γj =
∂

∂τ1∂τ2 . . . ∂τL
G (z + τ1γ1 + τ2γ2 + · · ·+ τLγL)

∣∣∣
τ1=···=τL=0

= ∂
(
. . . ∂

(
∂G(z)γ1

)
γ2 . . .

)
γL.

We take ∂0 as the identity operator.

1.1.1 The Lyapunov–Schmidt reduction method

We consider the function

g(z, ε) =
k∑
i=0

εigi(z) +O(εk+1), (1.7)

where gi : D → Rn is a Ck+1 function, k ≥ 1, for i = 0, 1, . . . , k, being D an open bounded
subset of Rn. For m < n, let V be an open bounded subset of Rm and β : Cl(V )→ Rn−m

a Ck+1 function, such that

Z = {zα = (α, β(α)) : α ∈ Cl(V )} ⊂ D. (1.8)

As usual Cl(V ) denotes the closure of the set V .
As the main hypothesis we assume that

(Ha) the function g0 vanishes on the m–dimensional submanifold Z of D.

Using the Lyapunov–Schmidt reduction method we shall develop the bifurcation functions
of order i, for i = 1, 2, . . . , k, which control, for |ε| 6= 0 small enough, the existence
of branches of zeros z(ε) of (1.7) bifurcating from Z, that is from z(0) ∈ Z. With
this purpose we introduce some notation. The functions π : Rm × Rn−m → Rm and
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π⊥ : Rm × Rn−m → Rn−m denote the projections onto the first m coordinates and
onto the last n − m coordinates, respectively. For a point z ∈ D we also consider
z = (a, b) ∈ Rm × Rn−m. We define ∂Lb πgi−l(zα) by following the notation (1.6), taking
p = n−m, q = m, z = β(α) andG : b→ πgi−l(α, b). Let Sl be the set of all l-tuples of non–
negative integers (c1, c2, · · · , cl) satisfying c1+2c2+· · ·+lcl = l, L = c1+c2+· · ·+cl, and S ′i
is the set of all (i−1)-tuples of non–negative integers satisfying c1+2c2+· · ·+(i−1)ci−1 = i,
I ′ = c1 + c2 + · · ·+ ci−1. From (1.6) we define

∂Lb πgi−l(zα)
l⊙

j=1

γj(α)cj =

(
n−m∑

i1,...,iL=1

∂Lπg1
i−l(a, b)

∂bi1 · · · ∂biL
(γ1i1(α))c1 · · · (γlil(α))cl , · · · ,

n−m∑
i1,...,iL=1

∂Lπgmi−l(a, b)

∂bi1 · · · ∂biL
(γ1i1(α))c1 · · · (γlil(α))cl

)∣∣∣
(a,b)=zα

and

∂Lb π
⊥gi−l(zα)

l⊙
j=1

γj(α)cj =

(
n−m∑

i1,...,iL=1

∂Lπ⊥gm+1
i−l (a, b)

∂bi1 · · · ∂biL
(γ1i1(α))c1 · · · (γlil(α))cl , · · · ,

n−m∑
i1,...,iL=1

∂Lπ⊥gni−l(a, b)

∂bi1 · · · ∂biL
(γ1i1(α))c1 · · · (γlil(α))cl

)∣∣∣
(a,b)=zα

.

For i = 1, 2, . . . , k we define the bifurcation functions fi : Cl(V )→ Rm of order i as

fi(α) = πgi(zα) +
i∑
l=1

∑
Sl

1

c1! c2!2!c2 · · · cl!l!cl
∂Lb πgi−l(zα)

l⊙
j=1

γj(α)cj , and (1.9)

Fk(α, ε) =
k∑
i=1

εifi(α),

where γi : V → Rn−m, for i = 1, 2, . . . , k, are defined recurrently as

γ1(α) = −∆−1
α π⊥g1(zα) and

γi(α) = −i!∆−1
α

(∑
S′i

1

c1! c2!2!c2 · · · ci−1!(i− 1)!ci−1
∂I
′

b π
⊥g0(zα)

i−1⊙
j=1

γj(α)cj

+
i−1∑
l=1

∑
Sl

1

c1! c2!2!c2 · · · cl!l!cl
∂Lb π

⊥gi−l(zα)
l⊙

j=1

γj(α)cj

)
.

(1.10)

with ∆α =
∂π⊥g0

∂b
(zα).

We clarify that S0 = S ′0 = ∅, and when cj = 0, for some j, then the term γj does not

appear in the “product”
⊙l

j=1 γj(α)cj .
The next theorem is the first main result of this chapter. For sake of simplicity, we

take f0 = 0.
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Theorem 2. Let ∆α denote the lower right corner of the (n −m) × (n −m) matrix of
the Jacobian matrix D g0(zα). In additional to hypothesis (Ha) we assume that

(i) for each α ∈ Cl(V ), det(∆α) 6= 0;

(ii) for some r ∈ {1, . . . , k}, f1 = f2 = · · · = fr−1 = 0 and fr is not identically zero;

(iii) there exists a small parameter ε0 > 0 such that for each ε ∈ [−ε0, ε0] there exists
aε ∈ V satisfying Fk(aε, ε) = 0; and

(iv) there exist a constant P0 > 0 and a positive integer l ≤ (k + r + 1)/2 such that∣∣∂αFk(aε, ε) · α∣∣ ≥ P0|ε|l|α|, for α ∈ V.

Then, for |ε| 6= 0 sufficiently small, there exists z(ε) such that g(z(ε), ε) = 0 with |π⊥z(ε)−
π⊥zaε| = O(ε) and |π z(ε)− π zaε| = O(εk+1−l).

In the next corollary we present a classical result in the literature, which is a direct
consequence of Theorem 2.

Corollary 3. In addiction to hypothesis (Ha), assume that f1 = f2 = · · · = fk−1 = 0
and that for each α ∈ Cl(V ), det(∆α) 6= 0. If there exists α∗ ∈ V such that fk(α

∗) = 0
and det (Dfk(α

∗)) 6= 0, then there exists a branch of zeros z(ε) with g(z(ε), ε) = 0 and
|z(ε)− zα∗| = O(ε).

Theorem 2 and Corollary 3 are proved in Section 2.1.

1.1.2 Continuation of periodic solutions

We consider the following Ck+1 differential system

x′ = F0(t, x) +
k∑
i=1

εiFi(t, x) +O(εk+1), (t, z, ε) ∈ S1 ×D × (−ε0, ε0). (1.11)

Here D ⊂ Rn is an open and bounded set, ε0 > 0, and the prime denotes derivative with
respect to the time t. We denote the right–hand side of equation (1.11) by F (t, x, ε). We
say that the differential system (1.11) is in the normal form for applying the averaging
theory. Given z ∈ D we denote by x(t, z, ε) the solution of the differential system (1.11)
such that x(0, z, ε) = z. As our basic hypothesis we assume that:

(H) There exists a manifold W ⊂ D such that, for each z ∈ W , the solution x(t, z, 0) of
the unperturbed system is T -periodic.

Thus we have the following result.

Lemma 4 (Fundamental Lemma). Let x(t, z, ε) be the solution of the Ck+1 T -periodic
differential system (1.11) such that x(0, z, ε) = z. Then the equality

x(t, z, ε) = x(t, z, 0) +
k∑
i=1

εi
yi(t, z)

i!
+O(εk+1) (1.12)
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holds for (t, z) ∈ S1 ×D. Here the functions yi for 1 ≤ i ≤ k, are given recursively as

y1(t, z) =Y (t, z)

∫ t

0

Y (s, z)−1F1(s, x(s, z, 0))ds,

yi(t, z) =i!Y (t, z)

∫ t

0

Y (s, z)−1

(
Fi(s, x(s, z, 0))

+
∑
S′i

1

b1! b2!2!b2 · · · bi−1!(i− 1)!bi−1
∂I
′
F0(s, x(s, z, 0))

i−1⊙
j=1

yj(s, z)
bj

+
i−1∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂LFi−l(s, x(s, z, 0))

l⊙
j=1

yj(s, z)
bj

)
ds,

where Y (t, z) is a fundamental matrix solution of the linear differential system y′ =
∂xF0(t, x(t, z, 0))y, being ∂xF0(t, x) the Jacobian matrix of the function F0(t, x).

From hypothesis (H) we see that there exists an open set U1 ⊂ D and ε1 > 0 such
that, for each z ∈ U1 and ε ∈ [−ε1, ε1], the solution x(t, z, ε) is defined on the interval
[0, t(z,ε)), with t(z,ε) > T .

A displacement function d : U1×(−ε1, ε1)→ Rn can be defined as d(z, ε) = x(T, z, ε)−
z. Notice that a solution (z∗, ε∗) of the equation d(z, ε) = 0 corresponds to a T -periodic
solution of the differential system (1.11) with ε = ε∗ and initial condition z∗. From (1.12),
the displacement function reads

d(z, ε) = x(T, z, 0)− z +
k∑
i=1

εi
yi(T, z)

i!
+O(εk+1). (1.13)

The equation d(z, ε) = 0 is equivalent to

g(z, ε)
def
= Y (T, z)−1d(z, ε) = 0, (1.14)

and from (1.13) equation (1.14) writes

g(z, ε) = g0(z) +
k∑
i=1

εigi(z) +O(εk+1),

where g0(z) = Y (T, z)−1 (x(T, z, 0)− z) and

gi(z) = Y (T, z)−1yi(T, z)

i!
, i = 1, 2 . . . , k, (1.15)

are usually called the averaged function of order i. By abuse of notation, the function
g0 is called the averaged function of order 0. Notice that g0(z) = 0 if, and only if, the
solution x(t, z, 0) of the unperturbed system is T–periodic. Therefore, from hypothesis
(H), g0(z) = 0 for every z ∈ Z.

The averaging theory for finding periodic solutions consists in providing sufficient
conditions for the existence of periodic solutions of system (1.11) by studying the solutions
of equation (1.14).

In [17] it was assumed that g0 6≡ 0. Here we assume that gs 6≡ 0 is the first nonvanishing
averaged function, where 0 ≤ s < k. As our main hypotheses we assume that

7
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(H) Let gs 6≡ 0, for 0 ≤ s < k, be the first nonvanishing averaged function. Assume
that there exist m < n, V an open bounded subset of Rm, and a Ck+1 function
β : V → Rn−m such that Z = {zα = (α, β(α)) : α ∈ V } ⊂ D, and gs(zα) = 0 for
every α ∈ V .

Notice that (H) implies (H). Indeed, if s = 0, then (H) holds by taking Z = W .
Otherwise (H) holds by taking Z = D.

From hypothesis (H) and Lemma 4 equation (1.13) is equivalente to

h(z, ε)
def
=
g(z, ε)

εs
= gs(z) +

k−s∑
i=1

εigs+i(z) +O(εk−s+1) = 0. (1.16)

From Theorem 2 the bifurcation functions corresponding to equation (1.16) are

fi(α) = πgs+i(zα) +
i∑
l=1

∑
Sl

1

c1! c2!2!c2 · · · cl!l!cl
∂Lb πgs+i−l(zα)

l⊙
j=1

γj(α)cj , (1.17)

Fk−s(α, ε) =
k−s∑
i=1

εifi(α), (1.18)

where γi : V → Rn−m, for i = 1, 2, . . . , k − s, are defined recurrently as

γ1(α) =−∆−1
α π⊥gs+1(zα) and

γi(α) =− i!∆−1
α

(∑
S′i

1

c1! c2!2!c2 · · · ci−1!(i− 1)!ci−1
∂I
′

b π
⊥gs(zα)

i−1⊙
j=1

γj(α)cj

+
i−1∑
l=1

∑
Sl

1

c1! c2!2!c2 · · · cl!l!cl
∂Lb π

⊥gs+i−l(zα)
l⊙

j=1

γj(α)cj

)
,

with ∆α =
∂π⊥gs
∂b

(zα).

In what follows we shall state a slightly improvement of Theorem B from [17], which
is suitable to a wider range of applications.

Theorem 5. Assume hypothesis (H) holds. Consider the Jacobian matrix

∂gs(zα) =

(
Λα Γα
Bα ∆α

)
,

where Λα = ∂aπgs(zα), Γα = ∂bπgs(zα), Bα = ∂aπ
⊥gs(zα) and ∆α = ∂bπ

⊥gs(zα). In
additional to hypothesis (H) we suppose that

(i) for each α ∈ V , det(∆α) 6= 0;

(ii) for some r ∈ {0, . . . , k− s}, f1 = f2 = · · · = fr−1 = 0 and fr is not identically zero;

(iii) there exists ε > 0 such that for each ε ∈ (−ε, ε) there exists aε ∈ V satisfying
Fk−s(aε, ε) = 0; and
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(iv) there exist a constant P0 > 0 and a positive integer l ≤ (k − s+ r + 1)/2 such that∣∣∂αFk−s(aε, ε) · α∣∣ ≥ P0|εl||α|, for α ∈ V.

Then for |ε| 6= 0 sufficiently small there exists a T -periodic solution ϕ(t, ε) of system
(1.11) such that |π ϕ(0, ε)− π zaε| = O(εk−s+1−l), and |π⊥ϕ(0, ε)− π⊥zaε| = O(ε).

In the next corollary we present a classical result in the literature, which is a direct
consequence of Corollary 3.

Corollary 6. In addiction to hypothesis (H) we assume that f1 = f2 = · · · = fr−1 = 0,
r = k − s and that for each α ∈ Cl(V ), det(∆α) 6= 0. If there exists α∗ ∈ V such that
fr(α

∗) = 0 and det (Dfr(α
∗)) 6= 0, then there exists a T -periodic solution ϕ(t, ε) of (1.11)

such that |ϕ(0, ε)− zα∗| = O(ε).

Lemma 4, Theorem 5 and Corollary 6 are proved in Section 2.2.
It is worth to emphasize that Theorem 5 is still true when m = n. In fact, assuming

that V is an open subset of Rn then Z = Cl(V ) ⊂ D and the projections π and π⊥ become
the identity and the null operator respectively. Moreover, in this case the bifurcation
functions fi : V → Rn, for i = 1, 2, . . . , k, are the averaged functions fi(α) = gi(α)
defined in (1.15). Consider m = n, zα = α ∈ Z and the hypothesis (H). Thus the
result of Theorem 5 holds without any assumption about ∆α. Thus we have the following
corollary, which recover the main result from [53].

Corollary 7. Assume that gs ≡ 0. If there exists z∗ ∈ Ω such that gs+1(z∗) = 0 and
Dgs+1(z∗) 6= 0, then there exists a T -periodic solution x(t, z(ε), ε) for system (1.11) such
that z(0) = z∗.

Now we use functions α(ε), γi and fi to study the stability of the periodic solution
ϕ(t, ε).

1.2 Stability of the periodic solutions

A fundamental notion in qualitative theory of differential equations is the hyperbolicity.
Here a constant matrix will be called hyperbolic if its eigenvalues lie out of the unitary
circle of the complex plane, in which case its index is the number of eigenvalues outside
the unitary circle.

Consider a matrix function A(ε) = A0 + εA1 + · · · + εkAk depending on a parameter
ε. If A0 is hyperbolic of index i, then one can see that for ε > 0 sufficiently small A(ε)
will be hyperbolic with the same index i.

If A0 is not hyperbolic the placement of the eigenvalues of A(ε) may be hard to
determine. To deal with this problem we use a method introduced by Murdock and
Robinson in [62, 61]. The matrix A(ε) is called k-hyperbolic of index i if for every smooth
matrix function B(ε) there exists an ε0 > 0 such that A(ε)+εkB(ε) is hyperbolic of index
i for all ε in the interval 0 < ε < ε0.

The stability properties of the periodic solution ϕ(t, ε) will be provided using the
k-determined hyperbolicity method, as it was presented in [60, Chapter 3].

9
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For |ε| 6= 0 sufficiently small let ϕ(t, ε) = x(t, z(ε), ε) be a T−periodic solution of the
differential system (1.11) given by Theorem 5 such that z(0) = zα∗ ∈ Z. The Poincaré
Map related to ϕ(t, ε) is given by

Π(z, ε)
def
= x(T, z, ε) = z + d(z, ε). (1.19)

Clearly z(ε) is a fixed point of Π(·, ε). It is well known that the stability of the fixed point
z(ε) of the Poincaré map Π(·, ε) yields the stability of the T -periodic solution ϕ(t, ε). More
specifically, if the norm of each eigenvalue of ∂zΠ(z(ε), ε) is less than 1, then the periodic
solution ϕ(t, ε) is stable. On the other hand, if there exists an eigenvalue of ∂zΠ(z(ε), ε)
with norm greater than 1, then the periodic solution ϕ(t, ε) is unstable. From (1.19),
our goal in is to show how the power series of z(ε) around ε = 0 can be used to provide
the stability of the T−periodic solutions x(t, z(ε), ε) provided in Theorem 5. As these
solutions are essentially non-hyperbolic, due to existence of a continuum of zeros of the
first coefficient function of (1.16), the question about its stability can be reduced to the
study of the k-determined hyperbolicity of the Jacobian matrix ∂zd(z(ε), ε).

For the sake of further applications the first result of this section is to write the formal
power series of the initial condition z(ε) = ϕ(0, ε) around ε = 0, where ϕ(t, ε) is the
T−periodic solution provided in Theorem 5.

The next result reveals how the higher order averaged functions can be used for
determining the stability of the periodic solution x(t, z(ε), ε).

Lemma 8. Let aε be the one given in hypothesis (iii) of Theorem 5 and let x(t, z(ε), ε) =
ϕ(t, ε) be the periodic solution of the differential system (1.11) provided in Theorem 5. If

aε = α0 + εα1 + · · ·+ εk−s−lαk−s−l +O(εk−s−l+1), (1.20)

with αi ∈ Rm for all 0 ≤ i ≤ k− s− l. Then we can write initial condition of the periodic
orbit as

z(ε) =
k−s−l∑
i=0

εi
(
αi, βi

)
+O

(
εk−s−l+1

)
, (1.21)

where β0 = β(α0) and for all 1 ≤ i ≤ k − s− l,

βi = γi(α0) +
i∑

j=1

∑
Sj

1

c1! c2!2!c2 · · · cj!j!cj
γ

(J)
i−j(α0)

j⊙
s=1

(s!αs)
cs . (1.22)

The next result provides the Taylor expansion at ε = 0 of the Jacobian matrix of the
displacement function (1.13) evaluated at z(ε) = ϕ(0, ε), where ϕ(t, ε) is the T -periodic
function provided in Theorem 5.

Lemma 9. We assume that system (1.11) satisfies the hypotheses of Theorem 5 having
the T -periodic solution ϕ(t, ε). Moreover, let z(ε) = ϕ(0, ε) and aε from statement (iii)
of Theorem 5 written in the form (1.20). Thus the Jacobian matrix of displacement map
(1.13) at z = z(ε) can be written as

∂zd(z(ε), ε) = εsA(ε) +O(εk−l+1),

10



Introduction

where A(ε) = A0 + εA1 + · · ·+ εk−s−lAk−s−l where Aj is an n× n constant matrix for all
0 ≤ j ≤ k − s− l. More precisely, we have A0 = ∂ys(T, z0) and

Aj =

j∑
i=0

1

(j − i)!
∑
Si

1

b1! · · · bi!(i− 1)!bi
∂I+1
z ys+j−i(T, z0)

i⊙
u=1

(u!zu)
bu ,

for 1 ≤ j ≤ k − s− l, with zi = (αi, βi) given in (1.21) and l as in Theorem 5.

Consequently the Jacobian matrix of the Poincaré map becomes

DΠ(z, ε)
def
= M(ε) +O(εk−l+1), (1.23)

with M(ε) = Id + εsA(ε). Now we can present our result on the stability of the non-
hyperbolic T -periodic solution x(t, z(ε), ε) provided in Theorem 5.

Theorem 10. We assume that system (1.11) has a T -periodic solution x(t, z(ε), ε) as
stated in Lemma 9, and that the Jacobian matrix of the Poincaré map at z(ε) has the
form (1.23) with M(ε) hyperbolic for |ε| sufficiently small. If there exists a matrix T (ε)
such that T (ε)−1M(ε)T (ε) = Λ(ε), where

Λ(ε) =


λ1(ε)

. . .
. . .

λn(ε)

 = εr1Λ1 + · · ·+ εrjΛj;

with r1 < r2 < · · · < rj < R = k − l + 1 rational numbers, and Λ1, . . . ,Λj diagonal
matrices. Then there exists an ε0 > 0 such that for 0 < ε < ε0 the eigenvalues of the
Jacobian matrix DΠ(z, ε) are approximately equal to λi(ε) with error O(εR). Consequently
the matrices M(ε) and DΠ(z, ε) have the same hyperbolicity type.

The result of Theorem 10 is strongly related with the Theorem 3.7.7 of [60]. Obtaining
the matrix T (ε) may be the main difficulty of applying Theorem 10. In some cases it may
be necessary a sequence of linear transformations and normalization in order to obtain
T (ε), see [60, Section 3.7]. This task always comes down to the solution of a homological
equation such as

LUj = Kj −Bj,

where
L = LY : gl(n)→ gl(n),

Kj is known at the jth stage of the calculation, and Bj and Uj are to be determined
and LY is the Lie operator, i.e. LYX = [X, Y ] = X Y − Y X. In this work we shall
use Theorem 5 to study the Hopf or the zero–Hopf bifurcation in some three dimensional
systems. Moreover Corollary 19 in Appendix 2.7 provides sufficient conditions for the
existence of the matrix T (ε). This will allow to use Theorem 10 for studying the stability
of the bifurcated periodic orbits detected by Theorem 5.

Finally we shall show that the hypotheses of Lemma 8 are not very restrictive. We
shall provide the expressions of the α′is in Lemma 8 in terms of the bifurcation functions
(1.17).

11



Introduction

Proposition 11. Assume that 0 ≤ r < k is the first subindex such that fr(α) 6≡ 0 as
given by hypothesis (ii) of Theorem 5. If there exist α∗ ∈ V ⊂ Rm such that fr(α

∗) = 0
and det (∂fr(α

∗)) 6= 0. Then there exists a unique aε ∈ V such that:

(a) aε = α0 + εα1 + · · · + εkαk + O(εk+1) with αi ∈ Rn for all 1 ≤ i ≤ k satisfying
Fk(aε, ε) = 0, and

(b) where the coefficients are α0 = α∗, α1 = −Dfr(α∗)−1fr+1(α∗) and for 2 ≤ i ≤ k− 1

αi =
−Dfr
i!

(α∗)−1

(∑
S′i

1

c1! c2!2!c2 · · · ci−1!(i− 1)!ci−1
f (I′)
r (α∗)

i−1⊙
j=1

α(j)(0)cj

+
i−1∑
l=0

∑
Sl

1

c1! c2!2!c2 · · · cl!l!cl
f

(L)
i−l+r(α

∗)
l⊙

j=1

α(j)(0)cj

)
,

Proposition 11 is particularly useful to study the stability of the periodic orbits
detected by Corollary 6. This result will be applied several times in this work. Thus
we present now a reformulation of Corollary 6 and Theorem 10 that will be used in the
applications presented in the next chapters.

Theorem 12. Let s ∈ R such that s is the first subindex such that gs 6≡ 0. In addition
to hypothesis (H) assume that

(i) the averaged function gs vanishes on the manifold (1.8). That is gs(zα) = 0 for all
α ∈ V , and

(ii) the Jacobian matrix

Dgs(zα) =

(
Λα Γα
Bα ∆α

)
,

where Λα = Daπgs(zα), Γα = Dbπgs(zα), Bα = Daπ
⊥gs(zα) and ∆α = Dbπ

⊥gs(zα),
satisfies that det(∆α) 6= 0 for all α ∈ V .

We define the functions

f1(α) =− Γα∆−1
α π⊥gs+1(zα) + πgs+1(zα),

f2(α) =
1

2
Γαγ2(α) +

1

2

∂2πgs
∂b2

(zα)γ1(α)2 +
∂πgs+1

∂b
(zα)γ1(α) + πgs+2(zα),

γ1(α) =−∆−1
α π⊥gs+1(zα), (1.24)

γ2(α) =−∆−1
α

(
∂2π⊥gs
∂b2

(zα)γ1(α)2 + 2
∂π⊥gs+1

∂b
(zα)γ1(α) + 2π⊥gs+2(α)

)
.

Then the following statements hold.

(a) If there exists α∗ ∈ V such that f1(α∗) = 0 and det (Df1(α∗)) 6= 0, for |ε| 6= 0
sufficiently small there is an initial condition z(ε) ∈ U such that z(0) = zα∗ and the
solution x(t, z(ε), ε) of system (1.11) is T -periodic.

12
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(b) Assume that f1 ≡ 0. If there exists α∗ ∈ V such that f2(α∗) = 0 and det (Df2(α∗)) 6=
0, for |ε| 6= 0 sufficiently small there is an initial condition z(ε) ∈ U such that
z(0) = zα∗ and the solution x(t, z(ε), ε) of system (1.11) is T -periodic.

The next result provides the stability type of the periodic solutions detected by
Theorem 12(a). Here diagonalizable means that the matrix has n distinct eigenvalues.

Theorem 13. Consider s, Γα, ∆α, f1 and f2 as defined in Theorem 12 and the Jacobian
matrices Dys(T, z) = (pij(z)) and Dys+1(T, z) = (qij(z)). Assume that there exists α∗ ∈ V
such that f1(α∗) = 0 and det (Df1(α∗)) 6= 0. We define the matrix function

A(ε) = A0 + εA1, (1.25)

where

A0 =Dys(T, zα∗), (1.26)

A1 = (Dpij(zα∗).z1 + qij(zα∗)) , (1.27)

z1 =
(
−Df1(α∗)−1f2(α∗), Dβ(α∗)

(
−Df1(α∗)−1f2(α∗)

)
+ γ1(α∗)

)
. (1.28)

We assume that A(ε) satisfies the following statements:

(s1) A0 is diagonalizable and s > 0, or Id+ A0 is diagonalizable and s = 0; and

(s2) Id+ εsA0 + εs+1A1 is hyperbolic for all ε sufficiently small.

Thus the Poincaré map of the periodic solution x(t, z(ε), ε) is s+ 2−hyperbolic.

In other words this last result says that the hyperbolicity of the x(t, z(ε), ε) can be
investigated using the λi(ε) + O(εs+2), where λi′s(ε) are the eigenvalues of Id + εsA0 +
εs+1A1. In the next chapter we prove the results here presented.
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Chapter 2

Proofs of the main results

2.1 Proof of Theorem 2 and Corollary 3

A useful tool to study the zeros of a function is the Browder degree (see the Appendix B
for some of their properties). Let g ∈ C1(D), Cl(V ) ⊂ D and Zg = {z ∈ V : g(z) = 0}.
We also assume that Jg(z) 6= 0 for all z ∈ Zg, where Jg(z) is the Jacobian determinant of
g at z. Then if V is bounded the set Zg is formed by a finite number of isolated points.
The Browder degree of g at 0 is

dB(g, V, 0) =
∑
z∈Zg

sign (Jg(z)) . (2.1)

One of the main properties of the Browder degree is: “if d(f, V, 0) 6= 0 then there
exists x0 ∈ V such that f(x0) = 0”(see item (i) of Theorem 20 from Appendix B).

The next result is a key lemma for proving Theorem 2.

Lemma 14. Let V be an open bounded subset of Rm. Consider the continuous functions
fi : Cl(V )→ Rn, i = 0, 1, · · · , κ, and f, g, r : Cl(V )× [−ε0, ε0]→ Rn given by

g(x, ε) = f0(x) + εf1(x) + · · ·+ εκfκ(x) and f(x, ε) = g(x, ε) + εκ+1r(x, ε).

Let Vε ⊂ V , R = max{|r(x, ε)| : (x, ε) ∈ Cl(V ) × [−ε0, ε0]} and assume that |g(x, ε)| >
R|ε|κ+1 for all x ∈ ∂Vε and ε ∈ [−ε0, ε0] \ {0}. Then for each ε ∈ [−ε0, ε0] \ {0} we have
dB (f(·, ε), Vε, 0) = dB (g(·, ε), Vε, 0).

Proof. For a fixed ε ∈ [−ε0, ε0] \ {0}, consider a continuous homotopy between g(·, ε)
and f(·, ε) given by gt(x, ε) = g(x, ε) + t (f(x, ε)− g(x, ε)) = g(x, ε) + t εκ+1r(x, ε). We
claim that 0 6∈ gt(∂Vε, ε) for every t ∈ [0, 1]. As usual ∂Vε denotes the boundary of the
set Vε. Indeed, assuming that 0 ∈ gtε(∂Vε, ε), for some tε ∈ [0, 1], we may find xε ∈ ∂Vε
such that gtε(xε, ε) = 0 and, consequently, g(xε, ε) = −tεεκ+1r(xε, ε). Thus |g(xε, ε)| ≤
R|ε|κ+1, which contradicts the hypothesis |g(xε, ε)| > R|ε|κ+1. From Theorem 20 (iii)
we conclude that dB(gt(·, ε), Vε, 0) is constant for t ∈ [0, 1] and then dB (f(·, ε), Vε, 0) =
dB (g(·, ε), Vε, 0).

Lemma 14 provides a stratagem to track zeros of the perturbed function f(x, ε) using
a shrinking neighborhood around the zeros of g(x, ε) that preserves its Browder degree.
The way how it works can be blurry at the first moment, so to make it clear we present
the following example:
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Example 1. Consider the real function f(x, ε) = g(x, ε)+ε2r(x, ε) with (x, ε) ∈ [−1, 1]×
[−ε0, ε0], g(x, ε) = x2 − εx, and |r(x, ε)| ≤ 1/5. The function g(x, ε) has two zeros
a = 0 and aε = ε. Taking Vε = (ε/2, 3ε/2) we have that, for |ε| 6= 0 sufficiently small,
aε ∈ Vε and dB (g(·, ε), Vε, 0) = 1 (see Definition (2.1)). Furthermore ∂Vε = {ε/2, 3ε/2},
|g(ε/2, ε)| = ε2/4, and |g(3ε/2, ε)| = 3ε2/4. Thus |g(x, ε)| > ε2/5 ≥ ε2 max{|r(x, ε)| :
(x, ε) ∈ [0, 1]× [−ε0, ε0]}. Therefore, from Lemma 14 we know that dB (f(·, ε), Vε, 0) = 1.
From the properties of the Browder degree we conclude that there exists αε ∈ Vε such that
f(αε, ε) = 0.

Now we recall the Faá di Bruno’s Formula (see [43]) about the lth derivative of a
composite function.
Faá di Bruno’s Formula If u and v are functions with a sufficient number of derivatives,
then

dl

dtl
u(v(t)) =

∑
Sl

l!

b1! b2!2!b2 · · · bl!l!bl
u(L)(v(t))

l⊙
j=1

v(j)(t)bj ,

where Sl is the set of all l–tuples of non–negative integers (b1, b2, · · · , bl) which are solutions
of the equation b1 + 2b2 + · · ·+ lbl = l and L = b1 + b2 + · · ·+ bl.

The remainder of this section consists in the proof of Theorem 2, which is divided in
several claims, and the proof Corollary 3.

Proof of Theorem 2. We consider g = (πg, π⊥g), gi = (πgi, π
⊥gi) for i = 0, 1, 2, . . . , k,

and z = (a, b) ∈ Rm × Rn−m for z ∈ D. So

∂g

∂z
(zα, 0) = D g0(zα) =


∂πg0

∂a
(zα)

∂πg0

∂b
(zα)

∂π⊥g0

∂a
(zα)

∂π⊥g0

∂b
(zα)

 .

We write ∆α =
∂π⊥g0

∂b
(zα). From hypotheses, π⊥g(α, β(α), 0) = π⊥g0(zα) = 0, and

det

(
∂π⊥g

∂b
(α, β(α), 0)

)
= det

(
∂π⊥g0

∂b
(zα)

)
= det (∆α) 6= 0.

Thus applying the Implicit Function Theorem it follows that there exists an open neighborhood
U × (−ε1, ε1) of Cl(V )×{0} with ε1 ≤ ε0, and a Ck+1 function β : U × (−ε1, ε1)→ Rn−m

such that π⊥g(a, β(a, ε), ε) = 0 for each (a, ε) ∈ U × (−ε1, ε1), and β(α, 0) = β(α) for
every α ∈ Cl(V ).

The rest of the proof is divided in the following claims.

Claim 1. The equality (∂iβ/∂εi)(α, 0) = γi(α) holds for i = 1, 2, . . . , k.

Firstly it is easy to check that (∂β/∂ε)(α, 0) = γ1(α). Now for some fixed i ∈
{1, 2, . . . , k} we assume by induction hypothesis that (∂sβ/∂εs)(α, 0) = γs(α) for s =
1, . . . , i− 1. In what follows we prove the claim for s = i. Consider

π⊥g(α, β(α, ε), ε) =
k∑
i=0

εiπ⊥gi(α, β(α, ε)) +O(εk+1) = 0.
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Expanding each function ε 7→ π⊥gi
(
α, β(α, ε)

)
in Taylor series we obtain

π⊥g(α, β(α, ε), ε) =
k∑
i=0

(
εi

i∑
l=0

1

l!

∂l

∂εl
π⊥gi−l

(
α, β(α, ε)

) ∣∣∣
ε=0

)
(2.2)

+O(εk+1) = 0.

Applying the Faà di Bruno’s formula we obtain

∂l

∂εl
π⊥gi−l

(
α, β(α, ε)

) ∣∣∣
ε=0

=
∑
Sl

(
l!

b1! b2!2!b2 · · · bl!l!bl
∂Lb π

⊥gi−l
(
α, β(α, 0)

)
(2.3)

l⊙
j=1

∂j

∂εj
β(α, 0)bj

)
.

Substituting (2.3) in (2.2) we get

π⊥g(α, β(α, ε), ε) =
k∑
i=0

εi

(
i∑
l=0

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂Lb π

⊥gi−l
(
α, β(α, 0)

)
l⊙

j=1

∂j

∂εj
β(α, 0)bj

)
+O(εk+1) = 0.

Since the previous equation is equal to zero for |ε| sufficiently small, the coefficients of
each power of ε vanish. Then for 0 ≤ i ≤ k and (α, ε) ∈ U × (−ε1, ε1) we have

i∑
l=0

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂Lb π

⊥gi−l
(
α, β(α, 0)

) l⊙
j=1

∂j

∂εj
β(α, 0)bj = 0.

This equation can be rewritten as

0 =
i−1∑
l=0

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂Lb π

⊥gi−l
(
α, β(α, 0)

) l⊙
j=1

∂j

∂εj
β(α, 0)bj

+
∑
S′i

1

b1! b2!2!b2 · · · bi−1!(i− 1)!bi−1
∂I
′

b π
⊥g0

(
α, β(α, 0)

) i−1⊙
j=1

∂j

∂εj
β(α, 0)bj (2.4)

+
1

i!
∂bπ

⊥g0

(
α, β(α, 0)

) ∂i
∂εi

β(α, 0).

Here S ′i is the set of all (i− 1)-tuples of non–negative integers satisfying b1 + 2b2 + · · ·+
(i− 1)bi−1 = i, I ′ = b1 + b2 + · · ·+ bi−1. Finally using the induction hypothesis equation
(2.4) becomes

∂iβ

∂εi
(α, 0) = −i!∆−1

α

∑
S′i

1

b1! b2!2!b2 · · · b(i−1)!(i− 1)!bi−1
∂I
′

b π
⊥g0(zα)

i−1⊙
j=1

γj(α)bs
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+
i−1∑
l=0

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂Lb π

⊥gi−l(zα)
l⊙

j=1

γj(α)bs

)
= γi(α).

This concludes the proof of Claim 1.

Claim 2. Let δ : U×(−ε1, ε1)→ Rm be the Ck+1 function defined as δ(α, ε) = πg(α, β(α, ε), ε).
Then the equality (∂iδ/∂εi)(α, 0) = i!fi(α) holds for i = 1, 2, . . . , k.

From (1.7) the function δ reads

δ(α, ε) =
k∑
j=0

εjπgj(α, β(α, ε)) +O(εk+1).

So computing its ith-derivative in the variable ε for 0 ≤ i ≤ k we get

∂iδ

∂εi
(α, ε) =

i∑
j=0

i∑
q=0

(
i

q

)
(εj)(i−q)∂

qπgj
∂εq

(α, β(α, ε)) +O(ε).

Taking ε = 0 and l = i− j we obtain

∂iδ

∂εi
(α, 0) =

i∑
l=1

i!

l!

∂lπgi−l
∂εl

(α, β(α, ε))

∣∣∣∣∣
ε=0

+ i!πgi(zα).

Finally using the Faà di Brunno’s formula and Claim 1 we have

∂iδ

∂εi
(α, 0) =

i∑
l=1

i!

l!

∑
Sl

l!

c1!c2!2!c2 . . . cl!l!cl
∂Lb πgi−l(zα)

l⊙
s=1

γs(α)cs + i!πgi(zα)

= i!fi(α).

This concludes the proof of Claim 2.

Using Claim 2 the function δ(α, ε) can be expanded in power series of ε as

δ(α, ε) =
k∑
i=0

εi

i!

∂iδ

∂εi
(α, 0) +O(εk+1) = Fk(α, ε) +O(εk+1),

and, from hypothesis (ii), we have

δ̃(α, ε) :=
δ(α, ε)

εr
= Gk(α, ε) +O(εk−r+1), (2.5)

where Gk(α, ε) = fr(α) + εfr+1(α) + . . .+ εk−rfk(α). Obviously the equations δ(α, ε) = 0

and δ̃(α, ε) = 0 are equivalent for ε 6= 0.

Denote R(ε0) = max{|δ̃(α, ε) − Gk(α, ε)| : (α, ε) ∈ Cl(V ) × [−ε0, ε0]}. From the

continuity of the functions δ̃ and Gk and from the compactness of the set Cl(V )× [−ε0, ε0]

we know that R(ε0) < ∞ and R(0) = 0. In order to study the zeros of δ̃(α, ε) we use
Lemma 14 for proving the following claim.
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Claim 3. Consider aε ∈ V as in hypothesis (iii) and ε ∈ [−ε0, ε0]. Then there exist
ε0 > 0 sufficiently small and for each ε ∈ [−ε0, ε0] a neighborhood Vε ⊂ V of aε such
that |Gk(α, ε)| > R(ε0)|εk−r+1| for all α ∈ ∂Vε. Moreover Vε = B(aε, Q|ε|k+1−l) for some
Q > 0.

The parameter ε0 > 0 will be chosen later on. Given ε ∈ [−ε0, ε0] since Gk(α, ε) is a
Ck+1 function with, k ≥ 1, we have that

Gk(aε + h, ε) = ∂αGk(aε, ε)h+ ρ(h), ρ(h) = O(|h|2), (2.6)

for every h ∈ Rm such that [aε, aε +h] ⊂ V . Moreover the hypotheses (ii) and (iv) imply
that ∣∣∂αGk(aε, ε) · α∣∣ ≥ P0|ε|l−r|α| for α ∈ V. (2.7)

Combining expressions (2.6) and (2.7) we obtain the following inequality

|Gk(aε + h, ε)| ≥
(
P0 − |ε|r−l

|ρ(h)|
|h|

)
|ε|l−r|h|. (2.8)

Take Vε = B(aε, Q|ε|k+1−l) ⊂ V . A point αε ∈ ∂Vε reads αε = aε + hε, where
hε = uQ|ε|k+1−l ∈ Rm and |u| = 1. Moreover since ρ(h) = O(|h|2) we get

|ε|r−l |ρ(hε)|
|hε|

= |ε|r−lO
(
Q|ε|k+1−l) = O

(
Q|ε|k+r+1−2l

)
.

From hypothesis (iii) we have that k+ r+ 1− 2l ≥ 0. So in particular O
(
Q|ε|k+r+1−2l

)
=

O(Q). Thus from definition of the symbol O there exists c0 > 0, which does not depend
on ε and Q, such that |ε|r−l|ρ(hε)|/|hε| ≤ c0Q. So the inequality (2.8) reads

|Gk(aε + hε, ε)| ≥ (P0 −Qc0)Q|ε|k−r+1.

Note that the polynomial P(Q) = (P0 −Qc0)Q is positive for 0 < Q < P0/c0 and reach
its maximum at Q∗ = P0/(2c0). Moreover P(Q∗) = P 2

0 /(4c0). Since R(0) = 0, there
exists ε0 > 0 small enough in order that R(ε0) < P 2

0 /(4c0) = P(Q∗). Consequently taking
Q = Q∗ it follows that |Gk(α, ε)| > R(ε0)|εk−r+1| for all α ∈ ∂Vε and ε ∈ [−ε0, ε0]. This
concludes the proof of the claim.

Applying Lemma 14 for g = δ̃, as it is defined in (2.5), κ = k − r, and Vε =

B(aε, Q|ε|k+1−l) we conclude that dB
(
δ̃(·, ε), Vε, 0

)
= dB

(
Gk(·, ε), Vε, 0

)
6= 0. Finally,

denoting z(ε) =
(
α(ε), β

(
α(ε), ε

))
it follows that g(z(ε), ε) = 0.

If zaε = (aε, β(aε)), then |πz(ε) − πzaε| = |α(ε) − aε| = O
(
εk+1−l) and, since β is

Lipschitz,∣∣π⊥z(ε)− π⊥zaε
∣∣ =

∣∣β(α(ε), ε)− β(aε, 0)
∣∣ ≤ L|(α(ε), ε)− (aε, 0)| = O(ε).

This concludes the proof of Theorem 2.

Proof of Corollary 3. The basic idea of the proof is to show that Fk(α) satisfies all the
hypotheses of Theorem 2. From the hypotheses Fk(α, ε) = εkfk(α), and Dfk(α

∗) =
ε−k∂αFk(α∗, ε) is a homeomorphism on Rn. Thus there exist constants b, c > 0 such that

b|α| < |Jfk(α∗).α| =
∣∣∣∣ 1

εk
∂αFk(α∗, ε).α

∣∣∣∣ < c|α|,
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for all α ∈ Rm. Therefore b
∣∣εk∣∣ |α| < ∣∣∂αFk(α∗, ε).α∣∣ < c

∣∣εk∣∣ |α|, which implies that
Fk(α∗) satisfies hypothesis (iii) of Theorem 2, with l = r = k. Indeed (k + r + 1)/2 =
k + 1/2 > k = l. Hence the proof follows directly from Theorem 2.

2.2 Proof of Lema 4, Theorem 5 and Collorary 6

Proof of Lemma 4. The solution x(t, z, ε) can be written as

x(t, z, ε) = z +
k∑
i=0

εi
∫ t

0

Fi(s, x(s, z, ε))ds+O(εk+1), and

x(t, z, 0) = z +

∫ t

0

F0(s, x(s, z, 0))ds.

(2.9)

Moreover the result on the differentiable dependence on parameters implies that ε 7→
x(t, z, ε) is a Ck+1 map. So for i = 0, 1, . . . , k − 1 we compute the Taylor expansion of
Fi(t, x(t, z, ε)) around ε = 0 and we have

Fi(t, x(t, z, ε)) = Fi (t, x(t, z, 0)) +
k−i∑
l=1

εl

l!

(
∂l

∂εl
Fi(t, x(t, z, ε))

) ∣∣∣∣∣
ε=0

+O(εk−i+1). (2.10)

Using the Faá di Bruno’s formula to compute the l–derivatives of Fi(t, x(t, z, ε)) in the
variable ε we get

∂l

∂εl
Fi(t, x(t, z, ε))

∣∣∣∣∣
ε=0

=
∑
Sl

l!

b1! b2!2!b2 · · · bl!l!bl
∂LFi(t, x(t, z, 0))

l⊙
j=1

yj(t, z)
bj , (2.11)

where

yj(t, z) =

(
∂j

∂εj
x(t, z, ε)

) ∣∣∣∣∣
ε=0

. (2.12)

Substituting (2.11) in (2.10) the Taylor expansion of Fi(s, x(t, z, ε)) becomes

Fi(s, x(s, z, ε)) = Fi (s, x(s, z, 0))

+
k−i∑
l=1

∑
Sl

εl

b1! b2!2!b2 · · · bl!l!bl
∂LFi (s, x(s, z, 0))

l⊙
j=1

yj(s, z)
bj +O(εk−i+1),

(2.13)

for i = 0, 1, . . . , k − 1. Furthermore for i = k we have

Fk(s, x(s, z, ε)) = Fk (s, x(s, z, 0)) +O(ε). (2.14)

From (2.9), (2.13), and (2.14) we get the following equation

x(t, z, ε) = z +Q(t, z, ε) +
k∑
i=0

εi
∫ t

0

Fi(s, x(s, z, 0))ds+O(εk+1), (2.15)
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Proofs of the main results

where

Q(t, z, ε) =
k−1∑
i=1

εi
i∑
l=1

∑
Sl

∫ t

0

1

b1! b2!2!b2 · · · bl!l!bl
∂LFi−l(s, x(s, z, 0))

l⊙
j=1

yj(s, z)
bjds.

Finally from (2.15)

x(t, z, ε) = z +

∫ t

0

F0(t, x(s, z, 0))ds+
k−1∑
i=1

εi

(∫ t

0

Fi(s, x(s, z, 0))

+
i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂LFi−l(s, x(s, z, 0))

l⊙
j=1

yj(s, z)
bj ds

)
+εk

∫ t

0

Fk (s, x(s, z, 0)) + εk+1

∫ t

0

R(s, x(s, z, ε), ε)ds+O(εk+1).

Now using this last expression of x(t, z, ε) we conclude that the functions yi(t, z),
defined in (2.12) for i = 1, 2, . . . , k − 1, can be computed recurrently from the following
integral equation

yi(t, z) =

(
∂ix

∂εi
(t, z, ε)

) ∣∣∣∣∣
ε=0

= i!

∫ t

0

(
Fi(s, x(s, z, 0)) +

i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl

·∂LFi−l(s, x(s, z, 0))
l⊙

j=1

yj(s, z)
bj

)
ds

=

∫ t

0

(A(s)yi(s, z) +Bi(s)) ds,

(2.16)

where

A(s) = ∂F0(s, x(s, z, 0)),

Bi(s) = i!
(
Fi(s, x(s, z, 0)) +

∑
S′i

1

b1! b2!2!b2 · · · bi−1!(i− 1)!bi−1
∂I
′
F0(s, x(s, z, 0))

i−1⊙
j=1

yj(s, z)
bj +

i−1∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂LFi−l(s, x(s, z, 0))

l⊙
j=1

yj(s, z)
bj
)
.

The integral equation (2.16) is equivalent to the Cauchy problem

∂

∂t
yi(t, z) = A(t)yi(t, z) +Bi(t), with yi(0, z) = 0,
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which has a unique solution given by

yi(t, z) = Y (t, z)

∫ t

0

Y (s, z)−1Bi(s)ds

= i!Y (t, z)

∫ t

0

Y (s, z)−1

(
Fi(s, x(s, z, 0))

+
∑
S′i

1

b1! b2!2!b2 · · · bi!i!bi
∂I
′
F0(s, x(s, z, 0))

i−1⊙
j=1

yj(s, z)
bj

+
i−1∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂LFi−l(s, x(s, z, 0))

l⊙
j=1

yj(s, z)
bj

)
ds.

Since

x(t, z, 0) = z +

∫ t

0

F0(t, x(s, z, 0))ds,

we obtain

x(t, z, ε) = x(t, z, 0) +
k∑
i=1

εi
yi(t, z)

i!
+O(εk+1).

This concludes the proof of the lemma

Proof of Theorem 5. Let x(·, z, ε) : [0, t(z,ε)) 7→ Rn denote the solution of system (1.11)
such that x(0, z, ε) = z. By Theorem 8.3 of [1] there exists a neighborhood U of z and
ε1 sufficiently small such that t(z,ε) > T for all (z, ε) ∈ U × (−ε1, ε1). Let h(z, ε) :
U × (−ε1, ε1) 7→ Rn be the displacement function defined as

h(z, ε) = x(T, z, ε)− z. (2.17)

Clearly x(·, z, ε) for some (z, ε) ∈ U × (−ε1, ε1) is a T -periodic solution of system (1.11)
if and only if h(z, ε) = 0. Studying the zeros of (2.17) is equivalent to study the zeros of

g(z, ε) = Y (T, z)−1h(z, ε). (2.18)

From Lemma 4 we have

x(t, z, ε) = x(t, z, 0) +
k∑
i=1

εi
yi(t, z)

i!
+O(εk+1), (2.19)

for all (t, z) ∈ S1 ×D, where yi is defined in (1.12). Hence substituting (2.19) into (2.18)
it follows that

g(z, ε) =
k∑
i=0

εigi(z) +O(εk+1),

where g0(z) = Y −1(t, z) (x(t, z, 0)− z) and for i = 1, 2, . . . , k the function gi is defined in
(1.15).

From hypothesis (H) we know that gs(z) vanishes on the manifold Z. Moreover we
have g(z, ε) = εs

∑k−s
i=0 ε

igs+i +O(εk−s+1). Then we consider the function

h(z, ε) =
k−s∑
i=0

εigs+i(z) +O(εk−s+1) =
g(z, ε)

εs
. (2.20)
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The result follows from identifying (2.20) with (1.7), noticing that function (2.20) satisfies
hypothesis (Ha) and applying Theorem 2.

Proof of Corollary 6. The result follows directly from Corollary 3 applied to the function
(1.18).

2.3 Proof of Lemmas 8 and 9

Proof of Lemma 8. The proof of Theorem 5 has been obtained basically applying Theorem
2 to the function

g(z, ε) = gs(z) + εgs+1(z) + ε2gs+2(z) + . . .

That is we find functions α(ε) and β(α, ε) such that zα(ε) = (α(ε), β(α(ε), ε)) satisfies

g(zα(ε), ε) = 0 for |ε| 6= sufficiently small. Defining k = k− s whe have from Claim 1 that

β(α, ε) = β(α) + εγ1(α) + · · ·+ γk(α) +O(εk+1). (2.21)

Furthermore we have that α(ε) = aε+O(εk−l+1), and by hypothesis aε = α0 + εα1 + · · ·+
εk−lαk−l +O(εk−l+1) thus we can write

α(ε) = α0 + εα1 + · · ·+ εk−lαk−l +O(εk−l+1). (2.22)

Substituting (2.22) in (2.21) and expanding the result in power series of ε around ε = 0
we have

β(α(ε), ε) = β0 + εβ1 + · · ·+ εk−lβk−l +O
(
εk−l+1

)
,

where the coefficients βi up to order k − 1 can be calculated as β0 = β(α(0), 0) = β(α0)
and for 0 < i ≤ k − l − 1 we obtain

βi =
1

i!

i∑
j=0

i∑
q=0

(
i

q

)
(ε(j))(i−q) d

q

dεq
γj(α(ε)) +O(ε)

∣∣∣
ε=0

=
1

i!

(
i!γi
(
α(ε)

)
+

i∑
j=1

(
i

i− j

)
di−j

dεi−j
γj(α(ε)) +O(ε)

)∣∣∣
ε=0

,

taking l = i− j and using the Faá di Bruno’s forumla in the above equation we have

βi = γi
(
α(0)

)
+

i∑
l=1

∑
Sl

1

c1! · · · cl!(l − 1)!cl
γ

(L)
i−l (α(0))

l⊙
s=i

(
α(s)(0)

)cs
.

Finally, from equation (2.22) we have that α(0) = α0 and α(s)(0) = s!αs, then using it in
the above equation we obtain (1.22). This completes the proof.

Proof of Lemma 9. We define y0(T, z) = x0(T, z)−z and let s be the first index such that
gs(z) 6≡ 0. Then the displacement map (1.13) writes

d(z, ε) = εs
k−s∑
i=0

εi
ys+i(T, z)

(s+ i)!
+O(εk+1).
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At z = z(ε) this function has the Jacobian matrix

∂zd(z(ε), ε) = εs
k−s∑
i=0

εi

(s+ i)!
∂zys+i(T, z(ε)) +O(εk+1).

From Lemma 8 we have that z(ε) =
∑k−s−l

i=0 zi + O(εk−s−l). Thus we calculate the first
k − s− l coefficient of the Taylor expansion of the function

J(ε) =
k−s∑
i=0

εi

(s+ i)!
∂zys+i(T, z(ε)) +O(εk−s+1),

where J(0) = ∂zys(T, z0). By the Leibniz rule we have

dj

dεj
J(ε) =

k−s∑
i=0

εi

(s+ i)!

dj

dεj
(∂zys+i(T, z(ε))) +O(εk−s−j+1)

=

j∑
i=0

j∑
n=0

(
j

n

)(
εi
)(n) dj−n

dεj−n
(∂zys+i(T, z(ε))) +O(ε)

∣∣∣
ε=0

.

When ε = 0 the only non-vanishing terms in the above equation will be those satisfying
i = n, then we have

dj

dεj
∂zd(z(ε), ε) =

j∑
n=0

j!

n!(j − n)!

dj−n

dεj−n
(∂zys+n(T, z(ε))) . (2.23)

Using the Faá di Bruno’s Formula we have that

di

dεi
(∂zys+n(T, z(ε)))

∣∣∣
ε=0

=
∑
Si

i!

b1! · · · bi!(i− 1)!bi
∂I+1
z ys+n(T, z(ε))

i⊙
u=1

(
z(u)(ε)

)bu ∣∣∣
ε=0

.

We use the above equation in (2.23) taking i = j − n obtaining

Aj =
dj

dεj
∂zd(z(ε), ε)

∣∣∣
ε=0

=

j∑
i=0

j!

i!(j − i)!
∑
Si

i!

b1! · · · bi!(i− 1)!bi
∂I+1
z ys+j−i(T, z0)

i⊙
u=1

(u!zu)
bu .

Finally we take Aj = j!Aj, this completes the proof.

2.4 Proof of Theorem 10

Before the proof we present some results about k−determined hyperbolicity, for more
details see [60, Chapter 3]. Suppose that

Â = A0 + εA1 + · · ·+ εkAk
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is hyperbolic for all ε > 0. The aim of this section is to present results that help to
determine under what circumstances we can say that any smooth matrix A(ε) having Â

as its k−jet will be hyperbolic with the same hyperbolicity type of Â.

We assume that A(ε) is diagonalizable in the following sense. There exists a fractional
power series T (ε), which in general contains positive and negative fractional powers of ε,
such that

B(ε) = T (ε)−1A(ε)T (ε) (2.24)

is diagonal and is a fractional power series in ε containing only positive fractional powers.
Notice that since A(ε) and B(ε) in (2.24) are similar for ε > 0, they will be of the same
hyperbolicity type. We suppose that B(ε) has been computed up to some fractional order,

and that this portion B̂(ε) of B(ε) is hyperbolic and diagonal. The next theorem implies

that A(ε) is hyperbolic, with the same stability type as B̂(ε).

Theorem 15 ([60, Theorem 3.7.7]). Suppose that C(ε) and D(ε) are continuous matrix-
valued functions defined for ε > 0, and that

C(ε) = Λ(ε) + εRD(ε), (2.25)

where

Λ(ε) =


λ1(ε)

. . .
. . .

λn(ε)

 = εr1Λ1 + · · ·+ εrjΛj.

Here r1 < r2 < · · · < rj < R rational numbers, and Λ1, . . . ,Λj diagonal matrices. Then
there exists an ε0 > 0 such that for 0 < ε < ε0 the eigenvalues of C(ε) are approximately
equal to the diagonal entries λi(ε) of Λ(ε), with error O(εR). Consequently the matrices
Λ(ε) and C(ε) have the same hyperbolicity type.

Proof of Theorem 10. Theorem 10 is obtaining directly from applying Theorem 15 to the
Jacobian matrix of the Poincaré map (1.23), identifying Λ(ε) with M(ε).

2.5 Proof of Proposition 11

The following result will be used for proving Proposition 11.

Lemma 16. Let u : Rn × [0, ε0]→ Rn be a function of class Ck such that

u(x, ε) = u0(x) + εu1(x) + · · ·+ εkuk(x) +O(εk+1).

Assume that there exists a function v : R → Rn of class Ck satisfying u(v(ε), ε) = 0 for
|ε| > 0 sufficiently small and that the Jacobian matrix ∂u0(v(0)) is invertible. Then

v(ε) = v(0) +
ε

1!
v(1)(0) + · · ·+ εk

k!
v(k)(0) +O(εk+1),
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where the Taylor’s coefficients of v(ε) are written recursively as
v(1)(0) = Du0(v(0))−1u1(v(0)) and for 2 ≤ i ≤ k,

v(i)(0) =−Du0(v(0))−1

(∑
S′i

1

c1! c2!2!c2 · · · ci−1!(i− 1)!ci−1
u

(I′)
0 (v(0))

i−1⊙
j=1

v(j)(0)cj

+
i−1∑
l=0

∑
Sl

1

c1! c2!2!c2 · · · cl!l!cl
u

(L)
i−l(v(0))

l⊙
j=1

v(j)(0)cj

)
.

Proof. For ε > sufficiently small we have by hypothesis that u(v(ε), ε) = 0, then for
1 ≤ i ≤ k we obtain

di

dεi
u(v(ε), ε) =

i∑
j=0

i∑
q=0

(
i

q

)
(ε(j))(i−q) d

q

dεq
uj(v(ε)) +O(ε) = 0.

Taking ε = 0, l = i− j and using the Faá di Bruno’s Formula we have

0 =
i∑
l=1

i!

l!

dl

dεl
ui−l(v(0)) + i!ui(v(0))

=
di

dεi
u0(v(0)) +

i−1∑
l=1

i!

l!

dl

dεl
ui−l(v(0)) + i!ui(v(0))

=

(∑
S′i

i!

c1! c2!2!c2 · · · ci−1!(i− 1)!ci−1
u

(I′)
0 (v(0))

i−1⊙
j=1

v(j)(0)cj

)

+ i!Du0(v(0))v(i)(0) +

(
i−1∑
l=0

∑
Sl

i!

c1! c2!2!c2 · · · cl!l!cl
u

(L)
i−l(v(0))

l⊙
j=1

v(j)(0)cj

)
+ i!ui(v(0)).

Then we isolate v(i)(0) obtaining

v(i)(0) = −Du0(v(0))−1

(∑
S′i

i!

c1! c2!2!c2 · · · ci−1!(i− 1)!ci−1
u

(I′)
0 (v(0))

i−1⊙
j=1

v(j)(0)cj

+
i−1∑
l=0

∑
Sl

i!

c1! c2!2!c2 · · · cl!l!cl
u

(L)
i−l(v(0))

l⊙
j=1

v(j)(0)cj + ui(v(0))

)
.

Proof of Proposition 11. Statement (a) follows directly from the Implicit Function Theorem.
The proof of statement (b) is simply to define the function

u(α, ε) = Fk−s(α, ε) =
k−s∑
i=1

εifi(α),

where ui(α) = fi(α) for all 0 < i < k − s are given in (1.17). Then from statement (a)
we have u(aε, ε) = 0 and by hypothesis we know that ∂u0(α0) is invertible. Thus we
apply Lemma 16 to u(α, ε) taking v(ε) = αε, obtaining the functions shown in statement
(b).
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2.6 Proof of Theorems 12 and 13

Proof of Theorem 12. Theorem 12 is just a reformulation of Corollary 6 where the bifurcation
functions f1 and f2 were explicitly given.

Proof of Theorem 13. Consider system (1.11) with k = s+ 2 satisfying the hypothesis of
Theorem 13. Then from (1.16) we have that the displacement function is equivalent to

h(z, ε) = gs(z) + εgs+1(z) +O(ε2).

From (1.18) the bifurcation function in this case becomes

F2(α, ε) = f1(α) + εf2(α).

By hypothesis f(α∗) = 0 and Df1(α∗) 6= 0, thus from the Implicit Function Theorem
there exists

aε = α∗ + εα1 +O(ε2),

satisfying F2(aε, ε) = 0 with α1 = −Df1(α∗)−1f2(α∗). Furthermore from Lemma 8 we
have that

z(ε) = (α∗, β(α∗)) + ε z1 +O(ε2),

with z1 given by (1.28). Finally from Lemma 9 the Jacobian matrix of the displacement
function of system writes

∂zd(z(ε)) = εsA0 + εs+1A1 +O(εs+2),

with A0 and A1 given in (1.26) and (1.27) respectively. Consequently the Jacobian of
the Poincaré map (1.19) at z(ε) becomes DΠ(z(ε), ε) = M(ε) + O(εs+2), with M(ε) =
Id+ εsA1 + εs+1A1.

Now we have to consider two cases, s = 0 and s > 0. If s = 0 then we have
M(ε) = Id + A0 + εA1, by hypothesis (i) of Theorem 12 we have det(A0) = 0. Thus we
observe that Id + A0 is non-hyperbolic. Indeed let v be an eigenvector of A0 associated
with the eigenvalue 0. We have (Id + A0)v = v, thus 1 is an eigenvalue of Id + A0.
Consequently Id+A0 is non-hyperbolic. By hypothesis Id+A0 is diagonalizable, and by
Corollary 19 there exists a matrix T (ε) such that T (ε)−1M(ε)T (ε) = εr1Λ1 +εr2Λ2 +O(ε2)
with T (ε)−1M(ε)T (ε) = εr1Λ1 + εr2Λ2. Then the result follows from applying Theorem
15. If s > 0 we study the jet A0 + εA1 separately. By hypothesis we A0 diagonal and
using Corollary 19 there exists T (ε) such that T (ε)−1 (A0 + εA1)T (ε) = εr1Λ1 + εr2Λ2.
Thus we have T (ε)−1M(ε)T (ε) = Id+εs+r1Λ1 +εs+r2+1Λ2 and the result follows applying
Theorem 15.

2.7 Appendix A: k-determined hyperbolicity

To find the matrix T (ε) is fundamental for applying Theorem 10. Here we show sufficient
conditions for the existence of a such matrix.
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Definition 1. A linear transformation L : V → V is said to be in real semisimple
canonical form if V is a real vector space and L is block-diagonalizable in the form

λ1

. . .

λs
α1 −β1

β1 α1

. . .

αt −βt
βt αt


.

The task for putting the matrix series

A(ε) = A0 + εA1 + ε2A2 + . . .

into the form (2.25) is related with putting A(ε) in its normal form. This always comes
down to the solution of a homological equation such as

LUj = Kj −Bj,

where
L = LA0 : gl(n)→ gl(n),

Kj is known at the jth stage of the calculation, and Bj and Uj are to be determined.
Here gl(n) is the set of all invertible n× n real matrices.

Definition 2. A matrix series A(ε) is in semisimple normal form (to order k, or to all
orders) if and only if

1) the leading term A0 is semisimple; and

2) each term Aj (for j ≤ k, or for all j) commutes with the leading term: [Aj, A0] = 0,
or Aj ∈ kerL.

Notice that only the leading term is required to be semisimple.

Consider A0 diagonal (real or complex), it is easy to describe the normal form if we
assume that all repeated eigenvalues are placed right next to each other in the diagonal.
If A0 contains a string of equal eigenvalues in its diagonal, the smallest submatrix of A0

containing this diagonal string will be called the block subtended by the string. Then if r
and s are integers such that the (r, s) position in A0 lies in a block subtended by a string,
if follows that λr = λs, and therefore LErs = 0. Here Ers is the element of the canonical
basis of gl(n).

Theorem 17. If A0 is an n × n diagonal matrix, with equal eigenvalues adjacent, then
ker (L) is the set of block diagonal n × n, with blocks subtended by the strings of equal
eigenvalues of A0. A matrix series with A0 as leading term is in semisimple normal form
(up to degree k) if and only if the remaining terms (up to order k) are in this block
diagonal form.
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Theorem 18. Suppose that

A(ε) = A0 + εA1 + ε2A2 + . . .

is a real matrix series in which A0 is semisimple and is in real semisimple canonical form.
Let

T =



1
. . .

1
1/2 1/2
−i/2 i/2

. . .

1/2 1/2
−i/2 i/2


and let

A′(ε) = ST (A(ε)) = A′0 + εA′1 + . . . .

Then it is possible to choose a semisimple normal form

B′(ε) = A′0 + εB′1 + . . .

for the complex series B′(ε) such that the series

B(ε) = S−1
T (B′(ε)) = A0 + εB1 + . . .

is a real matrix series in normal form with respect to A0.

Corollary 19. If A0 is a semisimple matrix in real semisimple canonical form, and if all
of the 1× 1 and 2× 2 diagonal blocks are distinct, then the semisimple normal form will
be in real semisimple canonical form with the same block sizes.

2.8 Appendix B: Bifurcation functions up to order 5.

In this appendix we develop the recurrences given by Theorems 2 and 5 for computing
explicitly the expressions of the bifurcation functions and the averaged functions up to
order 5. As far as we know we are the first to provide these expressions.

From the recurrences (1.9) and (1.10) we explicitly develop the expressions of the
bifurcation functions fi : V → Rm, for i = 1, 2, .., 5, as stated in Theorem 2. Recall that
Γα = (∂πg0/∂b)(zα). So

f1(α) =Γαγ1(α) + πg1(zα),

γ1(α) =−∆−1
α π⊥g1(zα),

f2(α) =
1

2
Γαγ2(α) +

1

2

∂2πg0

∂b2
(zα)γ1(α)2 +

∂πg1

∂b
(zα)γ1(α) + πg2(zα),

γ2(α) =−∆−1
α

(
∂2π⊥g0

∂b2
(zα)γ1(α)2 + 2

∂π⊥g1

∂b
(zα)γ1(α) + 2π⊥g2(α)

)
,
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f3(α) =
1

6
Γαγ3(α) +

1

6

∂3πg0

∂b3
(zα)γ1(α)3 +

1

2

∂2πg0

∂b2
(zα)γ1(α)� γ2(α)

+
1

2

∂2πg1

∂b2
(zα)γ1(α)2 +

1

2

∂πg1

∂b
(zα)γ2(α) +

∂πg2

∂b
(zα)γ1(α)

+ πg3(zα),

γ3(α) =−∆−1
α

(
∂3π⊥g0

∂b3
(zα)γ1(α)3 + 3

∂2π⊥g0

∂b2
(zα)γ1(α)� γ2(α)

+ 3
∂2π⊥g1

∂b2
(zα)γ1(α)2 + 2

∂π⊥g1

∂b
(zα)γ2(α) + 6

∂π⊥g2

∂b
(zα)γ1(α)

+ 6π⊥g3(α)

)
,

f4(α) =
1

24
Γαγ4(α) +

1

24

∂4πg0

∂b4
(zα)γ1(α)4 +

1

4

∂3πg0

∂b3
(zα)γ1(α)2 � γ2(α)

+
1

8

∂2πg0

∂b2
(zα)γ2(α)2 +

1

6

∂2πg0

∂b2
(zα)γ1(α)� γ3(α)

+
1

6

∂3πg1

∂b3
(zα)γ1(α)3 +

1

2

∂2πg1

∂b2
(zα)γ1(α)� γ2(α) +

1

6

∂πg1

∂b
(zα)γ3(α)

+
1

2

∂2πg2

∂b2
(zα)γ1(α)2 +

1

2

∂πg2

∂b
(zα)γ2(α) +

∂πg3

∂b
(zα)γ1(α) + πg4(zα),

γ4(α) =−∆−1
α

(
∂4π⊥g0

∂b4
(zα)γ1(α)4 + 3

∂2π⊥g0

∂b2
(zα)γ2(α)2 + 4

∂2π⊥g0

∂b2
(zα)γ1(α)� γ3(α)

+ 6
∂3π⊥g0

∂b3
(zα)γ1(α)2 � γ2(α) + 4

∂π⊥g1

∂b
(zα)γ3(α) + 12

∂2π⊥g1

∂b2
(zα)γ1(α)� γ2(α)

+ 4
∂3π⊥g1

∂b3
(zα)γ1(α)3 + 12

∂π⊥g2

∂b
(zα)γ2(α) + 12

∂2π⊥g2

∂b2
(zα)γ1(α)2

+ 24
∂π⊥g3

∂b
(zα)γ1(α)

)
,

f5(α) =
1

120
Γαγ5(α) +

1

12

∂2πg0

∂b2
(zα)γ2(α)� γ1(α) +

1

24

∂2πg0

∂b2
(zα)γ1(α)� γ4(α)

+
1

8

∂3πg0

∂b3
(zα)γ1(α)� γ2(α)2 +

1

12

∂3πg0

∂b3
(zα)γ1(α)2 � γ3(α)

+
1

12

∂4πg0

∂b4
(zα)γ1(α)3 � γ2(α) +

1

120

∂5πg0

∂b5
(zα)γ1(α)5

+
1

24

∂πg1

∂b
(zα)γ4(α) +

1

8

∂2πg1

∂b2
(zα)γ2(α)2 +

1

6

∂2πg1

∂b2
(zα)γ1(α)� γ3(α)

+
1

4

∂3πg1

∂b3
(zα)γ1(α)2 � γ2(α) +

1

24

∂4πg1

∂b4
(zα)γ1(α)4 +

1

6

∂πg2

∂b
(zα)γ3(α)

+
1

2

∂2πg2

∂b2
(zα)γ1(α)� γ2(α) + πg4(zα) +

1

6

∂3πg2

∂b3
(zα)γ1(α)3

+
1

2

∂πg3

∂b
(zα)γ2(α) +

1

2

∂2πg3

∂b2
(zα)γ1(α)2 +

∂πg4

∂b
(zα)γ1(α)

+ πg5(zα),
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γ5(α) =−∆−1
α

(
10
∂2π⊥g0

∂b2
(zα)γ2(α)� γ3(α) + 5

∂2π⊥g0

∂b2
(zα)γ1(α)� γ4(α)

+ 15
∂3π⊥g0

∂b3
(zα)γ1(α)� γ2(α)2 + 10

∂3π⊥g0

∂b3
(zα)γ1(α)2 � γ3(α)

+ 10
∂4π⊥g0

∂b4
(zα)γ1(α)3 � γ2(α) +

∂5π⊥g0

∂b5
(zα)γ1(α)5

+ 5
∂π⊥g1

∂b
(zα)γ4(α) + 15

∂2π⊥g1

∂b2
(zα)γ2(α)2 + 20

∂2π⊥g1

∂b2
(zα)γ1(α)� γ3(α)

+ 30
∂3π⊥g1

∂b2
(zα)γ1(α)2 � γ2(α) + 5

∂4π⊥g1

∂b4
(zα)γ1(α)4

+ 20
∂π⊥g2

∂b
(zα)γ3(α) + 60

∂2π⊥g2

∂b2
(zα)γ1(α)� γ2(α)

+ 20
∂3π⊥g2

∂b3
(zα)γ1(α)3 + 60

∂π⊥g3

∂b
(zα)γ2(α)

+ 60
∂2π⊥g3

∂b2
(zα)γ1(α)2 + 120

∂π⊥g4

∂b
(zα)γ1(α)

)
.

The averaged functions, as stated in Theorem 5, are computed as follows:

gi(z) = Y (T, z)−1yi(T, z)

i!
.

So from the recurrence (1.12) we explicitly develop the expressions of yi, for i = 0, 1, . . . , 5.

y0(t, z) =x(t, z, 0)− z,

y1(t, z) =Y (t, z)

∫ t

0

Y (τ, z)−1F1(τ, x(τ, z, 0))dτ,

y2(t, z) =Y (t, z)

∫ t

0

Y (τ, z)−1

[
2F2(τ, x(τ, z, 0)) + 2

∂F1

∂x
(τ, x(τ, x, 0))y1(τ, z)

+
∂2F0

∂x2
(τ, x(τ, z, 0))y1(τ, z)2

]
dτ,

y3(t, z) =Y (t, z)

∫ t

0

Y (τ, z)−1

[
6F3(τ, x(τ, z, 0)) + 6

∂F2

∂x
(τ, x(τ, x, 0))y1(τ, z)

+ 3
∂2F1

∂x2
(τ, x(τ, z, 0))y1(τ, z)2 + 3

∂F1

∂x
(τ, x(τ, z, 0))y2(τ, z)

+ 3
∂2F0

∂x2
(τ, x(τ, z, 0))y1(τ, z)� y2(τ, z) +

∂3F0

∂x3
(τ, x(τ, z, 0))y1(τ, z)3

]
dτ,

y4(t, z) =Y (t, z)

∫ t

0

Y (τ, z)−1

[
24F4(τ, x(τ, z, 0)) + 24

∂F3

∂x
(τ, x(τ, x, 0))y1(τ, z)

+ 12
∂2F2

∂x2
(τ, x(τ, z, 0))y1(τ, z)2 + 12

∂F2

∂x
(τ, x(τ, z, 0))y2(τ, z)

+ 12
∂2F1

∂x2
(τ, x(τ, z, 0))y1(τ, z)� y2(τ, z) + 4

∂3F1

∂x3
(τ, x(τ, z, 0))y1(τ, z)3
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+ 4
∂F1

∂x
(τ, x(τ, z, 0))y3(τ, z) + 3

∂2F0

∂x2
(τ, x(τ, z, 0))y2(τ, z)2

+ 4
∂2F0

∂x2
(τ, x(τ, z, 0))y1(τ, z)� y3(τ, z)

+ 6
∂3F0

∂x3
(τ, x(τ, z, 0))y1(τ, z)2 � y2(τ, z) +

∂4F0

∂x4
(τ, x(τ, z, 0))y1(τ, z)4

]
dτ ,

y5(t, z) =Y (t, z)

∫ t

0

Y (τ, z)−1

[
120F5(τ, x(τ, z, 0)) + 120

∂F4

∂x
(τ, x(τ, x, 0))y1(τ, z)

+ 60
∂2F3

∂x2
(τ, x(τ, z, 0))y1(τ, z)2 + 60

∂F3

∂x
(τ, x(τ, z, 0))y2(τ, z)

+ 60
∂2F2

∂x2
(τ, x(τ, z, 0))y1(τ, z)� y2(τ, z) + 20

∂3F2

∂x3
(τ, x(τ, z, 0))y1(τ, z)3

+ 20
∂F2

∂x
(τ, x(τ, z, 0))y3(τ, z) + 20

∂2F1

∂x2
(τ, x(τ, z, 0))y1(τ, z)� y3(τ, z)

+ 15
∂2F1

∂x2
(τ, x(τ, z, 0))y2(τ, z)2 + 30

∂3F1

∂x3
(τ, x(τ, z, 0))y1(τ, z)2 � y2(τ, z)

+ 5
∂4F1

∂x4
(τ, x(τ, z, 0))y1(τ, z)4 + 5

∂F1

∂x
(τ, x(τ, z, 0))y4(τ, z)

+ 10
∂2F0

∂x2
(τ, x(τ, z, 0))y1(τ, z)� y3(τ, z)

+ 5
∂2F0

∂x2
(τ, x(τ, z, 0))y1(τ, z)� y4(τ, z)

+ 15
∂3F0

∂x3
(τ, x(τ, z, 0))y1(τ, z)� y2(τ, z)2

+ 10
∂3F0

∂x3
(τ, x(τ, z, 0))y1(τ, z)2 � y3(τ, z)

+ 10
∂4F0

∂x4
(τ, x(τ, z, 0))y1(τ, z)3 � y2(τ, z) +

∂5F0

∂x5
(τ, x(τ, z, 0))y1(τ, z)5

]
dτ.

2.9 Appendix C: Basic results on the Browder degree

In this appendix we follow the Browder’s paper [6], and we present the existence and
uniqueness result from the degree theory in finite dimensional spaces.

Theorem 20. Let X = Rn = Y for a given positive integer n. For bounded open subsets
V of X, consider continuous mappings f : Cl(V ) → Y , and points y0 in Y such that y0

does not lie in f(∂V ) (as usual ∂V denotes the boundary of V ). Then to each such triple
(f, V, y0), there corresponds an integer d(f, V, y0) having the following three properties.

(i) If d(f, V, y0) 6= 0, then y0 ∈ f(V ). If f0 is the identity map of X onto Y , then for
every bounded open set V and y0 ∈ V , we have

d
(
f0

∣∣
V
, V, y0

)
= ±1.
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(ii) (Additivity) If f : Cl(V )→ Y is a continuous map with V a bounded open set in X,
and V1 and V2 are a pair of disjoint open subsets of V such that

y0 /∈ f(Cl(V )\(V1 ∪ V2)),

then
d (f0, V, y0) = d (f0, V1, y0) + d (f0, V1, y0) .

(iii) (Invariance under homotopy) Let V be a bounded open set in X, and consider a
continuous homotopy {ft : 0 ≤ t ≤ 1} of maps of Cl(V ) in to Y . Let {yt : 0 ≤ t ≤ 1}
be a continuous curve in Y such that yt /∈ ft(∂V ) for any t ∈ [0, 1]. Then d(ft, V, yt)
is constant in t on [0, 1].

Moreover the degree function d(f, V, y0) is uniquely determined by the three above conditions.
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Chapter 3

Maxwell -Bloch and a 3D polynomial
differential system

In this chapter we start a sequence of applications of the theoretical results presented
in Chapter 1 and proved in Chapter 2. Here we study two differential systems. First
we study the zero-Hopf bifurcation in the Maxwell-Bloch system, a three dimensional
polynomial differential system. The computations in this chapter will be done step by
step. And the proofs will be presented just after the theorems. The reason is that we
want to clarify, for instance, how Theorem 12 and 13 are connected in order to provide the
existence and stability of the periodic solution of the Maxwell-Bloch system. Most of the
results presented in the following chapter will be done using Theorem 12 and 13. For these
reason we present in Section 3.2 a system for which the classical averaging method and
also Theorem 12 does not provide information about periodic solutions, for this reason in
this case Theorem 13 will be necessary. This results are published in [17].

3.1 Maxwell-Bloch system

In nonlinear optics the Maxwell–Bloch equations are used to describe laser systems. For
instance in [2] these equations were obtained by coupling the Maxwell equations with the
Bloch equation (a linear Schrödinger like equation which describes the evolution of atoms
resonantly coupled to the laser field). Recently in [48] it was identified weak foci and
centers in the Maxwell-Bloch system which can be written as

u̇ =− au+ v,

v̇ =− bv + uw, (3.1)

ẇ =− c(w − δ)− 4uv.

For c = 0 the differential system (3.1) has a singular line {(u, v, w)|u = 0, v = 0}; for
c 6= 0 and ac(δ − ab) ≤ 0 the differential system (3.1) has one equilibrium p0 = (0, 0, δ);
and for c 6= 0 and ac(δ − ab) > 0 the differential system (3.1) has three equilibria p± =(
± u∗,±v∗, w∗

)
and p0 where

u∗ =

√
c(δ − ab)

4a
, v∗ = a

√
c(δ − ab)

4a
, w∗ = ab.
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Using the above strategy we shall prove the following result.

Proposition 21. Let ω ∈ (0, ∞), (a, b, c) =
(
a0− b1ε+a2ε

2, −a0 + b1ε+ b2ε
2, c1ε+ c2ε

2
)

and δ = −a2
0 − ω2 with a0(a2 + b2) > 0, c1 6= 0 and ε a small parameter. Then for |ε| 6=

0 sufficiently small the Maxwell-Bloch differential system (3.1) has an isolated periodic
solution ϕ(t, ε) =

(
u(t, ε), v(t, ε), w(t, ε)

)
such that

u(t, ε) =ε ω

√
2(a2 + b2)

a0

sin t+O(ε2),

v(t, ε) =ε ω

√
2(a2 + b2)

a0

(
a0 sin t+ ω cos t

)
+O(ε2), and (3.2)

w(t, ε) =δ − ε 4ω2(a2 + b2)

c1

+O(ε2).

Proof. Applying the change of variables (u, v, w) = (εV, ε(a0V + ωU), δ + εW ), the
differential system (3.1) reads

U̇ = − ωV +
ε

ω

(
VW − 2a0b1V − b1ωU

)
+ ε2

(a0(a2 − b2)V

ω
− b2U

)
,

V̇ =ωU + εb1V − ε2a2V, (3.3)

Ẇ = ε
(
− c1W − 4V (a0V + ωU)

)
− ε2c2.

In order to apply the strategy described above we must write the differential system
(3.3) in the standard form (1.11). To this end we proceed as usual. First we consider
the cylindrical change of variables (U, V,W ) = (r cos θ, r sin θ, w), where r > 0; after
checking that θ̇ = ω + O(ε) 6= 0, for |ε| 6= 0 sufficiently small, we take θ as the new
independent variable. Therefore the differential system (3.3) becomes equivalent to the
non-autonomous differential system

dz

dθ
=

(
ṙ

θ̇
,
ẇ

θ̇

)
= εF1(θ, z) + ε2F2(θ, z) +O(ε3), (3.4)

where z = (r, w) ∈ R+ × R and θ ∈ S1. Moreover

F1(θ, z) =

(
r

2ω2

(
(w − 2a0b1) sin(2θ)− 2b1ω cos(2θ)

)
,

−
(
c1w + 4r2 sin θ(ω cos θ + a0 sin θ)

)
ω

)
,

F2(θ, z) =

(
1

2ω4

(
2b1ω cos θ + (2a0b1 − w) sin θ

)(
2b1ω cos(2θ) + (2a0b1

−w) sin(2θ)
)

+ rω2
(
(a2 − b2)(ω cos(2θ) + a0 sin(2θ))− (a2 + b2)

)
,(

2b1ω cos θ + (2a0b1 − w) sin θ
)

ω2

(
c1w + 4r2 sin θ(ω cos θ + a0 sin θ)

))
.

(3.5)
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For the differential system (3.4) we have that F0(θ, z) = 0. Then x(θ, z, 0) = (r, w) is
the solution to the unperturbed system, and Y (t, z) = Id is its corresponding fundamental
matrix. In this case the averaged functions reads

g1(z) =

(
0,−

2π
(
2a0r

2 + c1w
)

ω

)
,

g2(z) =

(
πr
(
3a0r

2 + c1w − 2(a2 + b2)ω2
)

2ω3
,
π

ω3

(
(2a0b1 − w)(6a0r

2 + c1w)

+2c1π(2a0r
2 + c1w)ω + 2

(
(2b1 + c1)r2 − c2w

)
ω2
))
.

(3.6)

Now we are going to use Theorem 12 taking s = 1. To do this we define the function
h(z, ε) = g(z, ε)/ε, where now h(z, ε) = g1(z) + εg2(z) + O(ε2). Note that the averaged
function g1(z) vanishes on the manifold

Z̃ =

{
zα =

(
α,−2a0α

2

c1

)
: α > 0

}
.

Furthermore ∆α = −(2πc1)/ω is the lower right corner of the Jacobian matrix Dg1(zα)

for all zα ∈ Z̃. Computing then the bifurcation function f1 (see (1.24)) we get

f1(α) =
πα
(
a0α

2 − 2(a2 + b2)ω2
)

2ω3
.

Solving the equation f1(α) = 0 we find

α0 = ω

√
2(a2 + b2)

a0

.

Moreover f ′1(α0) = 2π(a2 + b2)/ω. So it is clear that hypotheses of Theorem 12(a) are
fulfilled with s = 1. Thus for |ε| 6= 0 sufficiently small it follows that there exists

z(ε) =

ω√2(a2 + b2)

a0

,−4ω2(a2 + b2)

c1

+O(ε), (3.7)

such that h(z(ε), ε) = g(z(ε), ε)/ε = 0 for every |ε| 6= 0 sufficiently small. Therefore
we conclude that there exists a 2π-periodic solution periodic (r(θ, ε), w(θ, ε)) of the non-
autonomous differential system (3.4) satisfying (r(θ, 0), w(θ, 0)) = z(0). Since θ(t) =
ωt + O(ε), this proof ends by going back through the cylindrical coordinate change of
variables and then doing (u, v, z) = ε(V, a0V + ωU,W ) .

3.1.1 Stability

We have seen that the averaged functions (3.6) up to order 2 were sufficient for detecting
the existence of a periodic solution of the differential system (3.1). Now we show that
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the higher order averaged functions may play an important role for studying the stability
of the periodic solution ϕ(t, ε) provided by Theorem 12(a). Instead of applying Theorem
(13) directly we are going to show why this result is realy necessary.

Clearly the stability of the periodic solution ϕ(t, ε) can be derived from the eigenvalues
of the Jacobian matrix of the displacement function Dzh(z(ε), ε) evaluated at z(ε) =
ϕ(0, ε). From equation (3.7) we can write z(ε) = z0 +O(ε2). Moreover since in this case
Y (t, z) = Id then Dzh(z(ε), ε) = εDg1(z0) +O(ε), where

Dg1(z0) =

(
0 0

−8π
√

2a0(a2 + b2) −2πc1

ω

)
.

So a first approximation of the eigenvalues λ± of the Jacobian matrix Dzh(z(ε), ε) is given
by

λ+ = O(ε2), λ− = −ε2πc1

ω
+O(ε2). (3.8)

Clearly the stability of the periodic solution ϕ(t, ε) cannot be completely described by
these expressions. Now we show how the higher order bifurcation functions and averaging
functions can be used for doing a better analyses of the stability of the periodic solution.

We recall that, after some changes of coordinates, the differential system (3.1) can be
transformed into the standard form (3.4). Expanding it in power series of ε up to order
3, the differential system (3.4) becomes

dz

dθ
= εF1(θ, z) + ε2F2(θ, z) + ε3F3(θ, z) +O(ε4),

where F1 and F2 are given in (3.5) and

F3(θ, z) =

(
πr

4ω5

(
− 3(a0b1 − w)

(
5a0r

2 + c1w
)
− 2c1π(2a0r

2 + c1w)ω +
(
4a0b1(a2

+ b2)− 3(2b1 + c1)r2 − 2(a2 + b2 − c2)w
)
ω2
)
,

π

12ω5

(
12πω

(
a2

0

(
6r4 − 16b1c1r

2
)

+ 2a0c1w
(
7r2 − 2b1c1

)
+ 3c2

1w
2
)

− 2ω2
(
w
(
6a0(a2c1 − 2b1c2 − b2c1) + 6b2

1c1 − 9r2(4b1 + 3c1) + 8π2c3
1

)
+a0r

2
(
36a0(a2 − b2) + 108b2

1 + 36b1c1 + 2
(
8π2 − 3

)
c2

1 − 45r2
)

+ 6c2w
2
)

+ 24πω3
(
r2(2a0(a2 + b2 + c2)− c1(2b1 + c1)) + 2c1c2w

)
− 9(w − 2a0b1)2

(
10a0r

2 + c1w
)

+ 24r2ω4(c2 − 2a2)

)
.

From (1.15) and (1.17) we compute the third averaged function and the second bifurcation
function, respectively, as

g3(z) =

(
πr

4ω5

(
ω2
(
4a0b1(a2 + b2)− 2z(a2 + b2 − c2)− 3r2(2b1 + c1)

)
−3(2a0b1 − z)

(
5a0r

2 + c1z
)
− 2πc1ω

(
2a0r

2 + c1z
))
,
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π

12ω5

(
12πω

(
a2

0

(
6r4 − 16b1c1r

2
)

+ 2a0c1z
(
7r2 − 2b1c1

)
+ 3c2

1z
2
)

−2ω2
(
z
(
6a0(a2c1 − 2b1c2 − b2c1) + 6b2

1c1 − 9r2(4b1 + 3c1) + 8π2c3
1

)
+a0r

2
(
36a0(a2 − b2) + 108b2

1 + 36b1c1 + 2
(
8π2 − 3

)
c2

1 − 45r2
)

+6c2z
2
)

+ 24πω3
(
r2(2a0(a2 + b2 + c2)− c1(2b1 + c1)) + 2c1c2z

)
−9(z − 2a0b1)2

(
10a0r

2 + c1z
)

+ 24r2ω4(c2 − 2a2)
))

,

and

f2(α) = −πr (10a2
0r

2 (b1c1 + r2) + ω2 (c1r
2(2b1 + c1)− 4a0(a2 + b2) (b1c1 + r2)))

4c1ω5
.

So F2(α, ε) = εf1(α) + ε2f2(α). As shown in the previous subsection aε = α0 is a simple

root of the function f̃1(α). Using the Implicit Function Theorem we find a branch of zeros
of the equation F2(α, ε) = 0 having the form α = aε = α0 + εα1 +O(ε2), where

α1 =

√
a2 + b2

2a0

(
8a2

0b1c1 + ω2(16a0(a2 + b2) + c1(2b1 + c1))

2|a0|c1ω

)
.

Note that aε satisfies the hypotheses (iii) and (iv) of Theorem 5 for s = 1, l = 1 and
k = 2. Using the relation |πz(ε)− πzaε | = |α(ε)− aε| = O

(
ε2
)
, provided by Theorem 5,

we write α(ε) = α0 + εα1 +O(ε2). From Claim 11 of the proof of Theorem 5 we get

β(α(ε), ε) =β
(
α(ε)

)
+ εγ1

(
α(ε)

)
+O(ε2)

=β
(
α0 + εα1 +O(ε2)

)
+ εγ1

(
α0 + εα1 +O(ε2)

)
+O(ε2).

Expanding β(α(ε), ε) in powers series of ε we have β(α(ε), ε) = β0 + εβ1 +O(ε2), where

β0 =
(a2 + b2)ω2

c1

,

β1 =
4(a2 + b2)

(
6a2

0b1c1 +
(
16a0(a2 + b2) + c1(2b1 + c1)

)
ω2
)

a0c2
1

.

Finally we obtain z(ε) =
(
α(ε), β

(
α(ε), ε

))
= z0 + εz1 + O(ε2), with z0 = (α0, β0) and

z1 =
(
α1, β1

)
. Then we compute the Jacobian matrix of the displacement function (1.13)

evaluated at z(ε) as

Dzh(z(ε), ε) = εDzg1(z(ε)) + ε2Dzg2(z(ε)) +O(ε3)

= εDzg1

(
z0 + εz1 +O(ε2)

)
+ ε2Dzg2

(
z0 + εz1 +O(ε2)

)
+O(ε3)

= εDzg1(z0) + ε2
(
D2
zg1(z0)z1 +Dzg2(z0)

)
+O(ε3).

Let Dzg1(z0) =
(
pij
)

2×2
and Dzg2(z0) =

(
qij
)

2×2
, then expanding Dzh(z(ε), ε) in Taylor

series around ε = 0 we have Dzh(z(ε), ε) = εA1 + ε2A2 +O(ε3) with A1 = Dzg1(z0) and
A2 =

(
Dzpij(z0).z1 + qij(z0)

)
2×2

. Therefore we may improve the approximation (3.8) of

the eigenvalues λ± of Dzh(z(ε), ε) as

λ+ =ε2 2π(a2 + b2)

ω
+O(ε3), (3.9)
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λ− =− ε2c1π

ω
+ ε2 2π

(
a0b1c1 + ω

(
c2

1π − c2ω
))

ω3
+O(ε3). (3.10)

Note that we have approximations for the eigenvalues λ±. Then the only remaining
question is: Can we use the approximations (3.9) and (3.10) to study the eigenvalues of
the full matrix Dzh(z(ε), ε)? In general we cannot proceed in this way. The problem is
that the 2 − jet A0 + εA1 may be insufficient for recovering the information about the
eigenvalues of the full matrix Dzh(z(ε), ε). This problem appears for instance in the works
of Murdock and Robinson [62] and Murdock [59]. Next we present an example where this
problem emerges.

Example 2. Consider the matrix A(ε) = A0 + εA1 + ε2R where

A0 =

(
0 0
1 0

)
, A1 =

(
−1 0
0 −1

)
and R =

(
0 a2

0 0

)
.

Let λ1 and λ2 be the eigenvalues of A0 + εA1. Writing the Taylor series of these
eigenvalues at ε = 0 we obtain λ1 = −ε + O(ε3) and λ2 = −ε + O(ε3). Conversely
computing the Taylor series of the eigenvalues of the full matrix A(ε) we have the eigenvalues
λ1 = (−1 + a)ε +O(ε3) and λ3 = −(1 + a)ε +O(ε3). As we can see the hyperbolicity of
the matrix A(ε) depends on a. Thus the hyperbolicity of the matrix A(ε) cannot be studied
using only A0 and A1.

The problem in Example 2 is that the matrix A(ε) is not 2−hyperbolic. Thus in order
to study the eigenvalues of the matrix Dzh(z(ε), ε) we need to verify the hypotheses of
Theorem 12. Hence using Theorem 12 we can deduce the following statements about the
stability of the periodic solution ϕ(t, ε) = x(t, z(ε), ε). Recall that from the hypotheses
of Proposition 21, a0(a2 + b2) > 0. So

(a) If εc1 < 0 the solution ϕ(t, ε) has at least one unstable direction.

(b) If a2+b2 > 0 and a0 > 0, then the solution ϕ(t, ε) has at least one unstable direction.

(c) If a2 + b2 < 0, εc1 > 0 and a0 < 0, then the solution ϕ(t, ε) is asymptotically stable.

Figures 3.1 illustrate the behavior of the Maxwell–Block system (3.1) satisfying the
hypotheses of Proposition 21 with a0 = −1, a2 = −2, b1 = 1, b2 = −2, c1 = 2, c2 = 1,
ω = 1 and ε = 1/25.

3.2 Birth of a limit cycle in a 3D polynomial system

Consider the following 3D autonomous polynomial differential system

u̇ =− v + ε
(
u3 − u2 − uv2 − πv3

)
,

v̇ =u+ ε
(
πu3 − 1

)
, (3.11)

ẇ =w − εu.

In the next proposition as an application of Theorem 5 we provide sufficient conditions
for the existence of an isolated periodic solution for the differential system (3.11).
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Figure 3.1: (A) Transversal section with u = 0 and v > 0. (B) Solution starting at (0, εω2(2(a2+
b2)/a0)

1/2, δ − 4εω2(a2 + b2)/c1) being attracted by the limit cycle (3.2).

Proposition 22. For |ε| > 0 sufficiently small system (3.11) has an isolated periodic
solution ϕ(t, ε) =

(
u(t, ε), v(t, ε), w(t, ε)

)
such that

u(t, ε) =
√

8 ε cos t+O(ε),

v(t, ε) =
√

8 ε sin t+O(ε), and

w(t, ε) =O(ε).

Proof. Writing the differential system (3.11) in the cylindrical coordinates (u, v, w) =
(r cos θ, r sin θ, w) we get

ṙ =
ε

4

(
r3 + r2(r(π sin(4θ) + 2 cos(2θ) + cos(4θ))− 3 cos θ − cos(3θ))− 4 sin θ

)
,

θ̇ =1 +
ε

4r

(
r2(sin θ + sin(3θ)− r sin(4θ) + πr cos(4θ) + 3πr)− 4 cos θ

)
,

ẇ =w − εr cos θ.

Since θ̇ 6= 0 for |ε| 6= 0 sufficiently small we can take θ as the new independent variable.
So

dr

dθ
= εF11(θ, z) + ε2F21(θ, z) +O1(ε3),

dw

dθ
= w + εF12(θ, z) + ε2F22(θ, z) +O2(ε3),

(3.12)

where z = (r, w) ∈ R2 and

F11(θ, z) =
1

4

(
r3 + r2(r(π sin(4θ) + 2 cos(2θ) + cos(4θ))− 3 cos θ − cos(3θ))

− 4 sin θ
)
,

F12(θ, z) =
−1

4

(
4 cos θ

(
r2 − w

)
+ r2w(sin θ + sin(3θ)− r sin(4θ) + πr cos(4θ)
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+ 3πr)
)
,

F21(θ, z) =
−1

16r

(
− 4 sin θ + r3 + r2(−3 cos θ − cos(3θ) + r(π sin(4θ)

+ 2 cos(2θ) + cos(4θ)))
)(
r2(sin θ + sin(3θ)− r sin(4θ) + πr cos(4θ)

+ 3πr)− 4 cos θ
)
,

F22(θ, z) =
1

16r2

(
r2(sin θ + sin(3θ)− r sin(4θ) + πr cos(4θ) + 3πr)− 4 cos θ

)
(
4 cos θ

(
r2 − w

)
+ r2w(sin θ + sin(3θ)− r sin(4θ) + πr cos(4θ)

+ 3πr
)
.

The differential system (3.12) is 2π-periodic in the variable θ and it is written in
the standard form (1.11) with F0(θ, z) =

(
0, z
)
, F1(θ, z) =

(
F11(θ, z), F12(θ, z)

)
and

F2(θ, z) =
(
F21(θ, z), F22(θ, z)

)
. Moreover the solution of the unperturbed differential

system (3.12)ε=0 for an initial condition z0 = (r0, w0) is given by

Φ(θ, z0) =
(
r0, w0e

θ
)
.

Consider the set Z ⊂ R2 such that Z = {(α, 0) : α > 0}. Clearly for each zα ∈ Z, the
averaged equation g0(z) = Y (T, z)−1Φ(T, zα)− z satisfies the hypothesis H with

Y (θ, z) =
∂Φ

∂z
(θ, z0) =

(
1 0
0 eθ

)
,

the fundamental matrix of the unperturbed system (3.12)ε=0. Now in order to compute
the bifurcation functions (1.17) for the differential system (3.12) we first calculate

y0(θ, z) = Y (θ, z)−1
(
0, (eθ − 1)w

)
,

y1(θ, z) = Y (θ, z)−1

(
r2

48

(
−36 sin θ − 4 sin(3θ) + 6πr sin2(2θ) + 3r sin(4θ)

)
1

48

(
12
(
θr3 − 4

)
+ 24 cos θ

(
r3 sin θ + 2

))
,
r2

2
(cos θ − sin θ)

− eθr

48
(w((36πθ − 3)r + 16) + 24) +

eθw

48

(
48 sin θ + r2(12 cos θ

+ 4 cos(3θ)− 3r(π sin(4θ) + cos(4θ))
))
,

y2(2π, z) = Y (2π, z)−1

(
−πr(3r + 4)

4
,
e−2π

40

(
((3− 2π)r − 6)r2 + 10

)
+

1

40

(
r2((π(7 + 15π)− 3)r + 6)− 10

))
,

and from (1.15)

gi(z) = Y (2π, z)
yi(2π, z)

i!
for i = 0, 1, 2. (3.13)

So the bifurcation functions (1.17) corresponding to the functions (3.13) become

f1(α) =
πα3

2
, f2(α) = πα(3α + 4), and F2(α, ε) = εf1(α) + ε2f2(α). (3.14)
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Now we must check that the function (3.14) satisfies the hypotheses for applying
Theorem 5. So det(∆α) =

∣∣Dwπ
⊥g0(zα)

∣∣ = 1− e−2π 6= 0, and for aε =
√

9ε2 + 8ε+ 3ε we
have that

F2(aε, ε) = 0 and |∂αF2(aε, ε)| ≥ ε2
(

8−
∣∣9ε+ 3

√
ε(8 + 9ε)

∣∣) .
Thus it is easy to find P0 > 0 satisfying |∂αF2(aε, ε)| ≥ ε2P0. Hence, using the notation
of Theorem 5, we have s = 1, k = 2, l = 2, and (k + r + 1)/2 = 2 = l. So we can apply
Theorem 5 in order to prove the existence of an isolated periodic solution

(
r(θ, ε), z(θ, ε)

)
of the differential system (3.12) such that

r(0, ε) =
√

9ε2 + 8ε+ 3ε+O(ε) =
√

8ε+O(ε) and w(0, ε) = O(ε).

Since θ(t) = t + O(ε), this proof ends by going back through the cylindrical coordinate
change of variables.
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Chapter 4

Fitzhugh-Nagumo and Quadratic
chaotic systems

In this chapter we use Theorem 12 for studying the periodic solutions of seventeen
differential systems. First we study the Fitzhugh-Nagumo system, which is related with
nerve impulses in mathematical biology. The averaged equation related with this system
has a continuum of zeros and we will use the method developed in Chapter 1 to detect
the periodic solutions bifurcating from singular points in this set of zeros.

Furthermore we use Theorem 12 for studying the zero-Hopf and the Hopf bifurcation
of other sixteen 3-dimensional differential systems that was provided by Jafari et al [41]
in 2013. These systems has equilibria only for a certain choice of the parameter a, and we
show that under some conditions a periodic solution emerges in these systems when the
equilibria disappear. Moreover we show graphically that the periodic orbit which is born
in such bifurcations is the origin of a period doubling cascade which originate the chaotic
motion in those differential systems. Here we use the classical averaging theory, and the
new results in this theory here developed to illustrated how the averaging theory is useful
for studying the periodic orbits which bifurcate from a zero-Hopf equilibrium point, or
from a Hopf bifurcation. The results here presented were published in [13] and [15].

4.1 Application to Fitzhugh-Nagumo system

The Fitzhugh-Nagumo arise in mathematical biology as a model of the transmission of
electrical impulses through a nerve axon. The Fitzhugh–Nagumo equations consist in a
simplified version of the Hodgkin–Huxley equations which are described using a non–linear
diffusion equation coupled to an ordinary differential equation

ut = uxx − f(u)− v, vt = δ(u− γv), (4.1)

where f(u) = u(u−1)(u−a), 0 < a < 1/2 is a constant, δ > 0 and γ > 0 are parameters.
In [38] it was stated that a single nerve impulse appears to tend as t increases to a traveling
wave, i.e. a bounded solution (u, v)(x, t) = (u, v)(ξ) where ξ = x + ct. Hence one is lead
to seek for solutions of (4.1) not identically zero of the form (u, v) = (u(ξ), v(ξ)) for some
c 6= 0. Substitution into (4.1) gives a set of ordinary differential equations which, after

45



Fitzhugh-Nagumo and Quadratic chaotic systems

the introduction of the variables x = u, y = v and z = u̇ take the form

ẋ =z,

ẏ =b(x− dy), (4.2)

ż =x(x− 1)(x− a) + y + cz,

where the dot denotes the derivative with respect to ξ and (a, b, c, d) ∈ R4 are parameters.
For a detailed study concerning traveling waves in (4.1) see [32]. Hereafter the differential
system (4.2) will be called Fitzhugh–Nagumo differential system.

Proposition 23. There are two parameter families of the Fitzhugh-Nagumo differential
systems for which the origin of coordinates is a zero-Hopf equilibrium point, both families
are 2–parametric. Namely

(i) for ad+ 1 = 0, bd− c = 0 and d(1− b2d3) > 0; and

(ii) for b = c = 0 and a < 0.

Proof. A proof of this proposition can be obtained in [29].

Theorem 24. Let a = −1

d
+ a1ε+ a2ε

2, c = b d+ c2ε
2 and ω =

√
1− b2d3

d
. Assume that

d(1− b2d3) > 0, (d− 1)a1b 6= 0 and ε 6= 0 sufficiently small. Then the Fitzhugh–Nagumo
differential system (4.2) has a zero–Hopf bifurcation in the equilibrium point at the origin
of coordinates, and the periodic orbit

x(t, ε) =O(ε2),

y(t, ε) =O(ε2), (4.3)

z(t, ε) =ε
a1d

d− 1
+O(ε2),

born at this equilibrium when ε = 0.
Moreover, if

(a) b 6= ±
√

7d±
√

(d−191)(d+1)+7

12d3(d+1)
and c2 6=

a21bd
3(24b2d3−13)

24(b2d3−1)2
. Then the Fithugh–Nagumo differential

system (4.2) has four periodic solutions emerging from the origin.

Theorem 24 is proved using Theorem 1 and 12. Theorem 24 is proved in section 4.3.1.
Euzébio et al. studied the zero–Hopf bifurcations of system (4.2) using the classical

averaging theory (see Theorem 11 of [29]). Considering the two parameter families of
zero–Hopf equilibria stated in Proposition 23(i) the authors of [29] find using the first
order averaging method, a periodic solution bifurcating from the origin of the system
different from the periodic solution (4.3), because in Theorem 5 of [29] the order of the
periodic solution in the three variables (x, y, z) is O(ε) while in our case is O(ε2) for x
and y, and O(ε) for z. Moreover using second order averaging theory the authors of [29]
in Theorem 6 [29] find one additional periodic solution bifurcating from the origin, while
using our Theorem 24 we find four periodic solutions.
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4.2 Application to a catalogue of quadratic chaotic

systems

In general the equilibria of a chaotic nonlinear system play an important role in its
dynamics. In fact one of the most important methods for obtaining 3-dimensional chaotic
systems is the Shilnikov’s method [73], which using a homoclinic orbit from the intersection
of the stable and unstable manifolds of a saddle-focus equilibrium point with specified
eigenvalues, provides the existence of a horseshoe in the neighborhood of this orbit and,
consequently the existence of chaotic motion.

However some particularly important natural phenomena are described by nonlinear
systems having no equilibria. Such as, the Noose-Hover oscillator [66], the Wei system
[84] and the Wang–Chen system [82]. These nonlinear systems present chaotic behavior
that cannot be detected by the Shilnikov’s method.

The increasing interest in finding examples of simple chaotic flows without equilibria
have been motivating many researchers in recent times, see for instance [41, 65, 80, 84,
85]. The theoretical and practical importance of these systems converted this subject in
a new attractive research direction. Although there is still little knowledge about the
characteristics of such systems.

In this section we shall study the existence of zero-Hopf bifurcations in 3-dimensional
systems, and graphically we will show that such bifurcations sometimes are the starting
bifurcation of a route to chaos. In general a zero-Hopf bifurcation is a codimension-
two bifurcation of a 3-dimensional autonomous differential equation with a zero-Hopf
equilibrium, and a zero-Hopf equilibrium of a 3-dimensional autonomous differential equation
is an equilibrium point having two purely conjugate imaginary eigenvalues and a zero
eigenvalue. Due to the lack of a general theory describing all the possible kinds of
bifurcations that an unfolding of a zero-Hopf bifurcation can produce, most of the systems
exhibiting these kind of bifurcations must be studied directly. Here we use averaging
theory for detecting periodic solutions bifurcating from a zero-Hopf equilibrium. Furthermore
using Theorem 12 we were able to detect periodic solutions in very degenerate cases, for
instance when the first averaged equation has a continuum of zeros.

In 2013 Jafari et al. [41] have reported a catalogue of seventeen elementary three
dimensional chaotic flows. This catalogue contains most of the elementary examples
known of such systems and it includes the systems of the Noose-Hoover oscillator, the
Wei system and the Wang–Chen system, listed there as system (4.4), (4.5) and (4.6),
respectively. In [41] the authors used their own custom software to search for the algebraically
simplest three-dimensional chaotic systems with quadratic nonlinearities and no equilibria.
The search was inspired by the observation that each of the previously known examples
of such systems contains a constant term (here represented by a), and that if the constant
is set to zero, the resulting system is non-hyperbolic (the equilibria have eigenvalues with
real part equal to zero). The method used to find these systems is that proposed in [76].

We consider the differential systems

ẋ =y,

ẏ =− x− zy, (4.4)

ż =y2 − a.

ẋ =− y,
ẏ =x+ z, (4.5)

ż =2y2 + xz − a.

ẋ =y,

ẏ =z, (4.6)

ż =0.1x2 + 1.1xz − y + a.
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ẋ =− 0.1y + a,

ẏ =x+ z, (4.7)

ż =xz − 3y.

ẋ =2y,

ẏ =2x− z, (4.8)

ż =− y2 + z2 + a.

ẋ =y,

ẏ =z, (4.9)

ż =− y − xz − yz − a.

ẋ =y,

ẏ =− x+ z, (4.10)

ż =0.8x2 + z2 + a.

ẋ =y,

ẏ =− x− zy, (4.11)

ż =xy + 0.5x2 − a.

ẋ =y,

ẏ =− x− zy, (4.12)

ż =− xz + 7x2 − a.

ẋ =z,

ẏ =z − y, (4.13)

ż =− 0.9y − xy + xz + a.

ẋ =y,

ẏ =− x+ z, (4.14)

ż =− 2xy − 1.8xz + z − a.

ẋ =z,

ẏ =x− y, (4.15)

ż =− 4x2 + 8xy + yz + a.

ẋ =− y,
ẏ =x+ z, (4.16)

ż =xy + xz + 0.2yz − a.

ẋ =y,

ẏ =z, (4.17)

ż =x2 − y2 + xy + 0.4xz + a.

ẋ =− 0.8x− 0.5y2 + xz + a,

ẏ =− 0.8y − 0.5z2 + yx+ a, (4.18)

ż =− 0.8z − 0.5x2 + zy + a.

ẋ =− y − z2 + 2.3xy + a,

ẏ =− z − x2 + 2.3yz + a, (4.19)

ż =− x− y2 + 2.3zx+ a.

Each of the systems (4.4)–(4.13) have an equilibrium that undergoes a zero-Hopf
bifurcation at a = a∗ = 0, and no equilibria for a > 0. Each of the systems (4.14)–(4.19)
have an equilibrium that undergoes a Hopf bifurcation at some a = a∗. The limit cycle
which appears in this Hopf bifurcation later on produces a period-doubling cascade, and
finally a chaotic attractor with no equilibria, i.e. the equilibrium point which exhibits the
Hopf bifurcation disappears before the chaotic attractor appears.

Jafari et al. [41] have reported numerically a period doubling cascade of periodic
orbits originating the route to the chaotic motion in these systems. Here we graphically
observe that the first periodic orbit performing the period doubling bifurcation detected
by Jafari et al. emerges in those systems at a zero-Hopf or Hopf bifurcation. This helps to
understand the mechanism of chaos in these systems, and the objective of this section is
to show the existence of these zero-Hopf or Hopf bifurcations using the averaging theory.

One of the contributions of this work is to show that in many cases the periodic
solutions that generate (via period-doubling) the chaotic attractor started with a periodic
orbit coming from a zero–Hopf or a Hopf bifurcation.

The next theorem shows that the systems considered exhibit a zero–Hopf bifurcation
at a = 0. Although we can check that these systems have no equilibria when a > 0.

Theorem 25. The following statements hold.
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(i) The differential systems (4.4)–(4.13) exhibit a zero–Hopf bifurcation at a = 0, more
precisely for a > 0 sufficiently small they have a periodic orbit which tends to a
zero-Hopf equilibrium when a→ 0.

(ii) All the periodic solutions emerging in the zero–Hopf bifurcation are non-hyperbolic,
with the exception of the differential system (4.5) that has a hyperbolic periodic
solution.

(iii) All the periodic solutions in the zero–Hopf bifurcation emerge around the zero-Hopf
equilibrium point located at the origin of coordinates, with the exception of system
(4.13), which has the periodic solution emerging from the zero-Hopf equilibrium point
(1, 0, 0).

Another interesting aspect of some the differential systems provided in [41] is that
some of them have equilibria only if the parameter a belongs to convenient intervals. In
these intervals a Hopf bifurcation occurs and a periodic solution emerge in the system,
but as a increases the equilibria disappear and the isolated periodic solution coming from
the Hopf bifurcation start its cascade of period-doubling. The differential systems having
this behaviour are (4.14)–(4.19), in fact for a < 5/36 system (4.14) has the equilibria

P± =

(
1

18

(
5±
√

25− 180a
)
, 0,

1

18

(
5±
√

25− 180a
))

,

such that when a = 0 the origin is an equilibrium point with the eigenvalues λ1,2 = ±i
and λ3 = −1. Similarly, if a < 0 system (4.15) has the equilibria

P± =

(
±
√
a

2
,±
√
a

2
, 0

)
,

if a = −196 the equilibrium point P+ has the eigenvalues λ1,2 = ±i
√

7 and λ3 = −8. The
system (4.15) has the equilibria

P± =
(
±
√
a, 0,±

√
a
)
,

for a < 0. When a = −25/16 the equilibria P+ has the eigenvalues λ1,2 = ±i
√

2 and
λ3 = −5/4. System (4.15) has the equilibria

P± =
(
±
√
a, 0, 0

)
,

for a < 0 and for a = −25 the equilibria P+ has the eigenvalues λ1,2 = ±i
√

5 and λ3 = −2.
Finally, system (4.19) has the equilibria

P± =

(
1

13

(
5±
√

25− 130a
)
, 0,

1

13

(
5±
√

25− 130a
))

,

for a < 5/26 and when a = −560/1849 the equilibrium point P− has the eigenvalues
λ1,2 = ±i

√
3 and λ3 = −69/43.

Theorem 26. Consider the differential systems (4.14)–(4.19). The following statemens
hold.
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(i) Let a = a2ε
2 with a2 > 0. The differential system (4.14) has a Hopf bifurcation at

a = 0, and for ε > 0 sufficiently small a periodic solution emerges from the origin
of coordinates of this system.

(ii) Let a = −196 + a2ε
2 with a2 > 0. The differential system (4.15) has a Hopf

bifurcation at a = −196, and for ε > 0 sufficiently small a periodic solution emerges
from the equilibrium point (−7,−7, 0).

(iii) Let a =
−25

16
+a2ε

2 with a2 > 0. The differential system (4.16) has a Hopf bifurcation

at a =
−25

16
, and for ε > 0 sufficiently small a periodic solution emerges from the

equilibrium point

(
−5

4
, 0,

5

4

)
.

(iv) Let a = −25+a2ε
2 with a2 > 0. The differential system (4.17) has a Hopf bifurcation

at a = −25, and for ε > 0 sufficiently small a periodic solution emerges from the
equilibrium point (−5, 0, 0).

(v) Let a =
8

25
+ a2ε

2 with a2 > 0. The differential system (4.18) has a zero-Hopf

bifurcation at a =
8

25
, and for ε > 0 sufficiently small a periodic solution emerges

from the equilibrium point

(
4

5
,
4

5
,
4

5

)
.

(vi) Let a = − 560

1849
+ a2ε

2 with a2 > 0. The differential system (4.19) has a Hopf

bifurcation at a = − 560

1849
, and for ε > 0 sufficiently small a periodic solution

emerges from the equilibrium point

(
−10

43
,−10

43
,−10

43

)
.

To illustrate graphically the relation between the periodic solutions provided by Theorem
26 and the chaotic attractors presented in [41] we shall use system (4.19) as an example.
First we observe that for a < 5/26 this system has the following equilibrium point

p0 =

(
1

13

(
5−
√

25− 130a
)
,

1

13

(
5−
√

25− 130a
)
,

1

13

(
5−
√

25− 130a
))

.

Taking a = − 560

1849
+ a2ε

2 and ε > 0 sufficiently small system (4.19) has a periodic

solution as stated by Theorem 26(vi). In this case the equilibirum point p0 exists only

if 0 < ε < 23
2

√
15

6799
≈ 0.54. For instance, taking a2 = − 560

1849
+ 2 and ε = 0.002 it can

be seen that the solution of system (4.19) starting at (1,−1, 0) converges to the periodic
solution, see Figure 4.1. Increasing the value of ε, for instance ε = 0.251 and ε = 0.511,
the periodic solution increases its size and still remains stable, see Figures 4.2 and 4.3
respectively. For all the previously values of ε the point p0 is an equibilibrium point of
system (4.19). However for ε = 0.691 and ε = 0.97 the system has no equilibria and we
can see that the periodic solution starts its cascade of period-doubling, see Figure 4.4 and
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4.5. Taking ε = 1 the system has a strange attractor as it is reported in [41], see Figure
4.6. These solutions were plotted for 0 ≤ t ≤ 1000.

Figure 4.1: Solution of system (4.19) starting at (1, 1, 0) with
ε = 0.002. Figure 4.2: Solution of system (4.19) starting at (1, 1, 0) with

ε = 0.251.

Figure 4.3: Solution of system (4.19) starting at (1, 1, 0) with
ε = 0.511.

Figure 4.4: Solution of system (4.19) starting at (1, 1, 0) with
ε = 0.691.

Figure 4.5: Solution of system (4.19) starting at (1, 1, 0) with
ε = 0.97.

Figure 4.6: Solution of system (4.19) starting at (1, 1, 0) with
ε = 1.
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4.3 Proofs

4.3.1 Proof of Theorem 24

The following lemma will be useful in the proof of Theorem 24, it was proved in [25].

Lemma 27. Consider p+1 linearly independent functions ξi : I ⊂ R→ R, i = 0, 1, . . . , p.

(a) Given p arbitrary values xi ∈ I, i = 1, 2, . . . , p there exist p + 1 constants Ci,
i = 0, 1, . . . , p such that

ξ(x) :=

p∑
i=0

Ciξi(x) (4.20)

is not the zero function and ξ(xi) = 0 for i = 1, 2, . . . , p.

(b) Furthermore if all ξi are analytical functions on I and there exists j ∈ {1, 2, . . . , p}
such that ξj �I has a constant sign, it is possible to get a function ξ(x) from (4.20),
such that it has at least p simple zeroes in I.

Proof of Theorem 24. Take a = −1

d
+a1ε+a2ε

2, c = bd+c2ε
2 and d(1−b2d3) > 0. Doing

the change of variables (x, y, z)→ ε(X, Y, Z) system (4.2) becomes

Ẋ =Z,

Ẏ =b(X − dY ), (4.21)

Ż =− X

d
+ Y + dbZ + ε

a1d+X(1− d)

d
+ ε2 (X (a2 +X(X − a1)) + c2Z)− a2X

2ε3.

In order to write the linear part of system (4.21) in its normal real Jordan form we do

the following change of variables X = x +
bd

ω
y + z, Y =

b

ω
y +

z

d
, Z = bdx − ωy with

ω =

√
1

d
− b2d2, obtaining

ẋ =− ωy,

ẏ =ωx+
ε

dω3
((bdy + (x+ z)ω)) (b(d− 1)dy − (a1d− (d− 1)(x+ z))ω)

− ε2

ω

((
a2 +

(
x+ z +

bdy

ω

)(
−a1 + x+ z +

bdy

ω

))(
x+ z +

bdy

ω

)
+ c2(bdx− ωy)

)
, (4.22)

ż =− εb

ω4
(bdy + ω(x+ z))(b(d− 1)dy − ω(a1d− (d− 1)(x+ z)))

+ ε2 bd

ω2

((
bdy

ω
+ x+ z

)((
bdy

ω
+ x+ z

)(
bdy

ω
+ x+ z − a1

)
+ a2

)
+ c2(bdx− yω)

)
+O(ε3).
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Using the change of variables (x, y, z) → (u, v, w) where x = u cos(ω t) − v sin(ω t),
y = v cos(ω t) + u sin(ω t) and z = w, system (4.22) becomes

u̇ =
ε sin(tω)

dω3
(sin(tω)(bdu− vω) + cos(tω)(bdv + uω)

+ ωw)((d− 1)(sin(tω)(bdu− vω) + cos(tω)(bdv + uω))

− ω(a1d− dw + w))− ε2 sin(tω)

ω

((
sin(tω)

(
bdu

ω
− v
)

+ cos(tω)

(
bdv

ω
+ u

)
+ w

)(
1

ω2
((sin(tω)(bdu− vω) + cos(tω)(bdv

+uω) + ωw)(ω(w − a1) + sin(tω)(bdu− vω) + cos(tω)(bdv + uω)))

+a2)− c2(sin(tω)(bdv + uω) + cos(tω)(vω − bdu))
)

+O(ε3),

v̇ =
ε cos(tω)

dω3
(sin(tω)(bdu− vω) + cos(tω)(bdv + uω) + ωw)((d

− 1)(sin(tω)(bdu− vω) + cos(tω)(bdv + uω))− ω(a1d− dw + w))

− ε2 cos(tω)

ω

((
sin(tω)

(
bdu

ω
− v
)

+ cos(tω)

(
bdv

ω
+ u

)
+ w

)
(

1

ω2
(sin(tω)(bdu− vω) + cos(tω)(bdv + uω) + ωw)(ω(w − a1) (4.23)

+ sin(tω)(bdu− vω) + cos(tω)(bdv + uω)) + a2)− c2(sin(tω)(bdv

+ uω) + cos(tω)(vω − bdu))
)

+O(ε3),

ẇ =
εb

ω4
(sin(tω)(bdu− vω) + cos(tω)(bdv + uω) + ωw)(ω(a1d− dw + w)

− (d− 1)(sin(tω)(bdu− vω) + cos(tω)(bdv + uω)))

+
ε2bd

ω2

((
sin(tω)

(
bdu

ω
− v
)

+ cos(tω)

(
bdv

ω
+ u

)
+ w

)
(

1

ω2
(sin(tω)(bdu− vω) + cos(tω)(bdv + uω) + ωw)(ω(w − a1)

+ sin(tω)(bdu− vω) + cos(tω)(bdv + uω)) + a2)− c2(sin(tω)(bdv + uω)

+ cos(tω)(vω − bdu))
)

+O(ε3).

The above system is in the normal form for applying the averaging theory given in

Theorems 1 and 12, where T =
2π

ω
, y = (u, v, w) and the function (1.3) corresponding to

system (4.23) is

g1(y) =−
(

(a1d− 2(d− 1)w)(bdu− vω)

2dω2
,

(a1d− 2(d− 1)w)(bdv + uω)

2dω2
,

b ((d− 1) (u2 + v2) (b2d2 + ω2)− 2ω2w(a1d− dw + w))

2ω4

)
.

The zeros of this function are s =

(
0, 0,

a1d

d− 1

)
, and the continuum of zeros Z± =
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{(α, β±(α)), α ∈ R} where

β±(α) =

(
±

√
ω2 (a2

1d
2 − 2(d− 1)2α2)− 2b2(d− 1)2d2α2

2(d− 1)2 (b2d2 + ω2)
,

a1d

2(d− 1)

)
.

Furthermore since det (Dg1(s)) = −a
3
1bd (b2d2 + ω2)

4ω6
6= 0, by Theorem 1 we can ensure the

existence of a periodic solution of system (4.23) emerging from the origin. Consequently
going back through the change of variables system (4.2) has the periodic solution (4.3).

For zα ∈ Z− we have

f1(α) =
πa2

1d
2
√
b2d2 + ω2 (a2

1bd+ 24c2ω
4)

24(d− 1)ω4
(
2(d− 1)αω

√
b2d2 + ω2 − bdΛα

) ,
where Λα =

√
a2

1 (2d− 2b2d4)− 4(d− 1)2α2

d
. As f1(α) 6= 0 for all α ∈ R we cannot apply

Theorem 12 in this case. On the other hand for zα ∈ Z+ we have

f1(α) =
C0 + C1α

2 + C2α
4 + C3Λαα + C4Λαα

3

24(d− 1)2dω8
(
2(d− 1)αω

√
b2d2 + ω2 − bdΛα

) , (4.24)

where

C0 =π
(
−a2

1

)
(d− 1)d3ω4

(
b2d2 + ω2

) (
a2

1bd+ 24c2ω
4
)
,

C1 =4π(d− 1)3dω2
(
b2d2 + ω2

) (
a2

1

(
13b3d3 − 11bdω2

)
+ 24c2ω

4
(
b2d2 + ω2

))
,

C2 =− 96πb(d− 1)5(bd− ω)(bd+ ω)
(
b2d2 + ω2

)2
,

C3 =2πdω3
√
b2d2 + ω2

(
a2

1

(
b2d2

(
3d(d+ 8)ω2 − 14(d− 1)2

)
+ 3d(d+ 8)ω4

−2(d− 1)2ω2
)

+ 24a2(d− 1)2ω2
(
b2d2 + ω2

))
,

C4 =96πb2(d− 1)4dω
(
b2d2 + ω2

)3/2
.

The denominator of f1 vanishes at α± = ±

√
a2

1b
2d5 (1− b2d3)

2(d− 1)2
. In addition the domain

of definition of Λα is the interval J ⊂ R such that |α| ≤
∣∣∣∣ d

(d− 1)

∣∣∣∣
√
a2

1d(1− b2d3)

2
. Thus

the domain of definition of f1 is I = J \ {α±}.
In order to study the maximum number of the simple zeros of function (4.24) we are

going to apply Lemma 27. Thus we define the functions ξ0(α) = 1, ξ1(α) = α2, ξ2(α) = α4,
ξ3(α) = Λαα, ξ4(α) = Λαα

3 and ξ(α) =
∑4

i=0Ciξi(α) with α ∈ I ⊂ R. We observe that
the five functions of the set {Ci | i = 0, 1, . . . , 4} are linearly independent. Indeed due

to hypothesis (a), the determinant of the Jacobian matrix
∂(C0, C1, C2, C3, C4)

∂(a1, a2, b, c2, d)
is

−42467328π5a1b2(d−1)14(b2d3−1)
7

d14
(d (b2(d+ 1)d2 (6b2d3 − 7) + 2)

+10)
(
a2

1bd
3 (24b2d3 − 13)− 24c2 (b2d3 − 1)

2
)
6= 0.
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Thus statement (a) of Lemma 27 ensures that the function ξ(α) has 4 zeros. In addition,
ξ0(α) does not changes sign, so by statement (b) of the same lemma, ξ(α) has 4 simple
zeros. Finally we observe that the simple zeros of ξ(α) are also simple zeros of f1(α) so
there exist values αi ∈ I for i = 1, 2, 3, 4 such that f1(αi) = 0, and det (Df1(αi)) 6= 0.
So the conclusion of Theorem 24 follows from Theorem 12.

4.3.2 Proof of Theorem 25

The proof of Theorem 25 for systems (4.4)-(4.7) and (4.9)-(4.13) can be obtained using
Corollary 7 with s = 0 which is equivalent with the classical averaging theory as we shall
see. We start proving Theorem 25 for system (4.13).

Proof of Theorem 25 for system (4.13). We take a = a2ε
2 with a2 > 0 and ε > 0 sufficiently

small. First we translate the point p = (1, 0, 0) to the origin of coordinates, then we use
the change of variables

(x, y, z) = ε

(
19X

9
+ Z,X −

√
10Y

3
,
19
√

10Y

30

)
,

and the differential system (4.13) writes

Ẋ =− 3Y√
10

+
1

171
ε
((

10X + 3
√

10Y
)

(19X + 9Z)− 90a2

)
,

Ẏ =
3X√

10
+
ε
((

10X + 3
√

10Y
)

(19X + 9Z)− 90a2

)
57
√

10
, (4.25)

Ż =
1

81
ε
(

90a2 −
(

10X + 3
√

10Y
)

(19X + 9Z)
)
.

Using the cylindrical change of variables (X, Y, Z) =
(
ρ cos θ, ρ sin θ, z

)
where ρ > 0,

system (4.25) becomes

ρ̇ =
1

342
ε
(
−18a2

(
3
√

10 sin θ + 10 cos θ
)

+ 9ρz
(

6
√

10 sin(2θ) + cos(2θ) + 19
)

+19ρ2 cos θ
(

6
√

10 sin(2θ) + cos(2θ) + 19
))

,

θ̇ =
3√
10

+
ε

1710ρ

(
ρ
(

3
√

10 sin θ + 10 cos θ
)

(19ρ cos θ + 9z)− 90a2

)
(

3
√

10 cos θ − 10 sin θ
)
,

ż =
1

81
ε
(

90a2 − ρ
(

3
√

10 sin θ + 10 cos θ
)

(19ρ cos θ + 9z)
)
.

This differential system can be reduced to the normal form for applying the averaging
theory. Taking θ as the new independent variable we obtain the differential system

ρ′ =
ε

513

√
5

2

(
ρ
(

6
√

10 sin(2θ) + cos(2θ) + 19
)

(19ρ cos θ + 9z)

−18a2

(
3
√

10 sin θ + 10 cos θ
))

+O(ε2),
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z′ =
ε

243

√
10
(

90a2 − r
(

3
√

10 sin θ + 10 cos θ
)

(19r cos θ + 9z)
)

+O(ε2).

Here the derivatives are taken with respect to θ. Using (1.15) we write the functions

g0 ≡ 0 and g1(z) =
√

10π

(
1

3
ρz,

10

243
(18a2 − 19ρ2)

)
. The averaged function g1 has the

solutions z± = ±

(
3

√
2a2

19
, 0

)
. The result follows by taking s = 0 and z∗ = z+ and

applying Corollary 7. The periodic solution is non-hyperbolic. The eigenvalues of the

Jacobian matrix Dg1(z+) are ±20

9
i
√
a2.

Proof of Theorem 25 for systems (4.4)-(4.7) and (4.9)-(4.12). The proof of Theorem 25
for systems (4.4)-(4.7) and (4.9)-(4.12) is similar to the proof of Theorem 25 for system
(4.13). It can be done using Corollary 7 with s = 0 and doing analogous computations.
The reader can check in Theorem 1.1 of [20] the proofs for these systems using classical
first order averaging. The authors also provide approximations for the periodic solutions
found.

Now we prove Theorem 25 for system (4.8). This proof is not provided in [20] because
the classical averaging theory does not provide information for this case. We shall prove
this result using statement (b) of Theorem 12 .

Proof of Theorem 25 for system (4.8). Using the change of variables (x, y, z) = ε
(
x +

y,−y,−2z
)

the differential system (4.8) writes

Ẋ =− 2Y +
1

2
ε
(
a2 − Y 2 + 4Z2

)
,

Ẏ =2X, (4.26)

Ż =
1

2
ε
(
−a2 + Y 2 − 4Z2

)
.

Using the cylindrical change of variables (X, Y, Z) =
(
ρ cos θ, ρ sin θ, z

)
where ρ > 0,

system (4.26) becomes

ρ̇ =ε
1

2
cos θ

(
a2 − ρ2 sin2 θ + 4z2

)
,

θ̇ =2− ε
sin θ

(
a2 − ρ2 sin2 θ + 4z2

)
2ρ

,

ż =ε
1

2

(
−a2 + ρ2 sin2 θ − 4z2

)
.

This differential system can be reduced to the normal form for applying averaging theory.
Taking θ as the new independent variable we obtain the differential system

ρ′ =ε
1

4
cos θ

(
a2 − ρ2 sin2 θ + 4z2

)
+ ε2 sin θ cos θ

(
a2 − ρ2 sin2 θ + 4z2

)2

16ρ

+ ε3 sin2 θ cos θ
(
a2 − ρ2 sin2 θ + 4z2

)3

64ρ2
+O(ε4),
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z′ =ε
1

4

(
−a2 + ρ2 sin2 θ − 4z2

)
+ ε2 −

sin θ
(
a2 − ρ2 sin2 θ + 4z2

)2

16ρ
(4.27)

+ ε3 sin2 θ
(
−a2 + ρ2 sin2 θ − 4z2

)3

64ρ2
+O(ε4).

Here the derivatives are taken with respect to θ. Using (1.15) we write the functions

g0(z) =(0, 0),

g1(z) =π

(
0,−a2

2
+
ρ2

4
− 2z2

)
,

g2(z) =

(
0,

1

2
π2z

(
2a2 − ρ2 + 8z2

))
,

g3(z) =
( π

96ρ

(
24a2

2(ρ+ z) + 4a2

(
−7ρ3 + 48z3 + 96ρz2 − 12ρ2z

)
+ 8ρ5 + 384z5

+ 1152ρz4 − 192ρ2z3 − 208ρ3z2 + 15ρ4z,
π

4608ρ

(
3ρ
(
8
(
15− 32π2

)
a2

2

+4
(
64π2 − 23

)
a2ρ

2 +
(
5− 64π2

)
ρ4
)
− 128z

(
9a2

2 − 18a2ρ
2 + 10ρ4

)
+ 9216z3

(
ρ2 − a2

)
+ 48ρz2

((
60− 256π2

)
a2 +

(
128π2 − 47

)
ρ2
)

−18432z5 + 1152
(
5− 32π2

)
ρz4
) )
.

Consider the graph Z =

{
zα = (α, β(α)) : β(α) =

√
α2 − 2a2

8
and α ≥

√
2a2

}
. For all

α ≥
√

2a2 the averaged function g1(zα) = (0, 0). Then taking s = 1 in Theorem 12 we

compute the bifurcation functions f1(α) = 0 and f2(α) =
πα2

64

√
α2 − 2a2

2
. For α∗ =

√
2a2

we have f2(α∗) = 0 and the derivative of f2 goes to infinity at α∗, so it is a simple zero
of f2. Thus applying statement (b) of Theorem 12 we have that system (4.27) has a
periodic solution bifurcating from point z∗α. Consequently going back through the change
of variables we have the existence of a periodic solution of system (4.8).

4.3.3 Proof of Theorem 26

Proof of Theorem 26 statement (i). Using the change of variables (x, y, z) = ε
(
X+Z,−Y+

Z, 2Z
)

the differential system (4.14) writes

Ẋ =− Y +
ε

10
(5a2 − 2(X + Z)(5Y − 14Z)),

Ẏ =X +
ε

10
(2(X + Z)(5Y − 14Z)− 5a2), (4.28)

Ż =Z +
ε

10
(2(X + Z)(5Y − 14Z)− 5a2).

Using the cylindrical change of variables (X, Y, Z) =
(
ρ cos θ, ρ sin θ, z

)
where ρ > 0,

system (4.28) becomes

ρ̇ =
ε

10
ε(cos θ − sin θ)

(
5a2 + 28ρz cos θ − 10ρ sin θ(ρ cos θ + z) + 28z2

)
,
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θ̇ =1 +
ε

10ρ
(sin θ + cos θ)

(
−5a2 − 28ρz cos θ + 10ρ sin θ(ρ cos θ + z)− 28z2

)
,

ż =z +
ε

10
(2(5ρ sin θ − 14z)(ρ cos θ + z)− 5a2).

This differential system can be reduced to the normal form for applying the averaging
theory. Taking θ as the new independent variable we obtain the differential system

ρ′ =
ε

10
(cos θ − sin θ)

(
5a2 + 28z2 + 28ρz cos θ − 10ρ sin θ(ρ cos θ + z)

)
+ ε2 (cos θ − sin θ)(sin θ + cos θ)

100ρ

(
5a2 − 5ρ2 sin(2θ) + 28z2 − 10ρz sin θ

+28ρz cos θ)2 +O(ε3), (4.29)

z′ =z + ε
(
−5a2 − 28z2 − 28ρz cos θ + 10ρ sin θ(ρ cos θ + z)

)
(ρ− z(sin θ + cos θ))

10ρ
+ ε2 (sin θ + cos θ)(−ρ+ z sin θ + z cos θ)

100ρ2(
5a2 − 5ρ2 sin(2θ) + 28z2 − 10ρz sin θ + 28ρz cos θ

)2
+O(ε3).

Here the derivatives are taken with respect to θ. Using (1.15) we write the functions

g0(z) =
(
0,
(
1− e−2π

)
z
)
,

g1(z) =

(
1

25

(
e2π − 1

)
z
(
71ρ+ 42

(
1 + e2π

)
z
)
,

(e2π − 1)

50ρ

(
−25a2ρ+ 10ρ3 + 28

(
e2π + e4π

)
z3 − 94e2πρz2

))
,

g2(z) =

(
− a2

7800ρ

(
156

(
−71 + 71e2π − 95π

)
ρ2 + 28

(
127− 195e4π + 68e6π

)
z2

+3
(
1591− 6474e2π + 4883e4π

)
ρz
)

+
1

26002860000ρ
(52005720(

−284 + 284e2π + 5π
)
ρ4 +

(
e8π
(
4823− 2226e2π + 806e6π

)
− 3403

)
z4

8453760 + 38584
(
e6π
(
1308320 + 1767897e2π − 1169940e4π + 90712e6π

)
−1996989) ρz3 −

(
759163 + 666540e4π − 1872448e6π + 446745e8π

)
100011ρ2z2 + 8000880 (eπ − 1) (1 + eπ)

(
4799 + 10883e2π

)
ρ3z
)
,

− e3πa2
2z sinh(π)

10ρ2
+

1

38646750675000ρ2

(
6956415121500

(
e2π − 1

)
ρ5

+ 61590200e2π
(
e8π
(
1258803− 454104e2π − 409955e4π + 230724e6π

)
−625468) z5 + 1764476e2π

(
e6π
(
61818120 + 35320311e2π − 60289650e4π

+256360e6π
)
− 37105141

)
ρz4 − 500055e2π

(
−41423181− 3714436e4π

+16341616e6π + 19305793e8π + 9490208e10π
)
ρ2z3 − 3216040e5πρ3z2

sinh(π)(153644891− 120359184 sinh(2π) + 31576438 cosh(2π))

−204805250e2π
(
−784488 + 784488e2π + 61013π

)
ρ4z
)

+ (−2403375(
e2π − 1

)
ρ3 +

(
−13030 + 21489e4π − 4988e6π − 4147e8π + 676e10π

)
z3

357e2π − 986e5πρz2 sinh(π)(19421− 3834 sinh(2π) + 12388 cosh(2π))
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+11310e2π
(
−1627 + 1627e2π − 6375π

)
ρ2z
) a2

9613500ρ2

)
.

Consider the graph Z = {zα = (α, β(α)) : β(α) = 0 and α > 0}. For all α > 0 the
function g0(zα) = (0, 0). Then taking s = 0 in Theorem 12 we compute the bifurcation
functions f1(α) = 0, and

f2(α) =
α

500

(
10
(
71e2π

(
e2π − 2

)
+ 95π + 71

)
a2 −

(
284e2π

(
e2π − 2

)
− 5π + 284

)
α2
)
.

For α∗ =

√
5a2

2

(
1 +

385π

284e2π (e2π − 2)− 5π + 284

)
we have f2(α∗) = 0 andDf2(α∗) 6=

0. Thus applying statement (b) of Theorem 12 we have that system (4.29) has a periodic
solution bifurcating from point zα∗ . Consequently going back through the change of
variables we have the existence of a periodic solution for system (4.14).

Proof of Theorem 26 statement (ii). First we translate the point (−7,−7, 0) to the origin
of coordinates. Then we use the change of variables (x, y, z) = ε

(
8X + Z,X +

√
7Y −

Z/7,−8
(√

7Y + Z
) )

and the differential system (4.15) writes

Ẋ =−
√

7Y +
ε

568

(
7a2 − 4

(
336X2 − 98

√
7XY + 128XZ + 98Y 2 − 2

√
7Y Z

+ 7Z2
))
,

Ẏ =
√

7X +
ε

3976
√

7

(
60
(

336X2 − 98
√

7XY + 128XZ + 98Y 2 − 2
√

7Y Z

+ 7Z2
)
− 105a2

)
, (4.30)

Ż =− 8Z +
ε

71

(
4
(

336X2 − 98
√

7XY + 128XZ + 98Y 2 − 2
√

7Y Z + 7Z2
)

− 7a2

)
.

Using the cylindrical change of variables (X, Y, Z) =
(
ρ cos θ, ρ sin θ, z

)
where ρ > 0,

system (4.30) becomes

ρ̇ =
ε

27832

(
4ρz

(
1009
√

7 sin(2θ)− 3031 cos(2θ)− 3241
)

+ 28ρ2
(√

7(509 sin θ + 299 sin(3θ))− 2303 cos θ − 49 cos(3θ)
)

+ 7
(
a2 − 4z2

) (
49 cos θ − 15

√
7 sin θ

))
,

θ̇ =
√

7− ε

27832ρ

(
49 sin θ + 15

√
7 cos θ

) (
7
(
a2 − 4

(
31ρ2 + z2

))
− 476ρ2 cos(2θ)

−512ρz cos θ + 8
√

7ρ sin θ(49ρ cos θ + z)
)
,

ż =− 8z +
ε

71

(
−7a2 + 476ρ2 cos(2θ) + 868ρ2 + 28z2 + 512ρz cos θ

− 8
√

7ρ sin θ(49ρ cos θ + z)
)
.
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This differential system can be reduced to the normal form for applying the averaging
theory. Taking θ as the new independent variable we obtain the differential system

ρ′ =
ε

27832
√

7

(
28ρ2

(√
7(509 sin θ + 299 sin(3θ))− 2303 cos θ − 49 cos(3θ)

)
+ 4ρz

(
1009
√

7 sin(2θ)− 3031 cos(2θ)− 3241
)

+ 7
(
a2 − 4z2

)(
49 cos θ − 15

√
7 sin θ

))
+O(ε2), (4.31)

z′ =− 8z√
7
− ε

24353ρ

((
49
(√

7ρ+ z sin θ
)

+ 15
√

7z cos θ
) (
a2 − 4

(
31ρ2 + z2

)
7− 476ρ2 cos(2θ)− 512ρz cos θ + 8

√
7ρ sin θ(49ρ cos θ + z)

)
+O(ε2).

Here the derivatives are taken with respect to θ. Using (1.15) we compute the functions

g0(z) =
(

0,
(

1− e16π/
√

7
)
z
)
,

g1(z) =

(
97
(
e
− 32π√

7 − 1
)
z2

37346
−

13541
(

1− e−
16π√

7

)
ρz

182896
,

e
− 48π√

7

168355768ρ(
e

16π√
7 − 1

)(
90209e

32π√
7 ρ
(
4724ρ2 − 23a2

)
+ 1488928z3 + 8e

16π√
7 z2

(7509965ρ+ 186116z)
))

,

g2(z) = (H1(z), H2(z)) ,

where the functions H1 and H2 are provided in the Appendix D.
Consider the graph Z = {zα = (α, β(α)) : β(α) = 0 and α > 0}. For all α > 0 the

function g0(zα) = (0, 0). Then taking s = 0 in Theorem 12 we compute the bifurcation
functions f1(α) = 0, and

f2(α) =
e
− 32π√

7 α

2389353344

(
189574e

16π√
7

(
23a2 − 4724α2

)
− 94787

(
23a2 − 4724α2

)
+e

32π√
7

(
26128

√
7π
(
23a2 − 17684α2

)
− 94787

(
23a2 − 4724α2

)))
.

The bifurcation function f2 has the positive solution

α∗ =
1

2

√√√√√ 23a2

(
e

32π√
7

(
26128

√
7π − 94787

)
+ 189574e

16π√
7 − 94787

)
e

32π√
7

(
115511888

√
7π − 111943447

)
+ 223886894e

16π√
7 − 111943447

≈0.0288042
√
a2,

such that Df2(α∗) ≈ −0.002a2 6= 0. Thus applying statement (b) of Theorem 12 we
have that system (4.31) has a periodic solution bifurcating from point z∗α. Consequently,
going back through the change of variables we have the existence of a periodic solution
to system (4.15).
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Proof of Theorem 26 statement (iii). After translating the point (−5/4, 0, 5/4) to the origin

of coordinates we use the change of variables (x, y, z) = ε
(
Y + Z,

5Z

4
−
√

2X, Y − 41Z

16

)
,

then the differential system (4.16) writes

Ẋ =−
√

2Y +
ε
(
320a2 + 12

√
2X(32Y + 13Z)− 320Y 2 + 20Y Z + 625Z2

)
912
√

2
,

Ẏ =
√

2X +
ε
(
−320a2 − 12

√
2X(32Y + 13Z) + 5 (64Y 2 − 4Y Z − 125Z2)

)
1140

, (4.32)

Ż =− 5Z

4
+
ε
(
320a2 + 12

√
2X(32Y + 13Z)− 320Y 2 + 20Y Z + 625Z2

)
1140

.

Using the cylindrical change of variables (X, Y, Z) =
(
ρ cos θ, ρ sin θ, z

)
where ρ > 0,

system (4.32) becomes

ρ̇ =
ε

9120

(
5
(
64a2 + 125z2

) (
5
√

2 cos θ − 8 sin θ
)

+ 32ρ2 sin θ
(
−73
√

2 sin(2θ)

+20 cos(2θ) + 100) + 2ρz
(
−287

√
2 sin(2θ) + 430 cos(2θ) + 350

))
,

θ̇ =
√

2 +
ε

9120ρ

(
5
√

2 sin θ + 8 cos θ
) (

320a2 + 625z2 + 4ρ (5 sin θ(z − 16ρ sin θ)

+3
√

2 cos θ(32ρ sin θ + 13z)
))

,

ż =− 5z

4
+

ε

1140

(
4ρ
(

5 sin θ(z − 16ρ sin θ) + 3
√

2 cos θ(32ρ sin θ + 13z)
)

+ 320a2 + 625z2
)
.

This differential system can be reduced to the normal form for applying the averaging
theory. Taking θ as the new independent variable we obtain the differential system

ρ′ =
ε

9120
√

2

(
− 2560a2 sin θ +

√
2 cos θ

(
1600a2 + 3125ρ4z2 − 1148ρ3z sin θ

−1168ρ2
)

+ 700ρ3z + 4ρ2
(

292
√

2 cos(3θ) + 50 sin θ
(
16− 25ρ2z2

)
+5 cos(2θ)(32 sin θ + 43ρz))

)
+

ε2

83174400
√

2ρ

(
−2560a2 sin θ +

√
2 cos θ(

1600a2 + 3125ρ4z2 − 1148ρ3z sin θ − 1168ρ2
)

+ 700ρ3z + 4ρ2(
292
√

2 cos(3θ) + 50 sin θ
(
16− 25ρ2z2

)
+ 5 cos(2θ)(32 sin θ + 43ρz)

))
+
(

sin θ
(
1600a2 + 3125ρ4z2 + 2336ρ2 cos(2θ) + 736ρ2

)
+ 20
√

2 cos θ(
64a2 + 125ρ4z2 + ρ2 sin θ(32 sin θ + 43ρz)

)
+ 2ρ3z(287 cos(2θ) + 337)

)
+O(ε3), (4.33)

z′ =− 5z

4
√

2
+

ε

36480
√

2ρ2

(
1024

(
10a2 + ρ2

(
6
√

2 sin(2θ)− 5
)

+ 5ρ2 cos(2θ)
)

− 16ρz
(
−780a2 sin θ + 6

√
2
(
200a2 − 141ρ2

)
cos θ + ρ2

(
1265 sin θ
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+525 sin(3θ) + 534
√

2 cos(3θ)
))

+ 1875ρ5z3
(

13 sin θ − 20
√

2 cos θ
)

+ 2ρ4z2(
1221
√

2 sin(2θ)− 4875 cos(2θ) + 5515
))

+
ε2

665395200ρ3

(
(sin θ (1600a2

+3125ρ4z2 + 2336ρ2 cos(2θ) + 736ρ2
)

+ 20
√

2 cos θ
(
64a2 + 125ρ4z2

+ρ2 sin θ(32 sin θ + 43ρz)
)

+ 2ρ3z(287 cos(2θ) + 337)
) (
ρ
(

5
√

2z sin θ(
2496a2 + 4875ρ4z2 − 4048ρ2

)
− 24z cos θ

(
1600a2 + 3125ρ4z2 − 1128ρ2

)
+12ρ sin(2θ)

(
407ρ2z2 + 1024

)
+ 10
√

2ρ cos(2θ)
(
512− 975ρ2z2

)
−8400

√
2ρ2z sin(3θ)− 17088ρ2z cos(3θ)

)
+ 10
√

2
(
1024a2 + 1103ρ4z2

− 512ρ2
)))

+O(ε3).

Here the derivatives are taken with respect to θ. Using (1.15) we write the functions

g0(z) =
(

0,
(

1− e
5π
2
√

2

)
z
)
,

g1(z) =

(
ρ3z
(
−95625e

− 5π√
2

√
2ρz + 95625

√
2ρz − 121264e

− 5π
2
√
2 + 121264

)
2558160

,

e
− 15π

2
√
2

15348960ρ2

(
e

5π
2
√
2 − 1

)(
22528e

5π√
2

(
153a2 − 112ρ2

)
− 3538125

√
2ρ5z3

−15e
5π
2
√

2ρ4z2
(

235875
√

2ρz − 240416
)))

,

g2(z) = (I1(z), I2(z)) ,

where the functions I1 and I2 are provided in the Appendix D. Consider the graph
Z = {zα = (α, β(α)) : β(α) = 0 and α > 0}. For all α > 0 the function g0(zα) = (0, 0).
Then taking s = 0 in Theorem 12 we compute the bifurcation functions f1(α) = 0, and

f2(α) =
e
− 5π

2
√

2

633798675

(
44096

(
153αa2 − 112α3

)
+ 8e

5π
2
√
2α
(
5512

(
112α2 − 153a2

)
+14535π

√
2
(
306a2 − 131α2

)))
.

The bifurcation function f2 has the positive solution

α∗ =3

√√√√√34a2

(
e

5π
2
√
2

(
14535

√
2π − 2756

)
+ 2756

)
e

5π
2
√

2

(
1904085

√
2π − 617344

)
+ 617344

,

such that Df2(α∗) ≈ −0.47a2 6= 0. Thus applying statement (b) of Theorem 12 we have
that system (4.33) has a periodic solution bifurcating from point z∗α. Consequently going
back through the change of variables we have the existence of a periodic solution to system
(4.16).
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Proof of Theorem 26 statement (iv). First we translate the point (−5, 0, 0) to the origin

of coordinates, then using the change of variables (x, y, z) = ε

(
− X√

5
+

Y√
5
− Z

2
, X +

Y + Z,
√

5X −
√

5Y − 2Z

)
the differential system (4.17) writes

Ẋ =−
√

5Y − ε
(
2
√

5 + 5
)

1800
√

5

(
20
(√

5 + 6
)
X2 − 100a2 − 20

(√
5− 6

)
Y 2

+2X
(

80Y + 125Z + 2
√

5Z
)

+
(

250− 4
√

5
)
Y Z + 85Z2

)
,

Ẏ =
√

5X − ε
(
2
√

5− 5
)

1800
√

5

(
20
(√

5 + 6
)
X2 − 100a2 − 20

(√
5− 6

)
Y 2

+2X
(

80Y + 125Z + 2
√

5Z
)

+
(

250− 4
√

5
)
Y Z + 85Z2

)
, (4.34)

Ż =− 2Z +
1

450
ε
(

20
(√

5 + 6
)
X2 − 100a2 + 2X

(
80Y + 125Z + 2

√
5Z
)

−20
(√

5− 6
)
Y 2 +

(
250− 4

√
5
)
Y Z + 85Z2

)
.

Using the cylindrical change of variables (X, Y, Z) =
(
ρ cos θ, ρ sin θ, z

)
where ρ > 0,

system (4.34) becomes

ρ̇ =
ε

1800

(
5
(
20a2 − 17z2

) ((√
5 + 2

)
cos θ −

(√
5− 2

)
sin θ

)
−2
√

5ρ2
(

3
(√

5 + 10
)

sin(3θ) +
(

37
√

5− 50
)

sin θ − 3
(√

5− 10
)

cos(3θ)

+
(

37
√

5 + 50
)

cos θ
)
− 2ρz

(
240 sin(2θ) + 129

√
5 cos(2θ) + 260

))
,

θ̇ =
√

5− ε

1800
√

5ρ

((
2
√

5− 5
)

cos θ −
(

2
√

5 + 5
)

sin θ
) (

120ρ2 − 100a2

+2ρ
(

10
√

5ρ cos(2θ) + cos θ
(

80ρ sin θ +
(

2
√

5 + 125
)
z
)

+
(

125− 2
√

5
)
z sin θ

)
+ 85z2

)
,

ż =− 2z +
ε

450

(
−100a2 + 120ρ2 + 2ρ

(
10
√

5ρ cos(2θ) + cos θ (80ρ sin θ

+
(

2
√

5 + 125
)
z
)

+
(

125− 2
√

5
)
z sin θ

)
+ 85z2

)
.

This differential system can be reduced to the normal form for applying the averaging
theory. Taking θ as the new independent variable we obtain the differential system

ρ′ =
ε

1800
√

5

(
5
(
20a2 − 17z2

) ((√
5 + 2

)
cos θ −

(√
5− 2

)
sin θ

)
− 2
√

5ρ2(
3
(√

5 + 10
)

sin(3θ) +
(

37
√

5− 50
)

sin θ − 3
(√

5− 10
)

cos(3θ) + cos θ(
37
√

5 + 50
))
− 2ρz

(
240 sin(2θ) + 129

√
5 cos(2θ) + 260

))
+O(ε3),

z′ =− 2
√

5z

25
+

ε

4500
√

5ρ

(
10ρ+

(
2
√

5 + 5
)
z sin θ +

(
5− 2

√
5
)
z cos θ

)(
120ρ2

63



Fitzhugh-Nagumo and Quadratic chaotic systems

− 100a2 + 85z2 + 2ρ
(

10
√

5ρ cos(2θ) + cos θ
(

80ρ sin θ +
(

2
√

5 + 125
)
z
)

+
(

125− 2
√

5
)
z sin θ

))
− ε2

((
2
√

5− 5
)

cos θ −
(
2
√

5 + 5
)

sin θ
)

40500000
√

5ρ2

(
− 10ρ

−
(

2
√

5 + 5
)
z sin θ +

(
2
√

5− 5
)
z cos θ

) (
120ρ2 − 100a2 + 85z2 + z sin θ(

125− 2
√

5
)

+ 2ρ
(

10
√

5ρ cos(2θ) + cos θ
(

80ρ sin θ +
(

2
√

5 + 125
)
z
)))2

+O(ε3).

Here the derivatives are taken with respect to θ. Using (1.15) we write the functions

g0(z) =
(

0, (1− e
4π√
5 )z
)
,

g1(z) =

(
e
− 12π√

5

12600ρ

(
1− e

4π√
5

)(
140e

8π√
5ρ
(

10a2 +
(√

5− 12
)
ρ2
)

+ 34
(

1 + e
4π√
5

)
(√

5− 10
)
z3 − 7

(
27
√

5 + 412
)
e

4π√
5ρz2

)
− e

− 8π√
5

25200

(
e

4π√
5 − 1

)
z(

7e
4π√
5

(
123
√

5 + 520
)
ρ+ 170

(
1 + e

4π√
5

)(
2
√

5 + 1
)
z
))

,

g2(z) = (J1(z), J2(z)) ,

where the functions J1 and J2 are provided in the Appendix D.

Consider the graph Z = {zα = (α, β(α)) : β(α) = 0 and α > 0}. For all α > 0 the
function g0(zα) = (0, 0). Then taking s = 0 in Theorem 12 we compute the bifurcation
functions f1(α) = 0, and

f2(α) =
e
− 8π√

5α

324000

((
956
√

5 + 5625
)
α2 + 2e

4π√
5

(
10
(

123
√

5 + 520
)
a2−(

956
√

5 + 5625
)
α2
)

+ e
8π√
5

((
956
√

5 + 5625
)
α2 + 180π

√
5
(
8a2 − 19α2

)
−10

(
123
√

5 + 520
)
a2

)
− 10

(
123
√

5 + 520
)
a2

)
.

The bifurcation function f2 has the positive solution α∗ =√√√√√10a2

(
e

8π√
5

(
144π

√
5− 123

√
5− 520

)
− 123

√
5 + 2e

4π√
5

(
123
√

5 + 520
)
− 520

)
e

8π√
5

(
3420π

√
5− 956

√
5− 5625

)
− 956

√
5 + 2e

4π√
5

(
956
√

5 + 5625
)
− 5625

≈ 0.369082
√
a2,

such that Df2(α∗) ≈ −0.01a2 6= 0. Thus applying statement (b) of Theorem 12 we have
that system (4.31) has a periodic solution bifurcating from point z∗α. Consequently going
back through the change of variables we have the existence of a periodic solution to system
(4.15).
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Proof of Theorem 26 statement (v). First we translate the equilibrium point

(4/5, 4/5, 4/5) to the origin. Then using the change of variables (x, y, z) = ε
(
Z −

2Y,
√

3X + Y + ZY,
(
−
√

3
)
X + Y + Z

)
the differential system (4.18) writes

Ẋ =− 1

5

(
4
√

3Y
)

+
ε
(
3X2 − 2

√
3X(Y − 2Z)− 3Y (Y + 4Z)

)
4
√

3
,

Ẏ =
4
√

3X

5
+

1

4
ε
(
−X2 − 2

√
3X(Y − 2Z) + Y (Y + 4Z)

)
, (4.35)

Ż =ε

(
a2 − 2

(
X2 + Y 2

)
+
Z2

2

)
.

Using the cylindrical change of variables (X, Y, Z) =
(
ρ cos θ, ρ sin θ, z

)
where ρ > 0,

system (4.35) becomes

ρ̇ =
ε

4
ρ
(
−ρ sin(3θ) +

√
3ρ cos(3θ) + 4z

)
,

θ̇ =
4
√

3

5
+
ε

4

(√
3(4z − ρ sin(3θ))− ρ cos(3θ)

)
,

ż =ε

(
a2 − 2ρ2 +

z2

2

)
.

This differential system can be reduced to the normal form for applying the averaging
theory. Taking θ as the new independent variable we obtain the differential system

ρ′ =
5ρε

(
−ρ sin(3θ) +

√
3ρ cos(3θ) + 4z

)
16
√

3
+O(ε2),

z′ =
5ε (2a2 − 4ρ2 + z2)

8
√

3
+O(ε2).

Here the derivatives are taken with respect to θ. Using (1.15) we write the functions

g0 ≡ 0 and g1(z) = π

(
5rz

2
√

3
,
5 (2a2 − 4r2 + z2)

4
√

3

)
. The averaged function g1 has the

solutions z± = ±
(
ω

√
a2

2
, 0

)
. The result follows by taking s = 0 and z∗ = z+ and

applying Corollary 7. The eigenvalues of Dg1(z+) are ±i5
√
a2

6
.

Proof of Theorem 26 statement (vi). First we translate to the origin of coordinates the
point (−10/43,−10/43,−10/43). Then using the change of variables (x, y, z) = ε

(
X +

Z,−X
2

+

√
3Y

2
+ Z,−X

2
−
√

3Y

2
+ Z

)
the differential system (4.19) writes

Ẋ =−
√

3Y +
ε

40

(
−13X2 + 26

√
3XY + 86XZ + 13Y 2 + 86

√
3Y Z

)
,

Ẏ =
√

3X +
ε

40

(
13
√

3X2 + 26XY − 86
√

3XZ − 13
√

3Y 2 + 86Y Z
)
, (4.36)
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Ż =− 69

43
Z +

ε

40

(
40a2 − 43

(
X2 + Y 2

)
+ 52Z2

)
.

Using the cylindrical change of variables (X, Y, Z) =
(
ρ cos θ, ρ sin θ, z

)
where ρ > 0,

system (4.36) becomes

ρ̇ =ε
ρ

40

(
13
√

3ρ sin(3θ)− 13ρ cos(3θ) + 86z
)
,

θ̇ =
√

3 +
ε

40

(
13ρ

(
sin(3θ) +

√
3 cos(3θ)

)
− 86
√

3z
)
,

ż =− 69

43
z + ε

(
a2 +

1

40

(
52z2 − 43ρ2

))
.

This differential system can be reduced to the normal form for applying the averaging
theory. Taking θ as the new independent variable we obtain the differential system

ρ′ =
ερ

40
√

3

(
13
√

3ρ sin(3θ)− 13ρ cos(3θ) + 86z
)

+
ε2ρ

4800

(
13ρ
(

cos(3θ)

−
√

3 sin(3θ)
)
− 86z

)(
13ρ

(
sin(3θ) +

√
3 cos(3θ)

)
− 86
√

3z
)

+O(ε3),

z′ =− 23
√

3

43
z +

ε

5160

(
43
√

3
(
40a2 − 43

(
ρ2 + 2z2

))
+ 897ρz

(
sin(3θ) (4.37)

+
√

3 cos(3θ)
))

+
ε2

206400

(
13ρ

(
344

(
28z2 − 5a2

) (
sin(3θ) +

√
3 cos(3θ)

)
+1849ρ2

(
sin(3θ) +

√
3 cos(3θ)

)
− 299ρz

(
3 sin(6θ) +

√
3 cos(6θ)

))
−4
√

3z
(
41697ρ2 + 79507z2 − 36980a2

))
+O(ε3).

Here the derivatives are taken with respect to θ. Using (1.15) we write the functions

g0(z) =
(

0,
(

1− e
46
√
3π

43

)
z
)
,

g1(z) =

(
1849

1380

(
1− e−

1
43(46

√
3π)
)
ρz,
(
e

46
√
3π

43

(
40a2 − 43ρ2

)
− 86z2

)
(
e

46
√
3π

43 − 1
) 43e−

1
43(92

√
3π)

2760

)
,

g2(z) =

(
1849e−

1
43(184

√
3π)ρ

266008808721600

(
e

184
√
3π

43

(
11640097

(
240

(
46
√

3π − 43
)
a2

+19651z2
)
− 3003145026

(
46
√

3π − 43
)
ρ2 + 45396995982ρz

)
+22989e

138
√

3π
43

(
130634

(
40a2 − 43ρ2

)
− 2456883ρz

)
+ 172180314824

e
46
√
3π

43 z2 − 64567618059z2 + 4557e
92
√
3π

43 z(2432365ρ− 73810016z)
)
,

e−
1
43(230

√
3π)

446414827786341650812800

(
e

184
√
3π

43

(
−
(

60
(

391
√

3π − 1849
)
a2

+75809z2
)

6719819923969996144z + 69703216719171814113816ρ3
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+ 67860377243786125751610ρz2 − 10446454479ρ2z(
70137521867896

√
3π − 252393774165

))
− 4245723465e

138
√
3π

43 z

(175587701015104a2 + 61893ρ(10033543ρ.+ 666198742z))

−69703216719171814113816e
230
√
3π

43 ρ3 + 400704542021311862565756z3

+1951360992537417972e
92
√

3π
43 z2(79833ρ+ 329509z)

−336382138219685488e
46
√
3π

43 z2(144417ρ+ 1588291z)
))

.

Consider the graph Z = {zα = (α, β(α)) : β(α) = 0 and α > 0}. For all α > 0 the
function g0(zα) = (0, 0). Then taking s = 0 in Theorem 12 we compute the bifurcation
functions f1(α) = 0, and

f2(α) =
1849e−

92
√

3π
43

3808800

(
e

92
√
3π

43

(
46
√

3π − 43
)

+ 86e
46
√
3π

43 − 43
)
α
(
40a2 − 43α2

)
.

For α∗ = 2

√
10a2

43
we have f2(α∗) = 0 and Df2(α∗) 6= 0. Thus applying statement (b)

of Theorem 12 we have that system (4.37) has a periodic solution bifurcating from point
z∗α. Consequently, going back through the change of variables we have the existence of a
periodic solution to system (4.19).

4.4 Appendix D: Functions Hi, Ii and Ji for i = 1, 2

Here we present the coordinate functions of g2 that appears in the proof of statements
(ii), (iii) and (iv) of Theorem 26.

H1(z) = −13541a2ρ

14840704
+

πa2ρ

568
√

7
+ e

− 32π√
7

(
899a2z

2

40086032ρ
− 597507923a2z

47083369573856

−703742848467097925ρz2

31898417885852553728
+

3392361662905917ρ2z

116684360646408632

)
− 189618713a2z

2

10586680965168ρ

+ e
− 48π√

7

(
− 42083a2z

2

9319261413ρ
− 46840313877851z3

38980159313748576
+

1820956889005487ρz2

115614906197860608

)
+ e

− 16π√
7

(
13541a2ρ

14840704
+

4046213933a2z

6557112770432
− 15991921ρ3

85334048
− 23113407207573ρ2z

195893744016656

)
− 47497703966367a2z

78588870014419072
+

15991921ρ3

85334048
− 4421πρ3

3266
√

7
− 16264e−16

√
7πz4

1048694353ρ

+
247945373z4

13482014602168ρ
− 19453239836e

−
96π√

7 z3

118452839157093
+

45877191435540374951287ρz2

2993773813265605489598976

+
19660203760820886413604205145z3

21759296009409979593131149751776
+

89976430564062929487ρ2z

1011920113914411773456
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+ e
− 64π√

7

(
− 1739z4

74243848ρ
+

8088305746441z3

6482324361591568
− 112649333870939ρz2

12499380049315264

)
+ e

− 80π√
7

(
306340z4

14913732967ρ
− 6272329328873z3

7986095211566962

)
,

H2(z) = e
− 32π√

7

(
− 20409a2

2z

806731394ρ2
− 13593232675a2z

2

5737473674128ρ
+

8622181081a2z

2254007514836

+
121148255304709ρz2

171407026014574
− 9933070595407ρ2z

207368691364912

)
+ e

− 16π√
7

(
20409a2

2z

806731394ρ2

+
17031a2ρ

927544
+

12143784230186761a2z
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√
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Chapter 5

Lorenz and Thomas’ differential
systems

In this chapter we use Theorem 12 for studying the periodic solutions that emerges from
a zero-Hopf bifurcation in the Lorenz differential system. Then we apply Theorem 13 for
describing the stability of a such periodic solution. The same strategy will be used here
for studying the Hopf and zero-Hopf bifurcation that occurs in two circulant systems, one
of then known as Thomas’ differential system. The results here presented where published
in [14].

5.1 Application to Lorenz differential system

The Lorenz system of differential equations in R3 arose from the work of the meteorologist
mathematician Edward N. Lorenz [55], who studied forced dissipative hydro-dynamical
systems. It has become one of the most widely studied systems of ODEs because of its
wide range of behaviors (see for instance [75]). Although the origins of this system lies in
atmospheric modeling, the Lorenz equations also appear in other areas as in the modeling
of lasers see [37], and dynamos see [44]. The Lorenz equations are

ẋ =a(x− y),

ẏ =x(b− z)− y, (5.1)

ż =x y − cz,

with a, b, c being real coefficients.

Theorem 28. Let a = −1 + a2ε
2 and c = c1ε. Assume that b > 1, a2 < 0, c1 6= 0 and

|ε| 6= 0 sufficiently small. Then the Lorenz differential system (5.1) has a periodic orbit
bifurcating from the origin. Furthermore for c1 > 0 this periodic orbit is an attractor,
otherwise for c1 < 0 the periodic orbit has a stable manifold formed by two topological
cylinders and an unstable manifold formed by two topological cylinders.
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Figure 5.1: Solution of system (5.1) starting at (0.05,−0.01, 0.05) being attracted by the stable
periodic orbit (dashed curve) founded by Theorem 12 . The parameters of the system are
a2 = −2, b = 2 c1 = 1 and ε = 1/100.

5.2 Application to Thomas’ differential system

A circulant system is a differential system defined by a function f(x, y, z) having the
variables cyclically symmetric according to

ẋ = f(x, y, z),

ẏ = f(y, z, x),

ẋ = f(z, x, y),

where the function f(u, v, w) is fixed and the variables are rotated. In 1999 René Thomas
proposed the following two circulant systems having cyclic symmetry

ẋ = sin y − βx,
ẏ = sin z − βy, (5.2)

ż = sinx− βz,

ẋ =− bx+ ay − y3,

ẏ =− by + az − z3, (5.3)

ż =− bz + ax− x3.
System (5.2) is defined by the function f(u, v, w) = −au + sin v and system (5.3) is

defined by f(u, v, w) = −au+ bv − v3. The chaotic behavior generated by these systems
was presented by [79]. These systems were also studied in [77]. System (5.2) is sometimes
called Thomas’ system, see for instance [75, Chapter 3]. The next results give sufficient
conditions for the existence of periodic solutions in these differential systems.

One can check that the origin is an equilibrium point of system (5.2), and that it has
the eigenvalues 1− β, (−1− 2β − i

√
3)/2 and (−1− 2β + i

√
3)/2. When β = −1/2 the

origin has a pair of complex eigenvalues on the imaginary axis and the bifurcation of a
periodic orbit occurs.

Theorem 29. Let β = −1/2+β1ε+β2ε
2 where βi ∈ R for i = 1, 2. For ε > 0 sufficiently

small and β1 > 0 the differential system (5.2) has an isolated periodic solution bifurcating
from the origin. Moreover this periodic solution is unstable.
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System (5.3) has 27 steady states but we will be interested into the pair symmetric
equilibrium points P± = ±

(√
a− b,

√
a− b,

√
a− b

)
. Taking a = 5

√
3ω/6 and b =√

3ω/3 with ω > 0, these equilibrium points have the eigenvalues −
√

3ω and ±ωi. The
next theorems show that periodic orbits born at P− and P+.

Theorem 30. Let a = 5
√

3ω/6 + εa1, b =
√

3ω/3 + εb1 with ω > 0 and (5b1 − 2a1) < 0.
Then for ε > 0 sufficiently small the differential system (5.3) has the two periodic solutions

φ±(t, ε) =P± +
√
ε
(

2e2
√

3πξ cos(tω),
e2
√

3π

3
ξ
(

3 sin(tω)−
√

3 cos(tω)
)
,

− 1

3
e2
√

3πξ
(

3 sin(tω) +
√

3 cos(tω)
))

+O(ε), (5.4)

such that φ+(t, ε) bifurcates from P+, and φ−(t, ε) bifurcates from P−. Here

ξ =

√
π(5b1 − 2a1)

−3e4
√

3π
(√

3− 5π
)

+ 6
√

3e2
√

3π − 3
√

3
.

The periodic orbit analytically found in Theorem 30 was detected numerically in [79].
In this paper it is shown that for specific values of a and b these periodic solutions produce
to a strange attractors after a cascade of doubling. The following figures illustrate this
phenomena. In these figures a1 = 6, b1 = 1 and ω = 1, and the time interval varies from 0
to 1000. Figure 5.2a shows the solution starting at (−0.8,−0.8,−0.45) being attracted by
the periodic orbit φ−(t, ε), see equation (5.4). As we increase ε the periodic orbit grows
in size and complexity, see Figures 5.2b, 5.2c. The approximation to the periodic orbit
provided by (5.4) can be seen as a dashed curve. Figures 5.2d, 5.2e and 5.2f shows the
appearance of the strange attractor as ε increase.

5.3 Proofs

5.3.1 Proof of Theorem 28

Proof. The existence of a such periodic orbit is proved in Theorem 4 of [13]. Following
the ideas of this proof we see that, after some changes of variables, system (5.1) can be
put into the normal form for applying Theorem 12, i.e.

ż = εF1

(
z, θ
)

+ ε2F2

(
z, θ
)

+ ε3F3

(
z, θ
)

+O(ε4),

given by equation (22) of [13], with z = (ρ, z) and the derivative is with respect to θ.
Thus calculating the higher order averaging functions of this system for i = 0, 1, 2, 3 we
have gi(z) = (gi1(z), gi2(z)) where g0(z) ≡ 0 and

g11(z) =0,

g12(z) =
π (ρ2 − 2c1z)

ω
,

g21(z) =− πρ (8a2ω
2 − 4c1z + 3ρ2)

8ω3
,
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Solution φ−(t, ε) for different values of ε: (a) ε = 1/250, (b) ε = 1/50, (c)
ε = 1/8, (d) ε = 1/6, (e) ε = 1/5, (f) ε = 1/4
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g22(z) =
π (ρ2(c1ω(ω − 2π) + 3z) + 2c1z(2πc1ω − z))

2ω3
,

g31(z) =− πρ (4z (2a2ω
2 + 2πc2

1ω − 3c1z) + ρ2(c1ω(3ω − 4π) + 15z))

16ω5
,

g32(z) =
π

96ω5

(
9ρ4ω(4π − 5ω)− 8c1z

(
12a2ω

4 + 16π2c2
1ω

2 − 36πc1ωz + 9z2
)

+ 4ρ2(
3c1ω(9ω − 28π)z + 45z2

)
− 2ω2

(
6a2ω(ω + 2π) + c2

1

(
6πω − 8π2 + 3

)) )
.

Thus we can calculate the functions fi(α) for i = 1, 2 with respect to the above averaging
functions and the graph

Z =

{
zα =

(
α, β(α) =

α2

2c1

)
: α > 0

}
,

obtaining

f1(α) = −πα (8a2ω
2 + α2)

8ω3
and f2(α) = −πα

3 (2ω2 (4a2 + c2
1) + 5α2)

32c1ω5
.

Under the hypothesis of Theorem 28 one can check that α∗ = 2ω
√
−2a2 is a simple zero

of the function f1(α). Then we can apply Theorem 12 with s = 1. By Proposition 11 and
Lemma 8 we can write the initial point of the periodic solution as z(ε) = zα∗ + εz1 with

z1 =

(
(16a2 − c2

1)ω
√
−2a2

2c1

, 4a2ω
2

(
12a2

c2
1

− 1

))
,

and the matrix (1.25) becomes

A(ε) =

(
0 0

4π
√
−2a2 −

2c1π

ω

)
+ ε

 6a2π

ω

√
−2a2c1π

ω2

π
√
−2a2

ωc1

(c2
1(ω − 4π)− 8a2ω)

2π(c2
1π − 2a2ω)

ω2

 .

The matrix A(ε) has the two distinct eigenvalues

λ1 = −2c1π

ω
+ ε

(
2c1π

ω

)2

+O(ε2) and λ2 = ε
2a2π

ω
+O(ε2).

Thus we can apply Theorem 13 taking s = 1. Since a2 is negative by hypothesis, we have
that for ε > 0 sufficiently small if c1 > 0, Re(λ1) < Re(λ2) < 0, then the periodic orbit
is an attractor. Otherwise, if c1 < 0, Re(λ2) < 0 < Re(λ1), then the periodic orbit has
a stable manifold formed by two topological cylinders, and an unstable manifold formed
by two topological cylinders.

5.3.2 Proof of Theorem 29

Proof. Using the change of variables (X, Y, Z) =
√
ε
(
x + z, (−x −

√
3y + 2z)/2, (−x +√

3y + 2z)/2
)

the differential system (5.2) becomes

Ẋ =X

(
1

2
− β2ε

2

)
−

sin
(√

ε
(
−X +

√
3Y + 2Z

)
/2
)

3
√
ε

+
sin(
√
ε(X + Z))

3
√
ε
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+
2 sin

(√
ε
(
X +

√
3Y − 2Z

)
/2
)

3
√
ε

,

Ẏ =Y

(
1

2
− β2ε

2

)
+

sin(
√
ε(X + Z))

ε
√

3
−

sin
(√

ε
(
−X +

√
3Y + 2Z

)
/2
)

√
ε
√

3
, (5.5)

Ż =Z

(
1

2
− β2ε

2

)
−

sin
(√

ε
(
X +

√
3Y − 2Z

)
/2
)

3
√
ε

+
sin(
√
ε(X + Z))

3
√
ε

+
sin
(√

ε
(
−X +

√
3Y + 2Z

)
/2
)

3
√
ε

.

We remark that for all δ ∈ R the function sin(δ w)/δ is well defined and

lim
δ→0

sin(δ w)

δ
= w.

Thus the above equation can also be written as

Ẋ =−
√

3

2
Y +

ε

16

(
X3 +X2

(√
3Y + 2Z

)
+X

(
Y 2 − 4

√
3Y Z + 4

(
Z2 − 4β

))
+ Y

(√
3Y 2 − 2Y Z + 4

√
3Z2

))
+O(ε2),

Ẏ =

√
3

2
X +

ε

16

(
−
√

3X3 +X2
(
Y − 2

√
3Z
)
−X

(√
3Y 2 + 4Y Z + 4

√
3Z2

)
+ Y

(
Y 2 + 2

√
3Y Z + 4

(
Z2 − 4β

)))
+O(ε2),

Ż =
3

2
Z +

ε

24

(
−X3 − 6X2Z + 3XY 2 − 2Z

(
3Y 2 + 2

(
6β + Z2

)) )
+O(ε2).

In order to put the differential system (5.5) into the normal form for applying the averaging
theory we consider the cylindrical change of variables (X, Y, Z) =

(
ρ cos θ, ρ sin θ, w

)
with

ρ > 0. Then we check that θ̇ =
√

3/2 +O(ε2) for |ε| 6= 0 sufficiently small. Thus taking
θ as the new independent variable we obtain the differential system

ż = F0

(
z, θ
)

+ εF1

(
z, θ
)

+ ε2F2

(
z, θ
)

+O(ε3), (5.6)

with z = (ρ, w), F0

(
z, θ
)

=
(
0,
√

3w
)
, and Fi

(
z, θ
)

=
(
Fi1
(
z, θ
)
, Fi2

(
z, θ
))

for i = 1, 2,
where

F11

(
z, θ
)

=
ρ

8
√

3

(
ρ2 + 2ρw

(
cos(3θ)−

√
3 sin(3θ)

)
+ 4

(
w2 − 4β

))
,

F12

(
z, θ
)

=
1

72

(
w
(√

3
(
−48β − 3ρ2 + 28w2

)
+ 18rw sin(3θ)

)
− 2
√

3ρ cos(3θ)
(
ρ2 − 9w2

) )
,

F21

(
z, θ
)

=
ρ

5760

(
ρ
(
−30w sin(3θ)

(
32β + ρ2 + 8w2

)
+ 10
√

3w cos(3θ)(
−96β + 7ρ2 + 40w2

)
+ 3ρ sin(6θ)

(
ρ2 − 40w2

)
−
√

3ρ cos(6θ)
(
ρ2 − 120w2

))
+ 20
√

3
(
−192β2 + ρ4 + 6ρ2

(
w2 − 4β

)
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+ 20w4 − 96βw2
) )
,

F22

(
z, θ
)

=
1

5760
√

3

(
− 12w

(
960β2 + 5ρ4 + 120β

(
ρ2 + 4w2

)
− 50ρ2w2 − 228w4

)
− 30ρ cos(3θ)

(
ρ4 + 3ρ2w2 − 104w4 + 96βw2

)
+ ρw

(
cos(6θ)

(
360ρw2 − 69ρ3

)
+ 2
√

3 sin(3θ)
(
cos(3θ)

(
360ρw2 − 23ρ3

)
+ 5w

(
−96β + 3ρ2 + 104w2

))) )
.

System (5.6) is 2π-periodic and it is into the normal form for applying Theorem 12.
Furthermore for the initial condition z0 = (ρ0, w0) the solution of the unperturbed

differential system corresponding to (5.6) is given by Φ(θ, z) =
(
ρ0, w0e

√
3θ
)

. Then we

consider the set Z ⊂ R2 such that Z = {(α, 0) : α > 0}. Clearly for zα ∈ Z the solution
Φ(θ, zα) can be assumed 2π-periodic, and therefore the differential system (5.6) satisfies
hypothesis (H). Moreover the fundamental matrix of the variational differential system
along Φ(θ, zα) is

M(θ, zα) =

(
1 0

0 e
√

3θθ

)
.

Computing the averaging functions we obtain g0(z) =
(
0, (e2π

√
3 − 1)w

)
and gi(z) =

(gi1(z), gi2(z)) for i = 1, 2 where

g11(z) =
ρ

12

(√
3π
(
ρ2 − 16β

)
+
(
e2
√

3π − 1
)
w
(
ρ+ e2

√
3πw + w

))
,

g12(z) =
1

144

(
ρ3 − e2

√
3π
(
ρ3 + 12

√
3πρ2w + 28w3 + 192

√
3πβw

)
+ 28e6

√
3πw3

)
,

g21(z) =

(
1 + 16

√
3π + 54π2

)
ρ5

1728
+
e14
√

3πρw4

108
+
e10
√

3πρw3(15ρ− 196w)

15120

+
e12
√

3πρw3(21ρ+ 13w)

5616
+
e8
√

3πρw2 (171ρ2 − 700ρw + 3192 (w2 − β))

229824

+
e2
√

3π
(
ρ2w

(
288β + 48

√
3π (ρ2 − 16β)− 19ρ2

)
− 2ρ5

)
3456

+
467ρ4w

169344

− 5ρ2 (3815w3 + 28652βw)

1742832
−
ρ3
(
3024π

(√
3 + 4π

)
β + 115w2

)
18144

+
e6
√

3πρw2
(
112β − 42

√
3π (16β + ρ2) + 31ρ2 + 42ρw

)
4536

− e4
√

3πρw

84672

(
−232ρ3 + 105ρ2w + 84

√
3π
(
5ρ3 − 7ρ2w + 80βρ+ 112βw

)
+ 96βρ+ 9408βw

)
+ ρ

(
4

3
π
(

2πβ2 −
√

3β2

)
− w4

80
+

65βw2

648

)
,

g22(z) =e10
√

3π

(
−ρ

2w3

252
− 7ρw4

456
+

19w5

480

)
+
ρ3
(
32β + 12

√
3π (ρ2 − 16β)− ρ2

)
6912

+
(
ρ2
(

1071w −
(

619 + 504
√

3π
)
ρ
)
− 288β

((
6 + 28

√
3π
)
ρ+ 49w

))
79



Lorenz and Thomas’ differential systems

e6
√

3πw2

84672
+
e8
√

3πw2

24192

(
ρ
(
−21ρ2 + 4

(
73− 196

√
3π
)
ρw + 644w2

)
+112β

(
3ρ+ 28

(
1− 4

√
3π
)
w
))

+
e4
√

3πw

22464

(
−9984β2 − 123ρ4

+377ρ3w − 1248βρ2 + 78
√

3π
(
16β + ρ2

)2 − 936βρw
)

+
7e16

√
3πw5

216

− e12
√

3πw3 (49ρ2 + 225ρw + 196 (4β + 7w2))

30240
+

35e14
√

3πρw4

2808

+ e2
√

3π

((
41− 52π

(√
3 + 3π

))
ρ4w

7488
−
ρ3
(
784

(
1− 2

√
3π
)
β + 1457w2

)
169344

−
ρ2w

(
3360

(
3
(√

3− 2π
)
π − 1

)
β + 1157w2

)
60480

+ ρ

(
85βw2

1764
− 6085w4

373464

)
−23w5

864
+

(
1 + 4

√
3π
)
ρ5

6912
+

17βw3

270
+

4

9
w
(
β2 − 3

√
3πβ2

))
.

We point out that the function g0(z) satisfies the hypothesis (i) for the graph Z =
{(α, 0) : α > 0}. We apply Theorem 12 to system (5.6) taking s = 0. Then we have

∆α = 1− e−2
√

3π 6= 0 and the function

f1(α) =
πα (α2 − 16β1)

4
√

3
,

has the positive simple zero α∗ = 4
√
β1, where Df1(α∗) = 8πβ1/

√
3. Then system (5.6)

has a 2π-periodic orbit by Theorem 12 . The periodic orbit of system (5.2) is obtained
going back through the change of variables. Now we want to study the stability of this
periodic orbit using Theorem 13. First using (1.24) we compute the function

f2(α) =
α

1728

(
2304π

(
2πβ2 −

√
3β2

)
+
(

1− 2e2
√

3π + e4
√

3π + 16
√

3π + 54π2
)
α4

− 288π
(√

3 + 4π
)
βα2

)
.

Then if ϕ(t, ε) is the above periodic solution founded we can use Proposition 11 and
Lemma 8 to write ϕ(0, ε) = z0 + εz1 +O(ε2), where

z0 =
(

4
√
β1, 0

)
,

z1 =

−2
((

1− 2e2
√

3π + e4
√

3π − 2
√

3π
)
β2 − 9

√
3πβ2

)
9
√

3π
√
β

,

− 4e2
√

3πβ5/2

27

(
4
√

3π
(

1 + coth
(√

3π
))
− 1
))

.

Then by (1.26) and (1.27) we can write the matrix (1.25) as

A(ε) =

(
0 0

0 1− e−2
√

3π

)
+ ε


8πβ1√

3

4β1

3

(
e2
√

3π − 1
)

−β1

3

(
e2
√

3π − 1
)

−8e2
√

3ππβ1√
3

 .
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Now we use Theorem 13 taking s = 0. The eigenvalues of Id + A0 are λ1 = 2 − e2π
√

3

and λ2 = 1. Consequently A(ε) satisfies the hypothesis (s1) and (s2). Thus the Jacobian
matrix of the Poincaré map (1.19) is 2−hyperbolic. Then its eigenvalues can be written
as

λ1 = λ1 + ε
8πβ1e

2π
√

3

√
3

+O(ε2) and λ2 = 1 + ε
8πβ1√

3
+O(ε2).

Since β1 > 0 we have |λi| > 1 for all |ε| > 0 and the result follows.

5.3.3 Proof of Theorem 30

Proof. We will prove the result only for the equilibrium point P+. The proof for the
equilibrium point P− follows exactly the same steps. First we translate the equilibrium
point P+ to the origin and rescale the system using the change of variables (X, Y, Z) =√
ε
(
x+ z, (−x−

√
3y+ 2z)/2, (−x−

√
3y+ 2z)/2

)
, the differential system (5.3) becomes

Ẋ =− ωY +
√
ε
(
X2 + 2X

(√
3Y + 2Z

)
− Y

(
Y + 4

√
3Z
))3ω 4

√
3

4
√

2ω

+
ε

8

(
X
(

8a1 − 20b1 + 3
(
Y 2 + 4

√
3Y Z + 4Z2

))
+ Y

(
−3
√

3Y 2 − 6Y Z

− 4
√

3
(
2a1 − 3b1 + 3Z2

))
+ 3X3 − 3X2

(√
3Y − 2Z

))
+O(ε3/2),

Ẏ =ωX +
√
ε
(√

3X2 − 2XY + 4
√

3XZ −
√

3Y 2 + 4Y Z
)3ω 4
√

3

4
√

2ω

+
ε

8

(
8a1

(√
3X + Y

)
− 4b1

(
3
√

3X + 5Y
)

+ 3
(√

3X3 +X2
(
Y + 2

√
3Z
)

+ X
(√

3Y 2 − 4Y Z + 4
√

3Z2
)

+ Y
(
Y 2 − 2

√
3Y Z + 4Z2

)))
+O(ε3/2),

Ż =−
√

3ωZ +
√
ε(X2 + Y 2 + 2Z2)

3
√
ω 4
√

3

2
√

2
+
ε

4

(
8Z(b1 − a1)−X3

− 6Z
(
X2 + Y 2

)
+ 3XY 2 − 4Z3

)
+O(ε3/2).

This system can be written into the normal form for applying the averaging theory. We
use the cylindrical change of variables (X, Y, Z) =

(
ρ cos θ, ρ sin θ, w

)
with ρ > 0. Then

we check that θ̇ =
√

3/2 +O(ε1/2) for ε > 0 sufficiently small. Then we take θ as the new
independent variable obtaining the differential system

ż = F0

(
z, θ
)

+
√
εF1

(
z, θ
)

+ εF2

(
z, θ
)

+O(ε3/2), (5.7)

with z = (ρ, w), F0

(
z, θ
)

=
(
0,−
√

3w
)
, and Fi

(
z, θ
)

=
(
Fi1
(
z, θ
)
, Fi2

(
z, θ
))

for i = 1, 2,
where

F11

(
z, θ
)

=
3 4
√

3ρ
(√

3ρ sin(3θ) + ρ cos(3θ) + 4w
)

4
√

2
√
ω

,

F12

(
z, θ
)

=−
3 4
√

3
(
2ρ2 − 8w2 +

√
3ρw sin(3θ)− 3ρw cos(3θ)

)
4
√

2
√
ω

,
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F21

(
z, θ
)

=− ρ

32ω

(
3ρ
(

9ρ cos(6θ) + 2
√

3 sin(3θ)(3ρ cos(3θ) + 8w) + 64w cos(3θ)
)

+ 4
(
−8a1 + 20b1 − 3ρ2 + 96w2

) )
,

F22

(
z, θ
)

=
1

32ω

(
ρ
(

6
√

3 sin(3θ)
(
−3ρ2 + 26w2 + 9ρw cos(3θ)

)
+
(
46ρ2 − 468w2

)
cos(3θ)− 27ρw cos(6θ)

)
+ 2w

(
16a1 − 40b1 + 75ρ2 − 376w2

) )
.

We consider the period T = 2π, thus system (5.7) is in the normal form for applying
Theorem 12 . Taking the initial condition z0 = (ρ0, w0) the solution of the unperturbed

differential system corresponding to (5.7) is given by Φ(θ, z) =
(
ρ0, w0e

−
√

3θ
)

. Again

we consider the set Z ⊂ R2 such that Z = {(α, 0) : α > 0}. Thus for zα ∈ Z the
solution Φ(θ, zα) is 2π-periodic, and therefore the differential system (5.7) satisfies the
hypothesis (H). Moreover the fundamental matrix of the variational differential system
along Φ(θ, zα) is

M(θ, zα) =

(
1 0

0 e−
√

3θθ

)
.

The averaging functions for this system are g0(z) =
(
0, (1 − e2π

√
3)w
)

and gi(z) =
(gi1(z), gi2(z)) for i = 1, 2 where

g11(z) =
33/4

(
1− e−2

√
3π
)
ρw

√
2
√
ω

,

g12(z) =−
33/4e−4

√
3π
(
e2
√

3π − 1
)(

e2
√

3πρ2 − 4w2
)

2
√

2
√
ω

,

g21(z) =
ρe−8

√
3π

112ω

(
e8
√

3π
(

28π
(
8a1 − 5

(
4b1 + 3ρ2

))
+
√

3
(
84ρ2 − 168w2 − 23ρw

))
− 56
√

3e2
√

3πw2 + 84
√

3w2 +
√

3e4
√

3πw(51ρ+ 140w)

− 28
√

3e6
√

3πρ(3ρ+ w)
)
,

g22(z) =
e−10

√
3π

8736ω

(
− 1820

√
3e10

√
3πρ3 + 26208

√
3w3 + 1092

√
3e2
√

3πw2(3ρ− 32w)

− 52
√

3e4
√

3πw2(81ρ− 658w)− 39879
√

3e6
√

3πρ2w + e8
√

3π
(

2184πw.(
8a1 − 20b1 − 75ρ2

)
+
√

3
(
1820ρ3 − 25480w3 + 936ρw2 + 39879ρ2w

)))
.

Function g0(z) vanishes on the the graph Z = {(α, 0) : α > 0}. We apply Theorem 12 to

system (5.7). Here s = 0 and ∆α = 1− e−2
√

3π 6= 0. The bifurcation functions are

f1(α) = 0,

f2(α) =
3
(√

3e−4
√

3π
(

1− 2e2
√

3π
)

+
√

3− 5π
)
α3 + 8παa1 − 20παb1

4ω
.
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Function f2 has the positive simple zero

α∗ = 2e2
√

3π

√
π(5b1 − 2a1)

3
√

3− 6
√

3e2
√

3π + 3
√

3e4
√

3π − 15e4
√

3ππ
,

where Df2(α∗) = (10πb1 − 4πa1)/ω. By statement (b) of Theorem 12 system (5.7) has a
2π-periodic solution. The periodic solution of system (5.4) is obtained going back through
the change of variables.
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Chapter 6

Generalized Van der Pol - Duffing
differential system

In this work we the use averaging theory of integrability and the computation of Lyapunov
coefficients to detect for the first time Hopf and zero–Hopf bifurcations in the origin of
coordinates for the general Van der Pol–Duffing equations here considered. We also show,
for the first time, that for certain parameter values two periodic orbits will be surrounded
by a torus.

The autonomous chaotic van der Pol–Duffing oscillator is the differential system given
by

ẋ =− ν
(
x3 − µx− y

)
,

ẏ =x− αy − z (6.1)

ż =βy.

Matouk and Agiza [58] used the Hopf’s theorem and numerical methods to investigate the
Hopf bifurcations and the existence of chaotic behavior in system (6.1). We recall that a
Hopf bifurcation is the mathematical way to study the birth (or death) of a limit cycle
from an equilibrium point in a family of ordinary differential equations. Their results show
that there are periodic solutions and chaotic attractors bifurcating from a fixed point of
this system. Later on Zhao et. al. [89] provided the general van der Pol–Duffing oscillator
given by

ẋ =− ν
(
x3 − µx− y

)
,

ẏ =− hz + kx− αy (6.2)

ż =βy,

where α, h, β, k, ν and µ are real positive parameters.
Motivated by the works of Leonov and Kuznetsov, they found the occurrence of hidden

chaotic attractors besides periodic orbits and chaotic attractors of system (6.2).
The Hopf bifurcation analysis done in [89] discuss only the periodic orbits bifurcating

from the pair of symmetric equilibria

P± =

(
±√µ, 0,±√µk

h

)
.
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However we are going to show that a rich bifurcating phenomena may emerge at the origin
of coordinates O(0, 0, 0). Although the origin of coordinates is an unstable equilibrium
point of system (6.2), we will analytically prove that multiple periodic orbits may bifurcate
from this point. Some of these periodic orbits are stable guaranteeing a very controlled
behavior of the system. We will study analytically all possible classical and degenerate
Hopf bifurcations as well as the zero-Hopf bifurcations at the origin of coordinates. Some
of these techniques were also used for other chaotic systems (see for instance [12, 63]).
The results of this chapter are presented in [19] and submitted for publication.

6.1 Application to General Van der Pol - Duffing

differential system

More precisely our first main result is the following one.

Theorem 31. Consider system (6.2) with

α = εα1, β =
kν + ω2

h
+ εβ1 and µ = εµ1,

where (α1, β1, µ1) ∈ R3
+ and ε > 0 is a small parameter. Let ρ = (2kµ1ν

2−α1ω
2)/k. Then

there exist ε0 > 0 sufficiently small such that for 0 < ε < ε0 the following statements hold.

(a) If ρ ≤ 0, system (6.2) has the periodic solution

ϕ0(t, ε) = 2

√
ε (α1ω

2 + kµ1ν
2)

3k

(
−cos(ωt)

ν
,−sin(ωt)

ν2
,
(kν + ω2) cos(ωt)

hν2

)
+O(ε),

bifurcating from the origin of coordinates. This periodic solution has a stable manifold
formed by two topological cylinders and an unstable manifold also formed by two
topological cylinders.

(b) If ρ > 0, system (6.2) has 3 simultaneous periodic solutions bifurcating from the
origin coordinates, mainly

ϕ±(t, ε) =

√
ε

5

(
± 1

ν

√
2α1ω

2 + kµ1ν
2

k
− 2 cos(tω)

3ν

√
6kµ1ν

2 − 3α1ω
2

k
,

2ω sin(tω)

ν2

√
2kµ1ν

2 − α1ω
2

3k
,± 1

hν

√
k (2α1ω2 + kµ1ν2)

− 2
√

3 (kν + ω2)

3hν2
cos(tω)

√
2kµ1ν

2 − α1ω
2

k

)
+O(ε)

and ϕ0(t, ε). Moreover ϕ±(t, ε) are symmetric and stable, and ϕ0(t, ε) has a stable
manifold formed by two topological cylinders and an unstable manifold also formed
by two topological cylinders.
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The choice of the parameters in Theorem 31 comes from the fact that if α = 0,
β = (kν + ω2)/h and µ = 0 the origin is a zero-Hopf equilibrium point, i.e., the Jacobian
matrix of system (6.2) at O(0, 0, 0) has the eigenvalues λ± = ±iω and λ0 = 0. In Figure
6.1 we have plotted a solution converging to the periodic orbit obtained in Theorem 31.

From now on we relax the condition over the coefficients of system (6.2) by taking
(α, β, k, h, ν) ∈ R5. In the next result we show that an invariant torus bifurcate from the
periodic orbits ϕ±(t) given in Theorem 31. The proof uses the fact that we can show the
existence of a Hopf bifurcation for the averaged system of system (6.2) (see the proof of
Theorem 31).

Theorem 32. Consider system (6.2) and 0 < ε < ε0 as stated in Theorem 31. Take

α1 =
8k̄ν2ω2 − 3k̄ν4

4ω4
, µ1 =

3ν2 + 2ω2

2ω2
, where k̄ =

8νω4

3ν4 − 8ν2ω2
+ δ

and assume that

l =
9ν3 (3ν4 − 8ω4) (81ν8 + 216ν6ω2 − 896ν4ω4 + 800ν2ω6 − 256ω8)

20 (8ω3 − 3ν2ω)
6= 0.

For |δ| > 0 sufficiently small each one of the periodic solutions ϕ±(t, ε) will be surrounded
by an invariant torus. If k̄ is in the region where ϕ±(t, ε) is unstable (stable), then the
torus will be stable (unstable).

(a) (b)

Figure 6.1: (a) The solution starting at (0.3, 0.1, 0.6). Here ε = 1/20, h = 1, k = 2.04772,
α1 = 1, β1 = 1, µ1 = 0.332958, ν = 1 and ω = 1. (b) The aproximation ϕ+(ε, t) in detail.

Figure 6.2 shows a solution converging to the torus around the periodic solution
founded in Theorem 32.

In the proof of Theorem 32 we will see that the first and second Lyapunov coefficients
vanish but the third coefficient is different from zero. This will lead to the statement of
the theorem.
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Figure 6.2: Solution of system (6.2) starting at (0.229319, 0.0210973,−0.26471). Here
ε = 1/80, h = 1, α1 = −1.595, µ1 = −1.99375, ν = 5/2, β1 = 1, δ = 0.005 and ω = 1.
The dashed curve represent an approximation of the solution provided by ϕ+(ε, t).

0.20 0.21 0.22 0.23 0.24

-0.26

-0.25

-0.24

-0.23

(a)

0.2230 0.2235 0.2240 0.2245

-0.2445

-0.2440

-0.2435

-0.2430

(b)

Figure 6.3: (a) it shows the transverse section, (b) The transverse section in detail.

Figure 6.3 show the transversal section of the periodic solution presented in Theorem
32. There we can see how the solution converge to the small torus around the periodic
solution. Finally we show that system (6.2) also has a Hopf equilibrium bifurcation at
the origin of coordinates.

Proposition 33. Let k̄ = −α (αµν − βh− µ2ν2)

ν(α− µν)
and assume that (βhµν)(µν − α) > 0

and x0 = O(0, 0, 0). Then (x0, k̄) is a Hopf point (see Section 6.2.1) of system (6.2).
Moreover its corresponding eigenvalues are

±i

√
βhµν

µν − α
and α− µν.

Proof. The proof of Proposition (33) is done by direct computations, and we omit it
here.
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Theorem 34. Consider system (6.2) as in Proposition 33. Let

(α, β, k, h, ν) ∈ R5 with α = µν

(
1− βh

ω2

)
and ω > 0.

Then for k sufficiently close to the bifurcation value k̄ the following statements hold:

(i) If (ω2 − βh) (βhµ2ν2 − ω4) > 0, system (6.2) has a supercritical Hopf bifurcation at
the origin of coordinates,

(ii) If (ω2 − βh) (βhµ2ν2 − ω4) < 0, system (6.2) has a subcritical Hopf bifurcation at
the origin of coordinates.

We have added an Appendix E where we show how to obtain similar conclusions to
the ones given in Theorem 34 but using the averaging theory described in Theorem 12.

6.2 Proofs

Remark 1. From the averaging theory we know that there is a coordinate transformation

x = y + εu(y, t),

T–periodic in t that carries the solutions of the original system (1.11) to the solutions of
the full averaged system of system (1.11), i.e.

ẏ = εg1(y) + ε2g̃(y, t, ε), (6.3)

where g̃ is T–periodic in t. Taking τ = εt we obtain the system

z′ = g1(z) + εg̃(z, τ/ε, ε). (6.4)

with ′ = d/dτ . For a fixed ε > 0 sufficiently small it is well known that if the (guiding)
system z′ = g1(z) has a periodic solution due to a Hopf bifurcation, then system (6.4) also
has a periodic solution (cf. [57, Theorem 7.1, pg. 250]). Thus the full averaged system
(6.3) will have a periodic solution of period O(1/ε). In this case a torus will emerge from
the periodic solution in the original system (1.11). This bifurcation is called Neimark-
Sacker bifurcation. For more information about Neimark-Sacker bifurcation see [46]. For
details about Neimark-Sacker bifurcation due to a Hopf bifurcation in the averaged system
see [68, Chapter C] and [3]. Similar ideas were also used in [27].

6.2.1 Lyapunov coefficients

In this section we present some basic notions about the Hopf bifurcations and Lyapunov
coefficients. The theory of the Lyapunov coefficients can be found in [46, Chapters 3 and
10]. We also refer the reader to [74] where the Lyapunov coefficient are calculated in great
detail up to order 4.

Consider the differential equation

x′ = f(x,µ), (6.5)
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where x ∈ Rn and µ ∈ Rm are respectively vectors representing phase phase variables
and control parameters.

Here a Hopf point (x0,µ0) is an equilibrium point of (6.5) where the Jacobian matrix
A = fx(x0,µ0) has a pair of purely imaginary eigenvalues λ1,2 = ±iω, ω > 0 and admits
no other eigenvalues with zero real part.

Denoting the variable x− x0 also by x we write

F (x) = f(x,µ0),

as

F (x) = Ax +
1

2
B(x,x) +

1

6
C(x,x,x) +O(||x||4),

where A = fx(0,µ0),

Bi(x,y) =
n∑

j,k=1

∂2Fi(ξ)

∂ξj∂ξk

∣∣∣∣∣
ξ=0

xjyk,

and

Ci(x,y, z) =
n∑

j,k,l=1

∂3Fi(ξ)

∂ξj∂ξk∂ξl

∣∣∣∣∣
ξ=0

xjykzl.

Let p, q ∈ Cn be vectors such that

Aq = iωq, Aᵀp = −iωp, q̄.q = p̄.q = 1,

where Aᵀ is the transposed of the matrix A. We define the first Lyapunov coefficient as

l1 =
1

2ω
Re
(
p̄.C(q, q, q̄)− 2p̄.B(q, A−1.B(q, q̄)) + p̄B(q̄, (2ωiIn − A)−1B(q, q))

)
, (6.6)

where In is the n× n identity matrix.
A Hopf point is called transversal if the parameter controlling the complex eigenvalues

cross the imaginary axis with non-zero derivative. We have the following lemma.

Lemma 35. Consider the differential system (6.5) having the Hopf point (x0,µ0) and
assume that l1 6= 0 and Re(λ±(µ0)) 6= 0. Then following statements hold.

(i) If l1 > 0, the differential system (6.5) has a supercritical Hopf bifurcation at x0.

(ii) If l1 < 0, the differential system (6.5) has a subcritical Hopf bifurcation at x0.

To study the co-dimensions two and three Hopf bifurcations, we need to compute the
pertinent Lyapunov stability coefficients.

Here we consider a cubic polynomial system such that the differential system (6.5)
writes

x′ = f(x,µ0) = Ax +
1

2
B(x,x) +

1

6
C(x,x,x). (6.7)

The two-dimensional center manifolds associated to the eigenvalues λ1,2 can be parameterized
by the variables w and w̄ by the immersion of the form x = H(w, w̄), where H : C2 7→ Rn

has a Taylor expansion of the form

H(w, w̄) = wq + w̄q̄ +
∑

2≤j+k≤6

1

j!k!
hjkw

jw̄k +O(|ω|7), (6.8)
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with hjk ∈ C3. Then substituting this expression in (6.7) we get the following equation

Hwẇ +Hw̄ ˙̄w = f(H(w, w̄)). (6.9)

The vectors hjk are obtained solving the linear systems defined by the coefficients in (6.8)
by taking into account the coefficients of (6.7). System (6.9) on the chart w for a central
manifold, is written as

ẇ = iωw +
1

2
G21w|w|2 +

1

12
G32w|w|4 +

1

144
G43w|w|6 +O(|ω|8),

with Gjk ∈ C. Thus the first three Lyapunov coefficients are

l1 =
1

2
Re(G21), l2 =

1

12
Re(G12) and l3 =

1

2
Re(G43).

More precisely, we have

h11 =A−1B(q, q̄),

h20 = (2iω ∗ I3 − A)−1B(q, q̄),

where In is the n× n identity matrix. From the coefficients of the terms w3 in (6.9), we
have

h30 = (3iωIn − A)−1(3B(q, h20) + c(q, q, q)).

From the coefficients of the terms w2w̄ in (6.9), we obtain the singular system for h21(
iωIn − A q

p̄ 0

)(
h21

s

)
=

(
H21 −G21q

0

)
,

where H21 = B(q̄, h20) + 2B(q, h11) + C(q, q, q̄) and G21 = p̄.H21.
From the coefficients of the terms w4, w3w̄ and w2w̄2 in (6.9) one obtains respectively

h40 =(4iωIn − A)−1(3B(h20, h20) + 4B(q, h30) + 6C(q, q, h20),

h31 =(2iωIn − A)−1
(
B(q̄, h30) + 3B(h20, h11) + 3B(q, h21) + 3C(q, q̄, h20)

+ 3C(q, q, h11)− 3G21h20

)
,

h22 =− A−1(B(h̄20, hh20) + 2B(q, h̄21) + 2B(q̄, h21) + 2B(h11, h11)

+ C(q, q, h̄20) + 4C(q, q̄, h11) + C(q̄, q̄, h20)).

Defining

H32 =B(h̄20, h30) + 3B(h̄21, h20) + 2B(q̄, h31) + 6B(h11, h21) + 3B(q, h22)

+ 3C(q, h̄20, h20) + 3C(q, q, h̄21) + 6C(q̄, h20, h11) + 6C(q, q̄, h21)

+ C(q̄, q̄, h30) + 6C(q, h11, h11)− 3Ḡ21h21 − 6G21h21,

we have G32 = p̄.H32. The complex vector h32 can be found solving the non-singular
system (

iωIn − A q
p̄ 0

)(
h32

s

)
=

(
H32 −G32q

0

)
,
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Finally from the terms w4w̄, w4w̄2 and w3w̄3 in (6.9), one has respectively

h41 =(3iωIn − A)−1
(
B(q̄, h40) + 4B(h11, h30) + 6B(h20, h21) + 4B(q, h31)

+ 3C(q̄, h20, h20) + 4C(q, q̄, h30) + 12C(q, h11, h20) + 6C(q, q, h21)

− 6G21h30

)
,

h42 =(2iωIn − A)−1
(
B(h̄20, h40) + 4B(h̄21, h30) + 2B(q̄, h41) + 8B(h11, h31)

+ 6B(h20, h22) + 6B(h21, h21) + 4B(q, h32) + 3C(h20, h20, h̄20)

+ 4C(q, h̄20, h30) + 12C(q, h20, h̄21) + 8C(q̄, h11, h30) + 12C(q̄, h20, h21)

+ 8C(q, q̄, h31) + C(q̄, q̄, h40) + 12C(h11, h11, h20 + 24C(q, h11, h21))

+ 6C(q, q, h22)− 4(Ḡ21h31 + 3G21h31 +G32h20)
)
,

h33 =− A−1(3B(h̄20, h31) + 9B(h21, h̄21) +B(h̄30, h30) + 3B(h20, h̄31)

+ 3B(q, h̄32) + 3B(q̄, h32) + 9B(h11, h22) + 9C(q̄, h̄20, h21)

+ 3C(q̄, h̄20, h30) + 9C(h11, h̄20, h20) + 9C(q, h̄20, h21)

+ 18C(q, h11, h̄21) + 3C(q, h20, h̄30) + 3C(q, q, h̄31)

+ 18C(q̄, h11, h21) + 9C(q, q̄, h22) + 3C(q̄, q̄, h31)

+ 6C(h11, h11, h11)− 9h22(Ḡ21 +G21)− 3h11(Ḡ32 +G32)),

H43 =3B(h̄20, h41) + 12B(h̄21, h31) +B(h̄30, h40) + 4B(h30, h̄31)

+ 6B(h20, h̄32) + 3B(q̄, h42) + 12B(h11, h32) + 18B(h21, h22) + 4B(q, h33)

+ 3C(q̄, h̄20, h40) + 12C(h11, h̄20, h30) + 18C(h20, h̄20, h21)

+ 12C(q, h̄20, h31) + 12C(q̄, h̄21, h30) + 36C(h11, h20, h̄21)

+ 36C(q, h21, h̄21) + 3C(h20, h20, h̄30) + 4C(q, h30, h̄30))

+ 12C(q, h20, h̄31 + 6C(q, q, h̄32) + 24C(q̄, h11, h31))

+ 18C(q̄, h20, h22) + 18C(q̄, h21, h21) + 12C(q, q̄, h32))

+ 3C(q̄, q̄, h41) + 36C(h11, h11, h21) + 36C(q, h11, h22)

− 6(2Ḡ21h32 + Ḡ32h21 + 3G21h32 + 2G32h21),

obtaining G43 = p̄.H43.

6.2.2 Proof of Theorem 31

Proof. First we do the reescaling (x, y, z) = ε(x̄, ȳ, z̄) obtaining the system

˙̄x =ȳν + ε
(
µ1 − x̄2

)
,

˙̄y =x̄k − hz̄ − εȳ,

˙̄z =
ȳ (kν + ω2)

h
+ εβ1ȳ,

In order to write the linear part of this system in its Jordan real normal form, we do the
linear change of variables

(x̄, ȳ, z̄) =

(
Z − Xν

ω
, Y,

1

h

(
k
(
z − xν

ω

)
−Xω

))
.
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Then the previous system writes

Ẋ =− ωY +
ε

ω4

(
kν(νX − ωZ)

(
ν2X2 − 2νXωZ + ω2

(
Z2 − µ1

))
− β1hω

3Y
)
,

Ẏ =ωX − εα1Y, (6.10)

Ż =
ε

ω5

(
kν(Xν − Zω)

(
X2ν2 − 2XZνω +

(
Z2 − µ1

)
ω2
)

+ ω2
(
− hY β1ω

+(Xν − Zω)
(
X2ν2 − 2XZνω +

(
Z2 − µ1

)
ω2
)))

.

Now we use cylindrical coordinates X = r cos θ, Y = r sin θ and Z = z in system (6.10).
Thus taking θ as the new independent variable we finally obtain a system in the normal
form for applying the averaging theorem

r′ =
ε

ω5

(
−β1hrω

3 sin(θ) cos(θ) + kν cos(θ)(νr cos(θ)− ωz) (νr cos(θ)(νr cos(θ)

−2ωz) + ω2
(
z2 − µ1

))
+ α1(−r)ω4 sin2(θ)

)
+O(ε2) = F11(θ, r, z) +O(ε2),

z′ =
ε

ω6

(
ν
(
kν + ω2

)
(νr cos(θ)− ωz)

(
νr cos(θ)(νr cos(θ)− 2ωz) + ω2

(
z2 − µ1

))
−β1hνrω

3 sin(θ)
)

+O(ε2) = F12(θ, r, z) +O(ε2), (6.11)

where here ′ = d/dθ. System (6.11) is 2π-periodic in θ, and we can use the first order
averaging method to write its averaged system

r′ =ε
r (−4α1ω

4 + 3kν4r2 + 4kν2ω2 (3z2 − µ1))

8ω5
,

z′ =− ενz (kν + ω2) (3ν2r2 + 2ω2 (z2 − µ1))

2ω5
.

The equilibrium point of the averaged system satisfying r > 0 are

S± =

(
2ω

ν

√
ρ

15
,±
√
ρ

5

)
and S0 =

(
2ω

ν2

√
α1ω

2 + kµ1ν
2

3k
, 0

)
,

where ρ = (2kµ1ν
2 − α1ω

2)/k. Consequently the following statements hold.

(i) If ρ ≤ 0 the only equilibrium point of system (6.11) is S0.

(ii) If ρ > 0 system (6.11) has three equilibrium points S± and S0.

For analyzing the stability of these equilibria we study their eigenvalues. First the
eigenvalues of the Jacobian matrix of system (6.11) at S0 are λ− < 0 < λ+, where

λ− = −(kν + ω2) (2α1ω
2 + kµ1ν

2)

kνω3
and λ+ =

α1ω
2 + kµ1ν

2

ω3
.

Thus S0 always has one stable and one unstable direction.
For analyzing the stability of S± we assume ρ > 0. Then we write the characteristic

polynomial of its Jacobian matrix

C(λ) = λ2 + bλ+ c,
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where

b =
4α1ω

2 + 5α1kν + 2kµ1ν
2

5kνω
and c =

2ρ (kν + ω2) (2α1ω
2 + kµ1ν

2)

5νω6
.

Let λ1 and λ2 be the solutions of C(λ) = 0 then the following statement hold.

(i) If b2 − 4c ≤ 0 then Re(λ1) = Re(λ2) = −b/2 < 0.

(ii) If b2 − 4c > 0 then λ1 < λ2 < 0.

Statement (i) follows directly from the fact that b > 0. Furthermore the graph of C(λ)
is a parabola opening upwards cutting the ordinate axis at C(0) = c > 0 and since
C ′(0) = b > 0, it is increasing at C(0), then its roots must be at the left side of the
abscissa axis. This graph analysis justifies statement (ii).

6.2.3 Proof of Theorem 32

Proof. Let

α1 =
8kν2ω2 − 3kν4

4ω4
and µ1 =

3ν2 + 2ω2

2ω2
.

To prove the Neimark-Sacker bifurcation occurring in system (6.2) we use Remark 1.
Thus we use the averaged system (1.2) to write the guiding system as

r′ =
3kν4r3

8ω5
+ r

(
3kν2z2

2ω3
− 3kν2 (ν2 + 4ω2)

8ω5

)
,

z′ =
νz (3ν2 + 2ω2) (kν + ω2)

2ω5
− 3ν3r2z (kν + ω2)

2ω5
− νz3 (kν + ω2)

ω3
. (6.12)

We are going to show that the guiding system has Hopf bifurcations at S± = (1,±1).
Due to the symmetry of the system, the proof will be done only for the Hopf bifurcation
at S+.

We translate S+ to the origin of coordinates, and do the change of coordinates

(r, z) =

(
6
√

5ν3ζ

8ω3 − 3ν2ω
,

6
√

5ν3ρ

3ν2ω − 8ω3

)
,

obtaining the system (
ρ̇

ζ̇

)
=

(
0 −λ
λ 0

)(
ρ
ζ

)
+

(
h1(ρ, ζ)
h2(ρ, ζ)

)
, (6.13)

where λ =
6
√

5ν3

ω (3ν2 − 8ω2)
, and

h1(ρ, ζ) =−
3ν3

(
ν2(ρ+ 1)

(
ρ2 + 2

√
5ρζ + 5ζ2

)
+ 4ρω2

(
ρ2 + ρ− 2

√
5ζ
))

4ω3 (8ω2 − 3ν2)
,

h2(ρ, ζ) =
3ν3

16
√

5ω5 (8ω2 − 3ν2)

(
4ν2ω2

(
(7ρ+ 10)ρ2 + 5(ρ− 2)ζ2 + 8

√
5(ρ+ 1)ρζ

)
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+ ν4
(
ρ3 + 3

√
5ρ2ζ + 15ρζ2 + 5

√
5ζ3
)

+ 16ρω4
(

(ρ− 5)ρ− 2
√

5ζ
))

.

In order to calculate the first Lyapunov coefficient of system (6.13) we compute the
multilinear functions

A =

(
0 −λ
λ 0

)
,

B(x,y) =

(
3ν3

6ν2ω3 − 16ω5

(
x1y1

(
ν2 + 4ω2

)
+
√

5x1y2

(
ν2 − 4ω2

)
+ x2

(√
5y1

(
ν2 − 4ω2

)
+ 5ν2y2

))
,

3ν5

√
5ω3 (8ω2 − 3ν2)(

5x1y1 + 2
√

5x1y2 + 2
√

5y1x2 − 5x2y2

)
− 6ν3ω2

(
5x1y1

+
√

5x1y2 +
√

5y1x2

))
, and

C(x,y, z) =

(
36ν3x1y1z1ω

2

6ν2ω3 − 16ω5
+

3ν5

6ν2ω3 − 16ω5

(
x1

(
3y1z1 + 2

√
5y1z2

+ 2
√

5z1y2 + 5y2z2

)
+ x2

(
2
√

5y1z1 + 5y1z2 + 5z1y2

))
,

3

40ω5 (8ω2 − 3ν2)

(
48
√

5ν3x1y1z1ω
4 + 3ν7

(
x1

(
y1

(√
5z1 + 5z2

)
+ 5y2

(
z1 +

√
5z2

))
+ 5x2

(
y1z1 +

√
5y1z2 +

√
5z1y2 + 5y2z2

))
+ 4ν5ω2

(
x1

(
21
√

5y1z1 + 40y1z2 + 40z1y2 + 5
√

5y2z2

)
+ 5x2

(
8y1z1 +

√
5y1z2 +

√
5z1y2

))))
,

as defined in Section 6.2.1. We take the eigenvectors

p = q =
1√
2

(1,−i).

In order to calculate the first Lyapunov coefficient we compute the quantities

h11 =

(
− 8ω4

3ν4 + 8ω4
,− 3ν4

3ν4 + 8ω4

)
,

h20 =

(
8iω2

(
−6
√

5ν2 +
(
11
√

5 + 10i
)
ω2
)

15 (3ν4 + 8ω4)
,
ν2
(
3
(
25 + 4i

√
5
)
ν2 + 16

(
−5− 2i

√
5
)
ω2
)

15 (3ν4 + 8ω4)

)
,

h30 =

(
4ω2

(
27
(
1− i

√
5
)
ν4 + 12

(
−17 + 7i

√
5
)
ν2ω2 + 4

(
53− 13i

√
5
)
ω4
)

5ν2 (3ν4 + 8ω4)

√
24ω4

ν4
+ 9

,

√
3ν2

(
3
(
17 + 8i

√
5
)
ν4 + 8

(
−14− 11i

√
5
)
ν2ω2 + 16

(
1 + 4i

√
5
)
ω4
)

5 (3ν4 + 8ω4)3/2

)
,
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H21 =

(
8i
√

3ν3ω
(
3
(
4
√

5 + 5i
)
ν4 + 16

(√
5 + 5i

)
ν2ω2 + 8

(
4
√

5 + 35i
)
ω4
)

5 (3ν2 − 8ω2) (3ν4 + 8ω4)3/2
,

6
√

3ν5
(
3
(
5 + 13i

√
5
)
ν4 + 32i

√
5ν2ω2 + 8

(
−5 + 3i

√
5
)
ω4
)

5 (8ω3 − 3ν2ω) (3ν4 + 8ω4)3/2

)
,

G21 =
48iν3 (3ν4 + 4ν2ω2 + 8ω4)√
5ω (8ω2 − 3ν2) (3ν4 + 8ω4)

.

Thus we have l1 = 0.

Now we perform the computations to obtain the second Lyapunov coefficients

h21 =

(√
3

5

2iω2 (8ω4 − 3ν4)

(3ν4 + 8ω4)3/2
,
i
√

3
(√

5 + 5i
)

(3ν6 − 8ν2ω4)

10 (3ν4 + 8ω4)3/2

)
,

h40 =

(
64ω2

1125 (3ν4 + 8ω4)2

(
72
(

35− 13i
√

5
)
ν6 + 3

(
−6595 + 1016i

√
5
)
ν4ω2

+ 4
(

9715− 47i
√

5
)
ν2ω4 +

(
−21445− 1324i

√
5
)
ω6
)
,

1

375 (3ν4 + 8ω4)2(
9
(

1775 + 3128i
√

5
)
ν8 + 96

(
−325− 1441i

√
5
)
ν6ω2

+ 64
(
−1525 + 3044i

√
5
)
ν4ω4 + 4096

(
25− 17i

√
5
)
ν2ω6

))
,

h31 =

(
4ω2

75 (3ν4 + 8ω4)2

(
18
(

15− 19i
√

5
)
ν6 +

(
−345 + 441i

√
5
)
ν4ω2

+ 16
(
−70 + 29i

√
5
)
ν2ω4 + 8

(
−85 + 89i

√
5ω6
))

,
ν2

150 (3ν4 + 8ω4)2(
9
(

205 + 31i
√

5
)
ν6 + 48

(
95− 4i

√
5
)
ν4ω2 + 8

(
965 + 179i

√
5
)
ν2ω4

+ 128
(
−125− 23i

√
5
)
ω6
))

,

h22 =
(
− 16ω4 (93ν4 − 176ν2ω2 + 188ω4)

15 (3ν4 + 8ω4)2 ,−ν
4 (141ν4 − 352ν2ω2 + 496ω4)

5 (3ν4 + 8ω4)2

)
,

H32 =

(
4
√

3ν3ω

25 (3ν2 − 8ω2) (3ν4 + 8ω4)5/2

(
9
(

665 + 101i
√

5
)
ν8

+ 48
(

160− 47i
√

5
)
ν6ω2 + 16

(
−1000 + 689i

√
5
)
ν4ω4

+ 128
(

340− 47i
√

5
)
ν2ω6 + 64

(
−2665 + 101i

√
5
)
ω8
)
,

6
√

3ν5

25 (3ν2ω − 8ω3) (3ν4 + 8ω4)5/2

(
9
(
−360− 461i

√
5
)
ν8

+ 24
(

35 + 129i
√

5
)
ν6ω2 + 8

(
815− 563i

√
5
)
ν4ω4
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+ 64
(
−25 + 69i

√
5
)
ν2ω6 + 64

(
195 + 94i

√
5
)
ω8
))

,

G32 =
48i
√

5δν3 (3ν4 − 8ν2ω2 + 8ω4) (3ν4 + 4ν2ω2 + 8ω4)

(8ω3 − 3ν2ω) (3ν4 + 8ω4)2 .

Obtaining again l2 = 0.
Finally we have to calculate

h32 =

( √
3ω2

25 (3ν4 + 8ω4)5/2

((
−297− 999i

√
5
)
ν8 + 48

(
1 + 6i

√
5
)
ν6ω2

+ 2608ν4ω4 + 128
(

1− 6i
√

5
)
ν2ω6 + 192

(
−11 + 37i

√
5
)
ω8
)
,

√
3ν2

50 (3ν4 + 8ω4)5/2

(
81
(
−29 + 8i

√
5
)
ν8 + 24

(
29− 7i

√
5
)
ν6ω2

− 1304i
(√

5− i
)
ν4ω4 + 64

(
−31 + 5i

√
5
)
ν2ω6 + 192

(
98− 13i

√
5
)
ω8
))

,

h41 =

(
8ω2

125
√

3 (3ν4 + 8ω4)5/2

(
27
(

211− 140i
√

5
)
ν8

+ 36
(
−848 + 199i

√
5
)
ν6ω2 + 12

(
271− 536i

√
5
)
ν4ω4

+ 32
(
−19 + 536i

√
5
)
ν2ω6 + 16

(
3857− 619i

√
5
)
ω8
)
,

√
3ν2

125 (3ν4 + 8ω4)5/2

(
9
(

1328 + 455i
√

5
)
ν8 + 24

(
283− 419i

√
5
)
ν6ω2

+ 72
(
−29 + 149i

√
5
)
ν4ω4 + 576

(
−183− 83i

√
5
)
ν2ω6+

128
(

259 + 397i
√

5
)
ω8
))

,

h42 =

(
8ω2

1875 (3ν4 + 8ω4)3

(
54
(

4445− 3154i
√

5
)
ν10 + 45

(
−2615 + 11036i

√
5
)
ν8ω2

+ 1200
(
−511− 107i

√
5
)
ν6ω4 + 80

(
−15700 + 3653i

√
5
)
ν4ω6

+ 1280
(

5 + 44i
√

5
)
ν2ω8 + 64

(
11005 + 13399i

√
5
)
ω10
))

,

h33 =

(
4ω2

25 (3ν4 + 8ω4)3

(
− 2187i

√
5ν10 + 9

(
−5653− 270i

√
5
)
ν8ω2

+ 24
(

4547 + 477i
√

5
)
ν6ω4 + 16

(
−8782 + 351i

√
5
)
ν4ω6

+ 64
(

2657− 234i
√

5
)
ν2ω8 + 64

(
−1783 + 36i

√
5
)
ω10
)
,

3ν2

50 (3ν4 + 8ω4)3

(
9
(
−1963 + 162i

√
5
)
ν10 + 96

(
1103 + 135i

√
5
)
ν8ω2
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+ 32
(
−6596− 711i

√
5
)
ν6ω4 + 128

(
1531− 243i

√
5
)
ν4ω6

+ 64
(
−2533 + 786i

√
5
)
ν2ω8 − 9216i

(√
5− 5i

)
ω10
))

,

H43 =

(
24
√

3ν3ω

625 (3ν2 − 8ω2) (3ν4 + 8ω4)7/2

(
27
(

101960 + 11141i
√

5
)
ν12

+ 72
(

22270 + 13269i
√

5
)
ν10ω2 + 600i

(
2025
√

5 + 18337i
)
ν8ω4

+ 320
(

69785− 30641i
√

5
)
ν6ω6 + 4800i

(
4215
√

5 + 10117i
)
ν4ω8

+ 1536
(

43005− 5252i
√

5
)
ν2ω10 + 512

(
−254120 + 10241i

√
5
)
ω12
)
,

6
√

3ν5

625 (3ν2ω − 8ω3) (3ν4 + 8ω4)7/2

((
−7787205− 6311547i

√
5
)
ν12

+ 216
(

39995 + 53957i
√

5
)
ν10ω2 + 3600

(
3289− 11246i

√
5
)
ν8ω4

+ 640i
(

66413
√

5 + 39685i
)
ν6ω6 + 3200

(
10024− 911i

√
5
)
ν4ω8

+ 512
(

12115− 62099i
√

5
)
ν2ω10 + 112128

(
535 + 501i

√
5
)
ω12
))

,

G43 =
36ν3

625 (8ω3 − 3ν2ω) (3ν4 + 8ω4)3

(
81
(

3375 + 4697i
√

5
)
ν12

+ 72
(

10125− 17716i
√

5
)
ν10ω2 + 120

(
−31275 + 35639i

√
5
)
ν8ω4

+ 160
(

4725− 33449i
√

5
)
ν6ω6 + 1280

(
5625 + 3566i

√
5
)
ν4ω8

+ 256
(
−28125− 15857i

√
5
)
ν2ω10 + 6144

(
375 + 1193i

√
5
)
ω12
)
.

Hence

l3 =
Re(G43)

144
=

9ν3 (3ν4 − 8ω4) (81ν8 + 216ν6ω2 − 896ν4ω4 + 800ν2ω6 − 256ω8)

20 (8ω3 − 3ν2ω) (3ν4 + 8ω4)3

and by the arguments given in Section 6.2.1 we know that the guiding system (6.12) has
a Hopf bifurcation. Figure 6.4 numerically shows the periodic solution for system (6.12).

6.2.4 Proof of Theorem 34

Proof. The proof will be provided using Lemma 35. In order to simplify the computations
we take α = µν

(
1− βh

ω2

)
with ω > 0. Then the bifurcation coefficient becomes k̄ =

−(ω2−βh)(µ2ν2+ω2)
νω2 , and the eigenvalues are ±iω and βhµν

ω2 .
The characteristic polynomial of the Jacobian matrix of system (6.2) at the origin is

βhµν + λ

(
ν
(
k + µ2ν

)
− βh (µ2ν2 + ω2)

ω2

)
+ λ2βhµν

ω2
− λ3 = 0.
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Figure 6.4: Two solutions converging to the limit cycle resulting of the Hopf bifurcation
at S+. Here k = −1.595, ν = 1 and ω = 1. The square and triangle represent the initial
points (1.00001, 1.000002) and (1.00001, 1.00002) respectively.

Assume that λ(k) is a solution of the characteristic polynomial. It depends continuously
on k and we can write

dλ

dk
(k) =

νω2λ(k)

βh (µ2ν2 + ω2)− 2βhµνλ(k) + 3ω2λ(k)2 − νω2 (k + µ2ν)
. (6.14)

Let λ(k̄) = iω and taking k = k̄ in (6.14) we have that

Re

(
dλ

dk
(k̄)

)
= − βhµν2ω2

2 (β2h2µ2ν2 + ω6)
6= 0.

Thus in order to apply Lemma 35 accordingly with the arguments of Section 6.2.1, we
calculate

A =


µν ν 0

(βh− ω2) (µ2ν2 + ω2)

νω2
µν

(
βh

ω2
− 1

)
−h

0 β 0

 ,

and the multilinear functions B(x,y) = (0, 0, 0) and C(x,y, z) = (−6x1y1z1, 0, 0). We
also obtain the eigenvectors

p = σ1

(
−iβ (βh− ω2) (µν − iω)2

2νω (βhµν − iω3)
,
βω(ω + iµν)

2βhµν − 2iω3
,
βh(µν − iω)

2βhµν − 2iω3

)
,

q = σ2

(
− iνω

sgn(β)(µν − iω)
,

iω

sgn(β)
, |β|

)
,

where

σ1 =

√√√√√ω2

(
ν2

µ2ν2 + ω2
+ 1

)
β2

+ 1, σ2 =

√
µ2ν2 + ω2

β2 (µ2ν2 + ω2) + (µ2 + 1) ν2ω2 + ω4
.
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In this case the first Lyapunov coefficient (see (6.6))

l1 =
1

2ω
Re (p̄.C(q, q, q̄))

becomes

l1 =
3ν3ω (ω2 − βh) (βhµ2ν2 − ω4)

2 (β2 (µ2ν2 + ω2) + (µ2 + 1) ν2ω2 + ω4) (β2h2µ2ν2 + ω6)
.

So the result follows directly from Lemma 35.

6.3 Appendix E: Hopf bifurcation via Theorem 12

In this Appendix, we show that the Hopf bifurcation detected by the computation of the
Lyapunov coefficients in Theorem 34 can also be detected with the averaging method (see
Theorem 12 ). More precisely we have the following result.

Theorem 36. Consider the differential system (6.2) with

k = −(ω2 − βh) (µ2ν2 + ω2)

νω2
− εα1 (βhµ2ν2 + ω4)

βhµν2
, α =

µνω2 − βhµν
ω2

+ εα1,

and assume that
βhµν2

(
βh− ω2

) (
ω4 − βhµ2ν2

)
> 0.

Then for |ε| > 0 sufficiently small system (6.2) has a periodic solution bifurcating from
the origin of coordinates.

Proof. Following the algorithm used in the proof of Theorem 31, we first do a reescaling
of the system by doing (x, y, z) = ε(x̄, ȳ, z̄). Then we do the linear change of coordinates

(x̄, ȳ, z̄) =

(
X + Z,−−βhµνZ + µνXω2 + ω3Y + µνω2Z

νω2
,

βhXω − βhµνY + βhωZ − ω3Z

hνω

)
,

obtaining the system

Ẋ =− ωY + ε
α1 (β2h2µ2ν2Z − βhµνω3Y + ω6(X + Z))

β2h2µ2ν2 + ω6

− ε2ν(X + Z)3 (βh− ω2) (βhµ2ν2 − ω4)

β2h2µ2ν2 + ω6
,

Ẏ =ωX + ε
(α1β

2h2µ2ν2ω3Z − α1βhµνω
6Y + α1Xω

9 + α1ω
9Z)

β3h3µ3ν3 + βhµνω6
(6.15)

+ ε2µν
2ω(X + Z)3 (ω4 − β2h2)

β2h2µ2ν2 + ω6
,

Ż =
βhµν

ω2
Z + ε

(
α1βhµνX (βhµν cos(Y ) + ω3 sin(Y ))

β2h2µ2ν2 + ω6
− α1(X cos(Y ) + Z)

)
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− ε2βhνω
2 (µ2ν2 + ω2) (X cos(Y ) + Z)3

β2h2µ2ν2 + ω6
.

Then we take the cylindrical coordinates X = r cos θ, Y = r sin θ and Z = z in system
(6.15) and take θ as the new independent variable obtaining a differential system

(r′, z′) = F0(r, z) + εF1(r, z, θ) + ε2F2(r, z, θ) +O(ε3), (6.16)

where

F0(r, z) =

(
0,
βhµνz

ω3

)
,

F1(r, z, θ) =

((
z
(
β2h2µ2ν2 + ω6

)
− βhµνrω3 sin(θ) + rω6 cos(θ)

)
α1 (βhµν cos(θ) + ω3 sin(θ))

βhµνω (β2h2µ2ν2 + ω6)
,−
(
z
(
β2h2µ2ν2 + ω6

)
− βhµνrω3 sin(θ) + rω6 cos(θ)

)(
ω3(r + z cos(θ))

− βhµνz sin(θ)
) α1

rω4 (β2h2µ2ν2 + ω6)

)
,

F2(r, z, θ) =

(
1

h2rβ2µ2ν2ω2 (ω6 + h2β2µ2ν2)
2

(
− hr2βµνω

(
α2
1ω

14 + hr2βµν2ω12

− h2r2β2µν2
(
µ2ν2 + ω2

)
ω8 + 2h3r2β3µ3ν4ω6 − h4r2β4µ3ν4

(
µ2ν2 + ω2

)
ω2

+h5r2β5µ5ν6
)
cos4(θ) + rω

(
rω
(
−α2

1ω
16 + h2β2µ2ν2

(
3α2

1 + r2µν2
)
ω10

+h4r2β4µ3ν4(µν − ω)(µν + ω)ω4 − h6r2β6µ5ν6
)
sin(θ)− hzβµν

(
ω6 + h2β2µ2ν2

)(
2α2

1ω
8 + 3hr2βµν2ω6 − 3h2r2β2µν2

(
µ2ν2 + ω2

)
ω2 + 3h3r2β3µ3ν4

))
cos3(θ)

− ω
(
hβµν

(
ω6 + h2β2µ2ν2

) (
α2
1ω

8 + 3hr2βµν2ω6 + h2β2µν2
(
α2
1µ

−3r2
(
µ2ν2 + ω2

))
ω2 + 3h3r2β3µ3ν4

)
z2 + rω sin(θ)

(
3hrα2

1βµν
(
h2β2µ2ν2

−ω6
)
sin(θ)ω7 + z

(
ω6 + h2β2µ2ν2

) (
2α2

1ω
10 − h2β2µ2ν2

(
4α2

1 + 3r2µν2
)
ω4

+3h4r2β4µ3ν4
)))

cos2(θ) +
(
sin(θ)

(
hrα2

1βµν sin(θ)
(
4zω12 + hrβµν

(
h2β2µ2ν2

−3ω6
)
sin(θ)ω3 − 2h4zβ4µ4ν4

)
ω3 + z2

(
ω6 + h2β2µ2ν2

) (
−α2

1ω
12

+3h2r2β2µ3ν4ω6 + h4β4µ3ν4
(
α2
1µ− 3r2ω2

)))
− h2rz3β2µ2ν3ω

(
hβ − ω2

)(
hβµ2ν2 − ω4

) (
ω6 + h2β2µ2ν2

))
cos(θ) + hβµνω2 sin(θ)

(
α2
1ω
(
h2rzβ2µ2ν2

sin(2θ)ω6 + sin(θ)
(
z
(
ω6 + h2β2µ2ν2

)
− hrβµνω3 sin(θ)

)2)− hrz3βµ2ν3(
h2β2 − ω4

) (
ω6 + h2β2µ2ν2

)) )
,

1

hr2βµνω5 (ω6 + h2β2µ2ν2)
2

(
r2zω2

(
α2
1ω

16

−h2r2β2µ3ν4ω10 + h4r2β4µ3ν4
(
ω2 − µ2ν2

)
ω4 + h6r2β6µ5ν6

)
cos4(θ)

− rω
(
−
(
r2 + 2z2

)
α2
1ω

17 + h2β2µν2
((
µ2ν2 + ω2

)
r4 + z2µ

(
3r2µν2 − 2α2

1

))
ω11

+h4r2β4µ3ν4
((
r2 + 3z2

)
µ2ν2 +

(
r2 − 3z2

)
ω2
)
ω5 − 3h6r2z2β6µ5ν6ω + hrzβµν(

4α2
1ω

14 + hr2βµν2ω12 − h2r2β2µν2
(
µ2ν2 + ω2

)
ω8 + 2h3r2β3µ3ν4ω6

−h4r2β4µ3ν4
(
µ2ν2 + ω2

)
ω2 + h5r2β5µ5ν6

)
sin(θ)

)
cos3(θ)
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+ ω
(
zω
(
ω6 + h2β2µ2ν2

) ((
2r2 + z2

)
α2
1ω

10 + h2β2µν2
(
z2µ

(
α2
1 − 3r2µν2

)
−3r4

(
µ2ν2 + ω2

))
ω4 + 3h4r2z2β4µ3ν4

)
+ 3hrβµν sin(θ)

(
−
(
r2 + 2z2

)
α2
1ω

14

−hr2z2βµν2ω12 + 2hrzα2
1βµν sin(θ)ω

11 + h2z2β2µν2
(
r2
(
µ2ν2 + ω2

)
− 2α2

1µ
)
ω8

−2h3r2z2β3µ3ν4ω6 + h4r2z2β4µ3ν4
(
µ2ν2 + ω2

)
ω2 − h5r2z2β5µ5ν6

))
cos2(θ)

+ ω
(
−4h3r2zα2

1β
3µ3ν3 sin3(θ)ω8 + 3h2rα2

1β
2µ2ν2

(
r2ω6 + 2z2

(
ω6

+h2β2µ2ν2
))

sin2(θ)ω5 + rz2
(
ω6 + h2β2µ2ν2

) (
α2
1ω

10 − h2β2µν2
((
3r2 + z2

)
µ2ν2 + 3r2ω2 − α2

1µ
)
ω4 + h4z2β4µ3ν4

)
ω − hzβµν

(
ω6 + h2β2µ2ν2

)(
2
(
2r2 + z2

)
α2
1ω

8 + 3hr2z2βµν2ω6 + h2z2β2µν2
(
2α2

1µ− 3r2
(
µ2ν2 + ω2

))
ω2

+3h3r2z2β3µ3ν4
)
sin(θ)

)
cos(θ)− hβµν

(
hr2z3βν

(
µ2ν2 + ω2

) (
ω6 + h2β2µ2ν2

)
ω6

+ sin(θ)
(
rω
(
ω6 + h2β2µ2ν2

) (
α2
1ω

8 + hz2βµν2ω6 − h2β2µν2
(
z2
(
µ2ν2 + ω2

)
−α2

1µ
)
ω2 + h3z2β3µ3ν4

)
z2 + hα2

1βµν sin(θ)
(
hrβµνω3 sin(θ)

(
r2ω6

−hrzβµν sin(θ)ω3 + 2z2
(
ω6 + h2β2µ2ν2

))
− z

(
ω6 + h2β2µ2ν2

)
((
2r2 + z2

)
ω6 + h2z2β2µ2ν2

)))) ))
.

Thus we use (1.15) to obtain the the following averaged functions of system (6.16):

g0(r, z) =
(

0,
(

1− e−
2πβhµν

ω3

)
z
)
,

g1(r, z) =

(
e

2πβhµν

ω3 (α1β
2h2µ2ν2ω2z − α1ω

8z)

2β3h3µ3ν3 + 2βhµνω6
− α1β

2h2µ2ν2ω2z − α1ω
8z

2β3h3µ3ν3 + 2βhµνω6
,

e
2πβhµν

ω3

(
α1βhµνω

2z2

β2h2µ2ν2r + rω6
− 3πα1z

2ω

)
− α1βhµνω

2z2e
4πβhµν

ω3

β2h2µ2ν2r + rω6

)
,

g2(r, z) =

(α2
1ω

4z2e
8πβhµν

ω3

(
− 8
β2h2µ2ν2+ω6 + 18

4β2h2µ2ν2+ω6 −
1

β2h2µ2ν2

)
8r

− ω2z2e
6πβhµν

ω3

r (β2h2µ2ν2 + ω6) (9β2h2µ2ν2 + ω6)

(
3β3h3µ3ν4rz − β2h2µν2ω2(

6α2
1µ+ rz

(
3µ2ν2 + 4ω2

))
+ 3βhµν2rω6z + ω8

(
2α2

1 + µν2rz
))

+
1

24
e

2πβhµν

ω3

(
−
24β2h2µ2ν2z

(
2α2

1ω
4 + 3µν2r2

(
β2h2 − ω4

))
(β2h2µ2ν2 + ω6)

2

+
81β2h2µν2r2z − 54βhµν2r2ω2z − 3ω4z

(
8α2

1 + 9µν2r2
)

β2h2µ2ν2 + ω6

+
z
(
−9β2h2µν2r2 − 18βhµν2r2ω2 + ω4

(
32α2

1 + 27µν2r2
))

β2h2µ2ν2 + 9ω6

+
10α2

1ω
4z

β2h2µ2ν2
+

30α2
1ω

4z

β2h2µ2ν2 + 4ω6

)
+

1

24
ze

4πβhµν

ω3

(
864α2

1β
2h2µ2ν2ω4

(4β2h2µ2ν2 + ω6)
2 −

275α2
1ω

4

4β2h2µ2ν2 + 9ω6

−
3α2

1ω
(
144πβhµν + 79ω3

)
4β2h2µ2ν2 + ω6

+
6
(
3β2h2µν2r2z − 3βhµν2r2ω2z + 4α2

1ω
4(r − z)

)
r (β2h2µ2ν2 + ω6)

+
2α2

1ω
4(4r + 3z)

β2h2µ2ν2r
+

12β2h2µ2ν2
(
4α2

1ω
4 + 3µν2rz

(
ω4 − β2h2

))
(β2h2µ2ν2 + ω6)

2 +
72πα2

1ω

βhµν
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−18rω2z

βhµ
+

18rz

µ

)
+

1

24

(
z
(
9β2h2µν2r2 + 18βhµν2r2ω2 + ω4

(
−
(
32α2

1 + 27µν2r2
)))

β2h2µ2ν2 + 9ω6

+
3

r (β2h2µ2ν2 + ω6)

(
β2h2µν2rz

(
−27r2 − 6rz + 4z2

)
+ 2βhνr2ω

(
π
(
4α2

1µ

+3r2
(
µ2ν2 + ω2

))
+ 3µνωz(3r + z)

)
+ ω4z

(
9µν2r3 − 4µν2rz2 + 8α2

1z
))

+
36z2

(
−3β2h2µν2rz + 2βhµν2rω2z + ω4

(
2α2

1 + µν2rz
))

r (9β2h2µ2ν2 + ω6)
− 3α2

1ω
4z(6r + z)

β2h2µ2ν2r

+
3α2

1ω
4z(79r − 18z)

r (4β2h2µ2ν2 + ω6)
+

36β2h2µ3ν4rz(2r + z)
(
β2h2 − ω4

)
(β2h2µ2ν2 + ω6)

2 − 864α2
1β

2h2µ2ν2ω4z

(4β2h2µ2ν2 + ω6)
2

− 30α2
1ω

4z

β2h2µ2ν2 + 4ω6
+

275α2
1ω

4z

4β2h2µ2ν2 + 9ω6
− 24πα2

1rω

βhµν
+

18rω2z2

βhµ
− 18πνr3

ω
− 18rz2

µ

)
,

α2
1ω

4z3e
10πβhµν

ω3

(
8

β2h2µ2ν2+ω6 − 9
4β2h2µ2ν2+ω6

)
4r2

+
1

12r2
e

8πβhµν

ω3

(
12α2

1β
2h2µ2ν2rω4z2

(β2h2µ2ν2 + ω6)
2

+
3z2

(
−6β2h2µν2rz2 + 4βhµν2rω2z2 + ω4

(
−11α2

1r + 2µν2rz2 + 8α2
1z
))

9β2h2µ2ν2 + ω6

+
r
(
6β2h2µν2z4 + ω4z2

(
17α2

1 − 6µν2z2
))

β2h2µ2ν2 + ω6
− 2α2

1ω
4z3

β2h2µ2ν2
− 150α2

1ω
4z3

9β2h2µ2ν2 + 4ω6

−16α2
1β

4h4µ4ν4rω4z2

(β2h2µ2ν2 + ω6)
3

)
+

1

8
z2e

6πβhµν

ω3

(
2α2

1ω
4z

β2h2µ2ν2r2

+
α2
1ω
(
144πβhµνr + ω3(29r + 40z)

)
r2 (4β2h2µ2ν2 + ω6)

− 288α2
1β

2h2µ2ν2ω4

r (4β2h2µ2ν2 + ω6)
2 +

75α2
1ω

4

4β2h2µ2ν2r + 9rω6

+
4β2h2µν2r2z + 6βhµν2r2ω2z − 2ω4

(
5µν2r2z + 2α2

1(7r + 2z)
)

r2 (β2h2µ2ν2 + ω6)

+
12β2h2µ2ν2

(
β2h2µν2rz − ω4

(
α2
1 + µν2rz

))
r (β2h2µ2ν2 + ω6)

2 +
16α2

1β
4h4µ4ν4ω4

r (β2h2µ2ν2 + ω6)
3 −

4z

µ

)

+
1

72
ze

4πβhµν

ω3

(
− 126α2

1ω
4

β2h2µ2ν2
+

324α2
1β

2h2µ2ν2ω4

(β2h2µ2ν2 + 4ω6)
2 −

50α2
1ω

4

β2h2µ2ν2 + 16ω6

−
36α2

1ω
(
9πβhµν + ω3

)
β2h2µ2ν2 + 4ω6

+
27z

(
3β2h2µν2r2 + 6βhµν2r2ω2 + ω4

(
−
(
8α2

1 + 9µν2r2
)))

r (β2h2µ2ν2 + 9ω6)

+
−297β2h2µν2r2z + 54βhµνrω

(
4πα2

1 + νrωz
)
+ ω4

(
27µν2r2z − 16α2

1(r − 27z)
)

r (β2h2µ2ν2 + ω6)

+
24β2h2µ2ν2

(
18β2h2µν2r2z − ω4

(
18µν2r2z + α2

1(7r + 3z)
))

r (β2h2µ2ν2 + ω6)
2 +

324πα2
1ω

βhµν

)

+

(
rω4

(
−9α2

1ω
12 + β4h4µ3ν4r2

(
µ2ν2 + ω2

)
+ β2h2µν2ω6

(
7r2

(
µ2ν2 + ω2

)
− α2

1µ
)))

(β2h2µ2ν2 + ω6)
2
(β2h2µ2ν2 + 9ω6)

+ e
2hπβµν

ω3
(
−82944z

(
z2 − 21r2

)
α2
1ω

79 + 2737152hπr2zα2
1βµνω

76 + 576h2β2µν2(
864r2ω2z3 + µ

(
2160r2µν2z3 +

(
1728r3 + 71340zr2 − 9504z2r − 7901z3

)
α2
1

))
ω73

− 1728h3rzβ3µ2ν3
(
144z

(
4r2 + 3zr + 4z2

)
µνω + π

(
432r3

(
5µ2ν2 + 4ω2

)
− 35863rα2

1µ
))

ω70 + 16h4β4µ3ν4
(
µ
((
1329264r3 + 23794914zr2 − 6029928z2r − 3487801z3

)
α2
1

−108r
(
448r4 − 3648z2r2 − 16969z3r − 2304z4

)
µν2

)
− 216r

(
224r4 − 1152z2r2

−3221z3r − 288z4
)
ω2
)
ω67 − 48h5rzβ5µ4ν5

(
36z

(
13012r2 + 9663zr + 8276z2

)
µνω

+π
(
540r3

(
3221µ2ν2 + 2548ω2

)
− 11180393rα2

1µ
))
ω64 + 4h6β6µ5ν6
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(
24r

(
−172568r4 + 864288z2r2 + 969223z3r + 107496z4

)
ω2 + µ

((
41952144r3

+464944986zr2 − 139496600z2r − 73417955z3
)
α2
1 + 12r

(
−345136r4 + 2812368z2r2

+5588507z3r + 1108800z4
)
µν2

))
ω61 − 12h7rzβ7µ6ν7

(
45877728πω2r3 + 275πµ(

214860r2µν2 − 713851α2
1

)
r + 20z

(
808332r2 + 590865zr + 344300z2

)
µνω

)
ω58

+ h8β8µ7ν8
(
24r

(
−5460008r4 + 26093184z2r2 + 15442711z3r + 1225400z4

)
ω2

+ µ
((
637246224r3 + 5389071552zr2 − 1872743384z2r − 834561355z3

)
α2
1

+12r
(
−10920016r4 + 89088048z2r2 + 104835947z3r + 23108800z4

)
µν2

))
ω55

X − 15h9rzβ9µ8ν9
(
4z
(
14108748r2 + 10063185zr + 4174060z2

)
µνω

+33π
(
20r3

(
304945µ2ν2 + 229632ω2

)
− 11713659rα2

1µ
))
ω52 + h10β10µ9ν10(

6r
(
−83286888r4 + 365438784z2r2 + 115456041z3r − 4477000z4

)
ω2

+ µ
(
2
(
625825998r3 + 4913764632zr2 − 2025504589z2r − 746523730z3

)
α2
1

+3r
(
−166573776r4 + 1361639088z2r2 + 1105664037z3r + 241489600z4

)
µν2

))
ω49

− 15h11rzβ11µ10ν11
(
z
(
137546100r2 + 94444911zr + 29330708z2

)
µνω

+11π
(
r3
(
42929505µ2ν2 + 30684264ω2

)
− 50917669rα2

1µ
))
ω46 + h12β12µ11ν12(

12r
(
−82398971r4 + 303747408z2r2 + 26173642z3r − 23709015z4

)
ω2

+ µ
((
1288254084r3 + 11447055852zr2 − 5409517286z2r − 1732543015z3

)
α2
1

+6r
(
−164797942r4 + 1351749306z2r2 + 842060099z3r + 172562280z4

)
µν2

))
ω43

− 15h13rzβ13µ12ν13
(
8z
(
24502461r2 + 15874413zr + 3909656z2

)
µνω

+85π
(
r3
(
7470312µ2ν2 + 4865133ω2

)
− 5788106rα2

1µ
))
ω40 + 2h14β14µ13ν14(

µ
((
351310338r3 + 4119249822zr2 − 2174003283z2r − 633570970z3

)
α2
1

+6r
(
−85931879r4 + 709119027z2r2 + 368414548z3r + 70105100z4

)
µν2

)
−3r

(
171863758r4 − 408252954z2r2 + 147006769z3r + 94369160z4

)
ω2
)
ω37

− 30h15rzβ15µ14ν15
(
z
(
83693688r2 + 49771869zr + 10278412z2

)
µνω

+51π
(
r3
(
4879595µ2ν2 + 2658624ω2

)
− 2608451rα2

1µ
))
ω34 + h16β16µ15ν16(

µ
((
205660764r3 + 3433683732zr2 − 2013222818z2r − 560898505z3

)
α2
1

+6r
(
−95841042r4 + 798782166z2r2 + 364880469z3r + 65358040z4

)
µν2

)
−6r

(
95841042r4 + 4332234z2r2 + 246373401z3r + 88818140z4

)
ω2
)
ω31

− 15h17rzβ17µ16ν17
(
82112550πω2r3 + 55πµ

(
4128552r2µν2 − 1616617α2

1

)
r

+8z
(
10774395r2 + 5676759zr + 1033208z2

)
µνω

)
ω28 + h18β18µ17ν18(

µ
(
4
(
7902804r3 + 190191111zr2 − 126071166z2r − 36161645z3

)
α2
1

+3r
(
−58044436r4 + 490872468z2r2 + 201693707z3r + 34597200z4

)
µν2

)
−12r

(
14511109r4 + 64576773z2r2 + 77941252z3r + 22346940z4

)
ω2
)
ω25

− 15h19rzβ19µ18ν19
(
z
(
26424924r2 + 11863599zr + 1979252z2

)
µνω

+11π
(
3r3

(
1797515µ2ν2 + 61828ω2

)
− 1644041rα2

1µ
))
ω22 + h20β20µ19ν20(

µ
((
2320704r3 + 78896208zr2 − 62328280z2r − 20571781z3

)
α2
1

+12r
(
−2340796r4 + 20186748z2r2 + 7485977z3r + 1246960z4

)
µν2

)
−6r

(
4681592r4 + 60737934z2r2 + 48587531z3r + 12350470z4

)
ω2
)
ω19

− 3h21rzβ21µ20ν21
(
20z

(
1149684r2 + 424149zr + 66748z2

)
µνω

+33π
(
25r3

(
51412µ2ν2 − 30771ω2

)
− 323252rα2

1µ
))
ω16 − 24h22β22µ21ν22(

r
(
91512r4 + 2977674z2r2 + 1926057z3r + 456610z4

)
ω2 + µ((

−2592r3 − 148536zr2 + 130412z2r + 60051z3
)
α2
1 + 2r

(
45756r4 − 404028z2r2
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−134577z3r − 22000z4
)
µν2

))
ω13 − 12h23rzβ23µ22ν23

(
4z
(
125604r2 + 37233zr

+5644z2
)
µνω + 3π

(
r3
(
248220µ2ν2 − 508339ω2

)
− 54396rα2

1µ
))
ω10 + 144h24β24

µ23ν24
(
3µ
(
z
(
144r2 − 112zr − 87z2

)
α2
1 + 4r

(
−36r4 + 324z2r2 + 99z3r + 16z4

)
µν2

)
−2r

(
216r4 + 21582z2r2 + 11979z3r + 2726z4

)
ω2
)
ω7 − 432h25rzβ25µ24ν25(

−3705πω2r3 + 108πµ
(
5r2µν2 − α2

1

)
r + 4z

(
108r2 + 27zr + 4z2

)
µνω

)
ω4

−10368h26rz2
(
18r2 + 9zr + 2z2

)
β26µ25ν26ω3 + 46656h27πr4zβ27µ26ν27

)(
12h2r2β2µ2ν2

(
ω6 + 4h2β2µ2ν2

)2 (
ω6 + 9h2β2µ2ν2

) (
4ω6 + h2β2µ2ν2

)2(
4ω6 + 9h2β2µ2ν2

) (
9ω6 + h2β2µ2ν2

) (
9ω6 + 4h2β2µ2ν2

) (
16ω6 + h2β2µ2ν2

)
(
ω7 + h2β2µ2ν2ω

)3)−1
)
.

Function g0(z) vanishes on the the graph Z = {(r, 0) : r > 0}. We apply Theorem 12

to system (6.16). Here ∆α = 1 − e−
2πβhµν

ω3 6= 0. Computing the bifurcation functions we
have

f1(r) = 0,

f2(r) = − πr

4βhµνω (β2h2µ2ν2 + ω6)

(
4α2

1ω
8 + 3β3h3µ3ν4r2 + β2h2µν2ω2

(
µν
(
4α2µ+ 4k2 − 3µνr2

)
− 3r2ω2

)
+ βhµνω6

(
4α2 + 3νr2

) )
.

Let
r0 = βhµν2

(
βh− ω2

) (
ω4 − βhµ2ν2

)
.

If r0 > 0 the equation f2(r) = 0 has the positive solution r̄ =
2α1ω4√

3r0

. Furthermore,

f ′2(r̄) =
2πα2

1ω
7

β3h3µ3ν3 + βhµνω6
6= 0

and consequently, by Theorem 12 (b), system (6.16) has a periodic solution bifurcating
from the origin.
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Chapter 7

Zero-Hopf Bifurcations in a
Hyperchaotic Lorenz System

In recent times a so-called hyperchaotic Lorenz system was introduced; see for instance
[4, 21, 26, 31, 39, 42, 72, 71, 70, 78, 83, 87, 90] and the references therein. MathSciNet
presently lists 32 papers on hyperchaotic Lorenz systems. We observe that not all these
hyperchaotic Lorenz systems are similar, since they can vary in one or two terms. However
these systems are autonomous differential systems in a phase space of dimension at least
four, with a dissipative structure, and at least two unstable directions, such that at least
one is due to a nonlinearity. The hyperchaotic systems has a dynamics hard to predict or
control, for this reason such systems are as well of use in secure communications systems
see, for instance [88].

Our aim in this work is to study, from a dynamical point of view, the 4–dimensional
zero–Hopf equilibria in the hyperchaotic Lorenz system. Here, a 4–dimensional zero–Hopf
equilibrium means an equilibrium point with two zeros and a pair of pure conjugate
imaginary numbers as eigenvalues. Using the averaging theory and convenient changes
of variables and parameters we can analyse the zero–Hopf bifurcations. More precisely
we study the zero–Hopf bifurcations of the following hyperchaotic Lorenz system (given
in [26, 42])

ẋ = a(y − x) + w,
ẏ = cx− y − xz,
ż = −bz + xy,
ẇ = dw − xz,

(7.1)

for appropriate choices of the parameters a, b, c and d.
There are several works studying zero–Hopf bifurcation see for instance Guckenheimer

[35], Guckenheimer and Holmes [36], Han [38], Kuznetsov [46], Llibre [49], Marsden,
Scheurle [69]. . . . It has been shown that, under specific conditions, some elaborated
invariant sets of the unfolding could be bifurcated from a zero–Hopf equilibrium and
hence, in some cases, a zero–Hopf equilibrium is the local birth of “chaos” (see [22, 69]).
Also, recently Li and Wang [47] published a paper on a Hopf bifurcation in a 3-dimensional
Lorenz-type system. Due to the complexity related to the high dimensionality, there is
very little work done on the n–dimensional zero–Hopf bifurcation with n > 3.

The characterization of the zero-Hopf bifurcation at the origin was recently study
by Cid-Montiel, Llibre and Stoica in [24]. In this work we are going to complete this
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characterization analyzing all singular points for system (7.1). The results here presented
were published in [16].

7.1 Application to a Hyperchaotic Lorenz System

First we are going to compute the equilibrium points of the hyperchaotic Lorenz system
(7.1). One may verify that for any choice of the parameters, the origin of coordinates of R4

is always an equilibrium point for this system. Moreover if ad 6= 1 and abd(1−c)(c−ad) >
0, system (7.1) will have two additional equilibrium points

p± =

(
±
√
abd(1− c)√
c− ad

,±
√
abd(1− c)(c− ad)

1− ad
,
ad(1− c)

1− ad
,±

a(1− c)
√
abd(1− c)

(1− ad)
√
c− ad

)
.

Considering b = 0 then all the z–axis is filled of equilibria. And if b = 0 and ad(1− c)(1−
ad) 6= 0 we have the additional equilibrium point

p =

(
0, 0,

ad(1− c)
1− ad

, 0

)
.

We observe that the two equilibria p± tends to the equilibrium points p when b→ 0. In
short, the equilibrium point of system (7.1) can be p+, p−, p and the origin.

Note that system (7.1) is invariant by the symmetry (x, y, z, w) → (−x,−y, z,−w), i.e.
it is invariant under the symmetry with respect to the z-axis. Therefore we can study p+

and p− simultaneously using only one of these points. Due to that in what follows we
consider only the equilibrium p+ in order to study when it will be a zero–Hopf equilibrium
for some values of the parameter, and clearly the same will occur for the other equilibrium
p−.

In the next result we characterize when the equilibria p, p± and the origin are zero–
Hopf equilibria. To simplify the expressions we define

Da =
√
a6 + 2a5 − 3a4 − 14a3 − 14a2 − 4a+ 1.

Proposition 37. The following statements hold.

(a) The origin is a zero–Hopf equilibrium if and only if a = −1, b = d = 0 and c > 1.

(b) Assume that ad(1−c)(1−ad) 6= 0 and b = 0. The equilibrium point p is a zero–Hopf
equilibrium if and only if d = a+ 1, and

(b.1) either
1 + d3 − d4 + (d2 − 1) c

d2 − d− 1
> 0;

(b.2+) or c+ =
−1 + a(1 + a)2(a2 + 2a+ 3) + (a2 + a− 1)Da

2a(a2 + 3a+ 3)

and
−4− 9a− 10a2 − 5a3 − a4 + (2 + a)Da

3 + 3a+ a2
> 0;

(b.2−) or c− =
−1 + a(1 + a)2(a2 + 2a+ 3)− (a2 + a− 1)Da

2a(a2 + 3a+ 3)

and
−4− 9a− 10a2 − 5a3 − a4 − (2 + a)Da

3 + 3a+ a2
> 0;
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(c) The equilibria p± never are zero–Hopf equilibria.

Note that despite z–axis being filled of equilibria when b = 0, its only zero–Hopf
equilibria are the origin and the equilibrium point p. Furthermore, corresponding to
statement (a) of the Proposition 37 there is one 1-dimensional parametric family for
which the origin is a zero–Hopf equilibrium point and there are three parametric families
for which the equilibrium point p is a zero–Hopf equilibrium of the hyperchaotic Lorenz
system, one 2–dimensional parametric family corresponding to conditions (b.1) and two
1–dimensional parametric families corresponding to conditions (b.2+) and (b.2−).

If (a) holds the eigenvalues at the origin are 0, 0 and

±ωi = ±
√
c− 1 i.

If (b.1) holds the eigenvalues at p are 0, 0 and

±ω0i = ±

√
1 + d3 − d4 + (d2 − 1) c

d2 − d− 1
i. (7.2)

If (b.2+) holds the eigenvalues at p are 0, 0 and

±ω+i = ±

√
−4− 9a− 10a2 − 5a3 − a4 + (2 + a)Da

2(3 + 3a+ a2)
i. (7.3)

If (b.2−) holds the eigenvalues at p are 0, 0 and

±ω−i = ±

√
−4− 9a− 10a2 − 5a3 − a4 − (2 + a)Da

2(3 + 3a+ a2)
i. (7.4)

The next results characterizes when periodic orbits bifurcate from these zero–Hopf equilibrium
points.

Theorem 38. (i) Consider system (7.1) with

a = −1 + εa1, b = εb1, c = 1 + c2
0, and d = εd1. (7.5)

For the zero–Hopf equilibrium at the origin we have:

(a) If a1 b1 6= 0, a1 6= d1 and c0 > 0, then there exists an ε1 > 0 such that when
|ε| < ε1 the hyperchaotic Lorenz system (7.1) has a periodic solution(
x(t, ε), y(t, ε), z(t, ε), w(t, ε)

)
=

ε
(√

2a1b1c0 sin(c0t),
√

2a1b1c1

(
sin(c0t)− c0 cos(c0t)

)
, a1c

2
0, 0
)

+O(ε2),

(7.6)

bifurcating from the origin. The periodic solution (7.6) is stable if b1 > 0,
a1 < 0 and d1 < a1.
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(b) If b1 d1 6= 0, a1 6= d1 and c0 > 0, then there is a convenient choice of ε such
that for either ε ∈ (−ε1, 0), or ε ∈ (0, ε1) there are two additional periodic
solutions

(
x(t, ε), y(t, ε), z(t, ε), w(t, ε)

)
± =

ε

(
±c0

√
b1d1

1 + c2
0

, ±c0

√
b1d1(1 + c2

0), c2
0d1, ±c3

0

√
b1d1

1 + c2
1

)
+O(ε2) (7.7)

emerging from the origin. These solutions are stable if b1 > 0, d1 > 0 and
d1 < a1.

(ii) Considering system (7.1) with

a = d− 1 + εa1 and b = ε2b1. (7.8)

If a1 b1 6= 0, c 6= 1, d /∈ {0, ±1} and ω0 ∈ R∗, then there exists an ε1 > 0 such that
when |ε| < ε1 the hyperchaotic Lorenz system (7.1) has a periodic solution(
x(t, ε), y(t, ε), z(t, ε), w(t, ε)

)
=(

ε

√
2b1(1− c)(d− 1)d(d2 − 1)

d(d− 1)− 1
sin(ω0t),

ε

√
2b1(1− c)(d− 1)d

(d(d− 1)− 1)(d2 − 1)
(ω0 cos(ω0t)− sin(ω0t)),

(c− 1)(d− 1)d

d2 − d− 1
+ ε

a1 (−cd2 − cd+ c+ d4 − d3 + d− 1)

(d2 − d− 1)2 ,

εd(d− 1)

√
2b1(1− c)d(d− 1)

(d(d− 1)− 1)(d2 − 1)
(d sin(ω0t) + ω0 cos(ω0t))

)
+O(ε2), (7.9)

bifurcating from the zero–Hopf equilibrium point p. The periodic solution (7.9) is
unstable if a1 < 0 or b1(c−1)(d−1)d < 0. Furthermore there is a convenient choice
of ε such that for either ε ∈ (−ε1, 0) or ε ∈ (0, ε1) there are two additional periodic
solutions

(
x(t, ε), y(t, ε), z(t, ε), w(t, ε)

)
1

=(
−ε
√
b1(c− 1)(1− d)d

c+ d− d2
, ε

√
b1(c− 1)(1− d)d(c+ d− d2)

d(d− 1)− 1
,

(c− 1)(d− 1)d

d(d− 1)− 1
− ε a1(c− 1)d

(1− d− d2)2
,

ε

d(d− 1)− 1

√
b1d(c− 1)3(1− d)3

c+ d− d2

)
+O(ε2)

(7.10)

and
(
x(t, ε), y(t, ε), z(t, ε), w(t, ε)

)
2

=(
ε

√
b1(c− 1)(1− d)d

c+ d− d2
, −ε

√
b1(c− 1)(1− d)d(c+ d− d2)

d(d− 1)− 1
,
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(c− 1)(d− 1)d

d(d− 1)− 1
− ε a1(c− 1)d

(1− d− d2)2
,

−ε
d(d− 1)− 1

√
b1d(c− 1)3(1− d)3

c+ d− d2

)
+O(ε2)

(7.11)

emerging from p. These orbits are unstable if a1 < 0 or b1(c− 1)(d− 1)d > 0.

(iii) Considering system (7.1) with

b = ε2b1, c = c+ + εc1 and d = 1 + a+ εd1. (7.12)

If b1d1 6= 0, a /∈
{
−2, −1, 0, 1±

√
5

2
, −3±

√
5

2

}
and ω+ ∈ R∗, then there exists ε1 > 0

such that when |ε| < ε1 the hyperchaotic Lorenz system (7.1) has a periodic solution(
x(t, ε), y(t, ε), z(t, ε), w(t, ε)

)
=(

ε

√
(2 + a)

(1 + a)ω+

(
a(1 + a)3

(3 + a(3 + a))2
(1 + a(16 + a(45 + a(59 + 2a(20

+ a(7 + a))))) +Da)
) 1

2
sin(ω+t),

ε

a(1 + a)ω+

√
2 + a

(
a(1 + a)3

(3 + a(3 + a))2
(1 + a(16 + a(45 + a(59

+2a(20 + a(7 + a))))) +Da)
) 1

2 (
ω+ cos(ω+t)− sin(ω+t)

)
,

(a+ 1) (a3 + 3a2 + 4a+Da + 1)

2 (a2 + 3a+ 3)
+ ε

(a+ 1)

2 (a2 + a− 1) (a(a+ 3) + 3)
(7.13)

(2a(a(a+ 3) + 3)c1 − a(a(a+ 5) + 8)d1 + d1Da − 5d1),

ε

ω+

√
2 + a

(
a(1 + a)3

(3 + a(3 + a))2
(1 + a(16 + a(45 + a(59

+2a(20 + a(7 + a))))) +Da)
) 1

2 (
ω+ cos(ω+t) + (1 + a) sin(ω+t)

))
+O(ε2),

bifurcating from the zero–Hopf equilibrium point p. Furthermore there is a convenient
choice of ε such that for either ε ∈ (−ε1, 0) or ε ∈ (0, ε1) there are two additional
periodic solutions

(
x(t, ε), y(t, ε), z(t, ε), w(t, ε)

)
1

=(
−ε
√
b1(Da+ a3 + a2 − 1)

2
,
ε(1− a(1 + a)(2 + a) +Da)

3 + 3a+ a2)

√
b1(Da+ a3 + a2 − 1)

2
,

(1 + a)(1 + 4a+ 3a2 + a3 +Da)

2(3 + a(3 + a))
+

ε

2(a2 + a− 1)(3 + a(3 + a))(
2a(1 + a)(3 + a(3 + a))c0 − d1 − a(4 + a(3 + a))d1 − d1Da

)
,

−ε(1 + 4a+ 3a2 + a3 +Da)

2(3 + 3a+ a2)

√
b1(Da+ a3 + a2 − 1)

2

)
+O(ε2) (7.14)
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and
(
x(t, ε), y(t, ε), z(t, ε), w(t, ε)

)
2

=(
ε

√
b1(Da+ a3 + a2 − 1)

2
, −ε(1− a(1 + a)(2 + a) +Da)

3 + 3a+ a2)

√
b1(Da+ a3 + a2 − 1)

2
,

(1 + a)(1 + 4a+ 3a2 + a3 +Da)

2(3 + a(3 + a))
+

ε

2(a2 + a− 1)(3 + a(3 + a))(
2a(1 + a)(3 + a(3 + a))c0 − d1 − a(4 + a(3 + a))d1 − d1Da

)
,

ε(1 + 4a+ 3a2 + a3 +Da)

2(3 + 3a+ a2)

√
b1(Da+ a3 + a2 − 1)

2

)
+O(ε2), (7.15)

emerging from p. These orbits are unstable if d1 > 0 or if the eigenvalues (7.28)
are non-zero real numbers.

(iv) Consider system (7.1) with

b = ε2b1, c = c− + εc1 and d = 1 + a+ εd1. (7.16)

If b1d1 6= 0, a /∈
{
−2, −1, 0, −1±

√
5

2
, −3+

√
5

2

}
and ω− ∈ R∗, then there exists ε1 > 0

such that when |ε| < ε1 the hyperchaotic Lorenz system (7.1) has a periodic solution(
x(t, ε), y(t, ε), z(t, ε), w(t, ε)

)
=(

ε
2 + a

a(1 + a)(3 + a(3 + a))ω−

(
a(1 + a)3b1(1 + a(16 + a(45 + a(59 + 2a(20

+ a(7 + a)))))−Da)
) 1

2 |a| sin(ω−t),
ε√

2 + a(3 + a(3 + a))|a|(a+ a2)ω−

+
(
a(1 + a)3b1(1 + a(16 + a(45 + a(59 + 2a(20a(7 + a)))))−Da)

) 1
2
(
ω−|a| cos(ω−t)

− a sin(ω−t)
)
,

(a+ 1)(a3 + 3a2 + 4a−Da + 1)

2(a2 + 3a+ 3)
+

ε(a+ 1)

2(3 + a(3 + a))(a2 + a− 1)(
2a(3 + a(3 + a))c1 − (5 + a(8 + a(5 + a))d1 − d1Da)

)
,

ε√
2 + a(3 + a(3 + a))|a|ω−(

a(1 + a)3b1(1 + a(16 + a(45 + a(59 + 2a(20 + a(7 + a)))))−Da)
) 1

2(
cos(ω−t) + a(1 + a) sin(ω−t)

))
+O(ε2) (7.17)

bifurcating from the zero–Hopf equilibrium point p. Furthermore there is a convenient
choice of ε such that for either ε ∈ (−ε1, 0), or ε ∈ (0, ε1) there are two additional
periodic solutions

(
x(t, ε), y(t, ε), z(t, ε), w(t, ε)

)
± =(

±ε
√
b1(a3 + a2 − 1−Da)

2
, ±εa(1 + a)(2 + a− 1 +Da)

2a(a2 + 3a+ 3)

√
b1(a3 + a2 − 1−Da)

2

(1 + a)(1 + a(4 + a(3 + a))−Da)

2(a2 + 3a+ 3)
+

ε

2(a3 + a2 − 1)(a2 + 3a+ 3)(
2a(1 + a)(a2 + 3a+ 3)c0 − d1 − a(4 + a(3 + a))d1 + d1Da

)
,
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±ε1 + a(4 + a(3 + a))−Da

2(a2 + 3a+ 3)

√
b1(a3 + a2 − 1−Da)

2

)
+O(ε2), (7.18)

emerging from p.

Theorem 38 is proved in Section 7.2.
In statements (iii) and (iv) of Theorems 38 we do not provide the type of linear stability

for the solutions (7.13), (7.17) and (7.18) because the expressions of the eigenvalues are
huge.

7.2 Proofs

In this section we prove our results.

7.2.1 Proof of Proposition 37

Proof. First we assume that b = 0. The characteristic polynomial P (λ) of the linear part
of the differential system (7.1) at the equilibrium point (0, 0, z0, 0) is

λ4 + (a− d+ 1)λ3 + (−ca− da+ z0a+ a− d+ z0)λ2 + (−ad+ acd− az0d+ z0)λ.

Clearly an equilibrium point is a zero–Hopf equilibrium if and only if P (λ) = λ2 (λ2 + ω2)
with ω > 0. Hence solving the equation P (λ) = λ2 (λ2 + ω2), with respect to the
parameters a, b, c, d and ω, we get only two real solutions:

S1 : ω =
√
c− 1, z0 = 0, d = 0, a = −1;

S2 : ω =

√
(2 + a)z0

1 + a
− (1 + a)2, z0 =

(a2 + a)(c− 1)

a2 + a− 1
, d = a+ 1.

The solution S1 says when the equilibrium point located at the origin is zero–Hopf, proving
statement (a), and it is easy to check that the solution S2 corresponds to the equilibrium
p.

Now we shall provide necessary and sufficient conditions under which either p+ if
b 6= 0, or p if b = 0, is a zero–Hopf equilibrium point. The Jacobian matrix of system
(7.1) evaluated at p+ is

A =



−a a 0 1

ad− c
ad− 1

−1

√
a b d (1− c)√
c− ad

0√
a b d (1− c) (c− ad)

ad− 1

√
a b d (1− c)
−
√
c− ad

−b 0

ad(1− c)
ad− 1

0

√
a b d (1− c) (c− ad)√

c− ad
d


,

and its characteristic polynomial is P (λ) = λ4 + σ3λ
3 + σ2λ

2 + σ1λ+ σ0 with

σ0 =− 2abd(c− 1),
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σ1 =
−a2d2 − 2a3d2 − a3d3 + ac− dc+ adc+ a2dc+ 2ad2c+ 3a2d2c+ 2a3d2c

(ad− 1)(ad− c)

+
−a2d3c− ac2 − 2adc2 − a2dc2

(ad− 1)(ad− c)
,

σ2 =
ad2 − a2d− a2bd+ abd2 + a3bd2 − a2d3 − a3d3 − a2bd3 + ac+ bc+ abc− dc

(ad− 1)(ad− c)

+
a2dc− bdc− 2abdc− a2bdc+ ad2c+ 2a2d2c+ abd2c+ a2bd2c− ac2 − adc2

(ad− 1)(ad− c)
,

σ3 =1 + a+ b− d.

The expressions for the matrix A and for its characteristic polynomial also work for the
equilibrium p taking b = 0.

Forcing that P (λ) = λ2 (λ2 + ω2), i.e. we must solve the following system: σ3 = 0,
σ2 = ω2, σ1 = 0 and σ0 = 0. Obtaining the following three real solutions:

S1 :ω = ω0, b = 0 and a = d− 1;

S2 :ω = ω−, b = 0, d = 1 + a and c = c−;

S3 :ω = ω+ , b = 0, d = 1 + a and c = c+;

where c± are defined in the statement of Proposition 37, ω0 in (7.2) and ω± in (7.3) and
(7.4).

The solution S1 says that p is a zero–Hopf equilibrium if condition (b.1) holds. While
the solutions S2 and S3 correspond to the fact that p is a zero–Hopf equilibrium when
conditions (b.2+) and (b.2−) hold. This completes the proof of statement (b).

Since in the three solutions we have b = 0 it follows that the equilibrium p+ never can
be a zero–Hopf equilibrium, proving statement (c) and consequently proving Proposition
37.

7.2.2 Proof of statement (i) of Theorem 38

Proof. First we assume condition (7.5) and the new scale (x, y, z, w) = ε (x, y, z, w) to
system (7.1), obtaining

ẋ = (−1 + εa1) (y − x) + w,

ẏ =(1 + c2
0)x− y − x z,

ż =− εb1z + εx y, (7.19)

ẇ =εd1w − εx z.

We now do the linear change of variables

x =
z̃

c2
0

+ ỹ,

y =z̃

(
1 + c2

0

c2
0

)
− c0x̃+ ỹ,
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z =w̃,

w =z̃,

in order to write the unperturbed part of system (7.19) in its real Jordan normal form in
accordance with the matrix

J =


0 −c0 0 0
c0 0 0 0
0 0 0 0
0 0 0 0

 .

Thus omitting the tilde we obtain the new system

ẋ =− c0y + ε

(
z(a1 + d1)

c0

− a1x

)
,

ẏ =c0x+ ε

(
a1(z − c0x) +

c2
0(wy − d1z) + wz

c4
0

)
,

ż =ε

(
d1z − w

(
z

c2
0

+ y

))
,

ẇ =ε

((
z

c2
0

+ y

)(
z

c2
0

− c0x+ y + z

)
− b1w

)
.

Finally we use the generalized cylindrical coordinates to write the previous system in
the form

ṙ =ε
( z
c4

0

(
c3

0(a1 + d1) cos θ + (a1c
4
0 − c2

0d1 + w) sin θ
)
+

r
(w sin θ2

c2
0

− a1 cos θ2 − a1c0 cos θ sin θ
))
,

θ̇ =c0 + ε
(

cos θ
(
(a1c

4
0 − c2

0d1 + w)z + c2
0r(a1c

2
0 + w) sin θ

)
− a1c

5
0r cos θ2 − c3

0(a1 + d1)z sin θ
)
, (7.20)

ż =
ε

c2
0

(
c2

0d1z − wz − c2
0rw sin θ

)
,

ẇ =ε
(
− b1w +

( z
c2

0

+ r sin θ
)(
z +

z

c2
0

− c0r cos(θ + r sin θ)
))
.

We also take θ as a new independent variable, obtaining the system

dr

dθ
=ε

(
a1c

4
0r cos2(θ)− sin θ (z (a1c

4
0 − c2

0d1 + w) + c2
0rw sin(θ))

−c5
0

+
c3

0 cos(θ) (a1c
2
0r sin θ + z(−a1 − d1))

−c5
0

)
+ ε2F21(θ,y, ε),

dz

dθ
=ε

(
−wz
c3

0

+
d1z

c0

− rw sin θ

c0

)
+ ε2F22(θ,y, ε), (7.21)

dw

dθ
=ε

(
−b1w

c0

+
z2

c5
0

+
2rz sin θ

c3
0

+
z2

c3
0

− rz cos θ

c2
0

+
r2 sin2(θ)

c0
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+
rz sin θ

c0

− r2 sin θ cos θ

)
+ ε2F23(θ,y, ε),

where F2(θ,y, ε) =
(
F21(θ,y, ε), F22(θ,y, ε), F23(θ,y, ε)

)
is a 2π–periodic function in θ,

and y = (r, z, w).
To study the periodic orbits of system (7.21) we compute the averaged function (1.3)

of Theorem 5 corresponding to system (7.1), and we get

g1(y) =

(
r (w − a1c

2
0)

2c3
0

,
z (c2

0d1 − w)

c3
0

,
r2 − 2b1w

2c0

+
(c2

0 + 1) z2

c5
0

)
.

solving the non-linear system g(y) = 0, we have

s0 =
(
c0

√
2a1b1, 0, a1c

2
0

)
,

s0
1 =

(
0,

√
b1d1c

3
0√

1 + c2
0

,
√

1 + c2
0

)
,

s0
2 =

(
0, −

√
b1d1c

3
0√

1 + c2
0

,
√

1 + c2
0

)
.

The solution s0 has the Jacobian

det

(
∂g

∂y
(s0)

)
=
a1b1(a1 − d1)

c3
0

,

which is non-zero under conditions (a), then by Theorem 5 we know that there is a
periodic solution Φ(t, ε) close to s0 such that Φ(0, ε) = s0 + O(ε). Going back through
the change of coordinates, it provides the periodic solution (7.6) of system (7.1).

We also notice that the eigenvalues of s0 are
−b1 ±

√
b1(4a1 + b1)

2c0

and
d1 − a1

c0

, we

use Theorem 5 (c) to study the stability of the periodic solution (7.6). Here we divide the
analysis in two cases:

When
−b1 ±

√
b1(4a1 + b1)

2c0

∈ R: In this case the solution is stable if d1 < a1, b1 > 0

and
−b1

4
≤ a1 < 0.

When
−b1 ±

√
b1(4a1 + b1)

2c0

∈ C: In this case the solution is stable if d1 < a1, b1 > 0

and a1 <
−b1

4
.

In summary this periodic solution is stable if b1 > 0, a1 < 0 and d1 < a1.

The solutions s0
1 and s0

2 are such that det

(
∂g

∂y
(s0
i )

)
=

b1d1(d1 − a1)

c3
0

, for i = 1, 2.

By hypothesis (b) they also provide two additional periodic solution for system (7.1) if
r = εr1 +O(ε2) > 0, this is possible restricting ε to one of the half intervals ε ∈ (−ε1, 0),
or ε ∈ (0, ε1).

We notice that s0
1 and s0

2 have the same eigenvalues
b1 ±

√
b1(b1 − 8d1)

−2c0

and
d1 − a1

2c0

.

Thus following the previous analysis we can say by Theorem 5 (c) that the periodic
solution (7.7) is stable if b1 > 0, d1 > 0 and a1 > d1.
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7.2.3 Proof of statement (ii) of Theorem 38

Proof. Assuming conditions (7.8), system (7.1) has two equilibrium points p+ and p−,
when ε→ 0 these equilibria tends to

p =

(
0, 0,

(d− 1)d(c− 1)

(d− 1)d− 1
, 0

)
.

We now are studying the bifurcation of periodic orbits from this point. First we translate
p to the origin of coordinates doing (x, y, z, w) = (x, y, z, w) + p, then we introduce the
scaling (x, y, z, w) = ε (X, Y, Z,W ). With these changes of variables the hyperchaotic
Lorenz system (7.1) becomes

Ẋ = (1− d)X + (d− 1)Y +W + εa1(Y −X),

Ẏ =
−d2 + d+ c

−d2 + d+ 1
X − Y − εXZ,

Ż = ε

(
b1d(d(−c) + d+ c− 1)

(d− 1)d− 1
+XY

)
− ε2b1Z,

Ẇ = d

(
(d(−c) + d+ c− 1)

(d− 1)d− 1
X +W

)
− εXZ.

(7.22)

We do the linear change of variables

X =
(d2 − 1)

ω0

ỹ + z̃,

Y =− 1

ω0

ỹ − (c− d2 + d)

(d− 1)d− 1
z̃ + x̃,

Z =w̃,

W =
(d2(d− 1))

ω0

ỹ +
(c− 1)(d− 1)

(d− 1)d− 1
z̃ + (d− 1)dx̃,

in order to write the unperturbed part of system (7.22) in its real Jordan normal form,
in accordance with the matrix

J =


0 −ω0 0 0
ω0 0 0 0
0 0 0 0
0 0 0 0

.


Thus omitting the tilde, we obtain a system of the form

ẋ = J x + εG1(t,x) + ε2G2(t,x), (7.23)

where x = (x, y, z, w),

G1(t,x) =


G11(t,x)
G12(t,x)
G13(t,x)
G14(t,x)

 and G2(t,x) =


0
0
−b1z

0

 ,
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with

G11(t,x) =
(a1(c− 1)(d− 1)z − a1 ((d− 2)d2 + 1)x+ d (−d2 + d+ 1)wz)

((d− 1)d− 1) (d2 − 1)

+
(d4 − 2d3 + d) y(a1d− (d+ 1)w)

((d− 1)d− 1) (d2 − 1)ω0

,

G12(t,x) =
(−d2 + d+ 1)

2
W ((d2 − 1)Y + ω0Z)

(d2 − 1) (−cd2 + c+ (d− 1)d3 − 1)

− a1

(−d2 + d+ 1)2 (d2 − 1) (−cd2 + c+ (d− 1)d3 − 1)(
(d− 2)d2 + 1

) (
−c(d+ 1) + (d− 1)d2 + 1

)
(ω0 ((c− 1)Z

+
(
−d2 + d+ 1

)
X
)

+ ((d− 1)d− 1)d2Y
)
,

G13(t,x) =
a1dω0 ((c− 1)Z + (−d2 + d+ 1)X) + a1((d− 1)d− 1)d3Y

ω0 ((d− 1) (cd+ c− d3) + 1)

+
(−d2 + d+ 1)

2
W ((d2 − 1)Y + ω0Z)

ω0 ((d− 1) (cd+ c− d3) + 1)
,

G14(t,x) =
−(b1(c− 1)(d− 1)d+ Z(cZ − (d− 1)d(X + Z)) +XZ)

((d− 1)d− 1)

+
Y 2 (− (c (d2 − 1) + d (−d (ω2

0 + 2) + ω2
0 + 1) + ω2

0 + 2))

((d− 1)d− 1)ω2
0

+
Y ((d2 − 1)X − (ω2

0 + 2)Z)

ω0

.

We now use generalized cylindrical coordinates obtaining system (7.32). Taking θ as the
new independent variable we have

dr

dθ
=

ε

(d(d− 1)− 1)2ω0

( z

d2 − 1

(
(d(d− 1)− 1)(a1(c− 1)(d− 1) + d(d

− d2 − 1)w)ω0 cos θ + (−a1(c− 1)(d− 1)(c+ cd+ d2 − d3 − 1)

− (d(d− 1)− 1)3w) sin θ
)

+
(
(d(d− 1)− 1)2rω0(a1(d(d

− 1)− 1)ω2
0 cos2 θ + ε2F21(θ,y, ε),

dz

dθ
=

ε

(d(d− 1)− 1)ω0

(
(a1(c− 1)d+ (1 + d− d2)w)zω0 + (d(d− 1)− 1)r

(−a1dω0 cos θ + (a1d
3 + w + d(1 + (d− 2)d(1 + d))w) sin θ)

)
+ ε2F22(θ,y, ε),

(7.24)

dw

dθ
=
ε

ω2
0

(
−b1(c− 1)(d− 1)dω0

d(d− 1)− 1
+
(
zω0 + (d2 − 1)r sin θ

)(−(c+ d− d2)z

d(d− 1)− 1

+ r cos θ − r sin θ

ω0

))
+ ε2F23(θ,y, ε),

where F2(θ,y, ε) =
(
F21(θ,y, ε), F22(θ,y, ε), F23(θ,y, ε)

)
is a 2π–periodic function in θ,

and y = (r, z, w).
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We are going to applying Theorem 5, thus we compute the averaged function g1(y) =
(g11(y), g12(y), g13(y)) corresponding to system (7.24) where

g11(y) =− r(a1(1− d+ d3 − d4 + c(d2 − d− 1)) + (1 + d− d2)w)

2(d(d− 1)− 1)ω3
0

,

g12(y) =
(a1(c− 1)d+ (1 + d− d2)2w)z

(d(d− 1)− 1)ω3
0

,

g13(y) =
−2b1(c− 1)(d− 1)d− 2(c+ d− d2)z2

2(d(d− 1)− 1)ω0

+
(d(d− 1)− 1)2(d2 − 1)r2

2(d(d− 1)− 1)(d3(d− 1)− cd+ c− 1)ω0

,

solving the non-linear system g1(y) = 0, we obtain the solutions

s1 =

(√
2b1d(d− cd+ c− 1)

(d2 − 1)(d(d− 1)− 1)
, 0,

a1(d− 1 + (d− 1)d3 − c(d2 + d− 1))

(d(d− 1)− 1)

)
,

s1
1 =

(
0,

√
(1− c)(d− 1)db1√

c+ d− d2
, − a1(c− 1)d

(1 + d− d2)2

)
,

s1
2 =

(
0, −

√
(1− c)(d− 1)db1√

c+ d− d2
, − a1(c− 1)d

(1 + d− d2)2

)
.

The solution s1 has the Jacobian

det

(
∂g

∂y
(s1)

)
= −a1b1(c− 1)(d− 1)d

ω5
0

,

which is non-zero, then by Theorem 5 we know that there is a periodic solution Φ(t, ε)
close to s1 such that Φ(0, ε) = s1 +O(ε). Going back through the change of variables it
provides the periodic solution (7.9) of system (7.1).

We also notice that the eigenvalues of s1 are ±
√
−b1(c− 1)(d− 1)d

ω2
0

and −a1

ω0

. By

Theorem 5 (c) the periodic solution (7.9) is unstable if a1 < 0 or b1(c− 1)(d− 1)d < 0.

The solutions s1
1 and s1

2 are such that det

(
∂g

∂y
(s1
i )

)
=
a1b1(c− 1)(d− 1)d

ω5
0

, for i = 1, 2.

They also provide two additional periodic solution for system (7.1) if r = εr1 +O(ε2) > 0,
this is possible restricting ε to one of the half intervals ε ∈ (−ε1, 0), or ε ∈ (0, ε1).

We notice that s1
1 and s1

2 have the same eigenvalues ±
√

2b1(c− 1)(d− 1)d

ω2
0

and − a1

2ω0

.

Thus by Theorem 5 (c) the periodic solutions (7.10) and (7.11) are unstable if a1 < 0 or
b1(c− 1)(d− 1)d > 0.

7.2.4 Proof of statement (iii) of Theorem 38

Proof. Assuming conditions (7.12) system (7.1) has two equilibrium points p+ and p−,
when ε→ 0 these equilibria tends to

p =

(
0, 0,

(a+ 1) (a3 + 3a2 + 4a+Da + 1)

2 (a2 + 3a+ 3)
, 0

)
.
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We now are studying the bifurcation of periodic orbits from this point. First we translate
p to the origin of coordinates doing (x, y, z, w) = (x, y, z, w) + p, then we introduce the
scaling (x, y, z, w) = ε (X, Y, Z,W ). With these changes of variables system (7.1) becomes

Ẋ =a(Y −X) +W,

Ẏ =
(−1 + a(1 + a)(2 + a)−Da)X

2a(3 + a(3 + a))
− Y +X(c1 − Z), (7.25)

Ż =ε

(
XY − (1 + a)b1(1 + a(4 + a(3 + a)) +Da)

2(3 + a(3 + a))

)
− ε2b1Z,

Ẇ =W + aW − (1 + a)(1 + a(4 + a(3 + a)) +Da)X

2(3 + a(3 + a))
+ ε
(
d1W −XZ

)
.

We do the linear change of variables

X =z̃ +
(2 + a)ỹ

(1 + a)ω+

,

Y =
x̃

a+ a2
+

(a(1 + a)(2 + a)−Da − 1)z̃

2a(3 + a(3 + a))
− ỹ

(a+ a2)ω+

,

Z =w̃,

W =x̃+
(1 + a(4 + a(3 + a)) +Da)z̃

2(3 + a(3 + a))
+

(1 + a)ỹ

(a+ a2)ω+

,

in order to write the unperturbed part of system (7.25) in its real Jordan normal form,
in accordance with the matrix

J =


0 −ω+ 0 0
ω+ 0 0 0
0 0 0 0
0 0 0 0

 .

Thus omitting the tilde we obtain a system of the form

ẋ = J x + εH1(t,x) + ε2H2(t,x), (7.26)

with x = (x, y, z, w). Using cylindrical coordinates we obtain system (7.34). In order to
put system (7.34) in the normal form (1.11), we take θ as the new independent variable
and then we have

dr

dθ
=− ε

(
(1 + a)(3 + a(3 + a))d1

(√
2ω+

)3

r cos θ2

− sin θ

3 + a(3 + a)

(
− a(1 + a)(3 + a(3 + a))(4 + a(9 + a(10 + a(5 + a))))c1

+ a(16 + a(45 + a(59 + 2a(7 + a))))d1 + (a(1 + a)(2 + a)(3 + a(3 + a))c1

+ d1)Da + d1 + (−1 + a+ a2)(3 + a(3 + a))(4 + a(9 + a(10 + a(5

+ a))−Da)− 2Da)w
)
z + 2(3 + a(3 + a))2
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√
−a(9 + a(10 + a(5 + a))−Da)

3 + a(3 + a)
r
(

(1 + a)(a(2 + a)c1 − (1 + a)d1)

− (2 + a)(−1 + a+ a2)w
)

sin θ
)

+ ε2F21(θ,y, ε),

dz

dθ
=ε
(√

2(3 + a(3 + a))ε
(
(1 + a)

√
2ω+(a(6c1 − 4d1)− d1(1 +Da) + a2(12c1

− 3d1 − 10w) + a3(8c1 − d1 − 8W ) + 2a4(c1 − w) + 6w)z + 2(3

+ a(3 + a))r(−(1 + a)d1

√
2ω+ cos θ −

√
2((1 + a)(d1 + a(−(2 + a)c1

+ d1)) + (2 + a(a2 + a− 1)w) sin θ)
))

+ ε2F22(θ,y, ε), (7.27)

dw

dθ
=− ε

(
2(1 + a)3

(
ab1(1 + a(16 + a(45 + a(59 + 2a(20 + a(7 + a))))) +Da)

+ (1− a(1 + a)(a2 + a− 1)(3 + a(3 + a)) +Da + a(5 + a(4 + a))Da)z
2
)

+ (3 + a(3 + a))r
(
− 2(1 + a)(4 + a(9 + a(10 + a(5 + a))−Da)z cos θ

+ 2(2 + a)(3 + a(3 + a))r cos(2θ) +
√

2(1 + a)(a(2 + a)(3 + a)− 3−Da)

− 2(4 +Da))
√

2ω+z sin θ + (2 + a)(3 + a(3 + a))r
(√

2
√

2ω+ sin(2θ)
)))

/(
a(1 + a)2(3 + a(3 + a))(4 + a(9 + a(10 + a(5 + a))−Da)

−2Da)

√
−2(4 + a(9 + a(10 + a(5 + a)))) + 2(2 + a)Da

3 + a(3 + a)

)
+ ε2F23(θ,y, ε),

with F2(θ,y, ε) =
(
F21(θ,y, ε), F22(θ,y, ε), F23(θ,y, ε)

)
a 2π–periodic function in θ.

Now we can apply Theorem 5 and calculate the averaged function g1(y) = (g11(y),g12(y),g13(y))
of (7.27) where

g11(y) =
1

4
(
3 + a(3 + a)

)
ω3

+

(
(1 + a)(2a(3 + a(3 + a))c1 − 5d1

− a
(
8 + a(5 + a)

)
d1 + d1Da)r − 2

(
a2 + a− 1

)(
3 + a(3 + a)

)
rw
)
,

g12(y) =
−1

2(3 + a(3 + a))ω+

z
(

2(a(a+ 3) + 3)(a(a+ 1)(c1 − w) + w)

− (a(a(a+ 3) + 4) + 1)d1 − d1Da

)
,

g13(y) =− 1

4
(
3 + a(3 + a)

)
ω+

(
−2(1 + a)b1

(
1 + a(4 + a(3 + a)) +Da

)
+

(2 + a)
(
3 + a(3 + a)

)(
2(2 +Da) + a(9 + a(10 + a(5 + a)) +Da)

)
r2

a(1 + a)5
(
1 + a(3 + a)

)
+

2
(
− 1 + a(1 + a)(2 + a)−Da

)
z2

a

)
.
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The non-linear system g(y) = 0 has the solutions

s2 =

√√√√a(1 + a)3b1

(
1 + a(16 + a(45 + a(59 + 2a(20 + a(7 + a))))) +Da

)
(2 + a)

(
3 + a(3 + a)

)2 ,

0,
(1 + a)

(
2a(3 + a(3 + a))c1 − (5 + a(8 + a(5 + a)))d1 + d1Da

)
2(a2 + a− 1)

(
3 + a(3 + a)

) )
,

s2
1 =

(
0,

√
(a3 + a2 − 1 +Da) b√

2
,

−2a(1 + a)(3 + a(3 + a)c1 + d1 + a(4 + a(3 + a))d1 +Dad1)

2(a2 + a− 1)(3 + a(3 + a))

)
,

s2
1 =

(
0, −

√
(a3 + a2 − 1 +Da) b√

2
,

−2a(1 + a)(3 + a(3 + a)c1 + d1 + a(4 + a(3 + a))d1 +Dad1)

2(a2 + a− 1)(3 + a(3 + a))

)
.

The solution s2 has the Jacobian

det

(
∂g

∂y
(s2)

)
=

(1 + a)(a2 + a− 1)b1d1(1 + a(4 + a(3 + a))−Da)

2(3 + a(3 + a))ω5
+

which is non-zero, then by Theorem 5, there is a periodic solution Φ(t, ε) close to s2 such
that Φ(0, ε) = s2 + O(ε). Going back through the change of variables, it provides the
periodic solution (7.13) of system (7.1).

The solutions s2
1 and s2

2 are such that

det

(
∂g

∂y
(s2
i )

)
= −(a2 + a− 1)b1d1(a(1 + a)(2 + a)−Da − 1)(Da + a2 + a3 − 1)

4a(3 + 3a+ a2)ω5
+

,

for i = 1, 2. They also provide two additional periodic solutions for system (7.1) if
r = εr1 +O(ε2) > 0, this is possible restricting ε to one of the half intervals ε ∈ (−ε1, 0),
or ε ∈ (0, ε1).

We notice that s2
1 and s2

2 has the same eigenvalues
d1

2ω+

and

±1

a(3 + a(3 + a))3ω5
+

(
−a2(a+ 1)

(
a2 + a− 1

)
(a(a+ 3) + 3)2b1

(
a
(
a13 + 15a12

+ 103a11 + 428a10 + 1202a9 + 2427a8 + 3699a7 + 4487a6 + 4581a5 + 4038a4

+ 2948a3 − (a+ 1)2(a+ 2)2
(
a2 + a+ 1

)
(a(a+ 3) + 3)(a(a+ 4) + 5)Da

+1614a2 + 573a+ 100
)

+Da + 1
) ) 1

2
. (7.28)

Thus by Theorem 5 (c) the periodic solutions (7.14) and (7.15) are unstable if d1 > 0, or
if the eigenvalues (7.28) are non-zero real numbers.
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7.2.5 Proof of statement (iv) of Theorem 38

Proof. of statement (iv) of Theorem 38. Assuming conditions (7.16) system (7.1) has two
equilibrium points p+ and p−, when ε→ 0 these equilibria tends to

p =

(
0,

(a+ 1)(a3 + 3a2 + 4a−Da + 1)

2(a2 + 3a+ 3)
, 0

)
.

We now are studying the bifurcation of periodic orbits from this point. First we translate
p to the origin of coordinates doing (x, y, z, w) = (x, y, z, w) + p, then we introduce the
scaling (x, y, z, w) = ε (X, Y, Z,W ). With these changes of variables system (7.1) becomes

Ẋ =W + a(Y −X),

Ẏ =
a(1 + a)(2 + a) +Da − 1

2a
(
3 + a(3 + a)

) X − Y + ε(c1 − Z)X,

Ż =ε

(
XY −

(1 + a)b1

(
1 + a(4 + a(3 + a))−Da

)
2
(
3 + a(3 + a)

) )
− ε2b1Z, (7.29)

Ẇ =(1 + a)W − (1 + a) (1 + a(4 + a(3 + a))−Da)

2
(
3 + a(3 + a)

) X + ε(d1W −XZ).

We do the linear change of variables

X =w̃ +

√
2(2 + a)

(1 + a)
√

2ω−
ỹ + z̃,

Y =
1

2a(1 + a)
(
3 + a(3 + a)

)√
2ω−

(
− 2
√

2
(
3 + a(3 + a)

)
ỹ +
√

2ω−
(
(1 + a)(−1

+ a(1 + a)(2 + a) +Da)w̃ + 2
(
3 + a(3 + a)

)
x̃+ (1 + a)

(
− 1 + a(1

+ a)(2 + a) +Da

)
z̃
)
,

Z =w̃,

W =x̃+

√
2√

2ω−
ỹ +

1

2
(
3 + a(3 + a)

)√
2ω−

(
2
√

2a
(
3 + a(3 + a)

)
ỹ +

(
1 + a(4

+ a(3 + a))−Da

)√
2ω−(w̃ + z̃)

)
,

in order to write the unperturbed part of system (7.29) in its real Jordan normal form,
in accordance with the matrix

J =


0 −ω− 0 0
ω− 0 0 0
0 0 0 0
0 0 0 0

 .

Thus omitting the tilde we obtain a system of the form

ẋ = J x + εI1(t,x) + ε2I2(t,x), (7.30)
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with x=(x, y, z, w). Using cylindrical coordinates we obtain system (7.33) and taking θ
as the new independent variable we have

dr

dθ
=− ε

√
2

(2 + a)
(
4 + a(9 + a(10 + a(5 + a))−Da)− 2Da

)2(
(1 + a)

√
2ω−

(
a
(
3 + a(3 + a)

)
c1

(
4 + a(9 + a(10 + a(5 + a))−Da)− 2Da

)
+ d1

(
1 + a(16 + a(45 + a(59 + 2a(20 + a(7 + a))))) +Da

)
− (1 + a)

(
3 + a(3 + a)

)(
4 + a(9 + a(10 + a(10 + a(5 + a))−Da)

− 2Da

)
w
)
z cos θ − (1 + a)

(
3 + a(3 + a)

)2
d1

√
2ω3
−r cos θ2

− sin θ
(√

2(1 + a)
(
− a(1 + a)

(
3 + a(3 + a)

)(
4 + a(9 + a(10 + a(5

+ a)))
)
c1 + d1 + a

(
16 + a(59 + 2a(20 + a(7 + a)))

))
d1 +

(
a(1 + a)(2 + a)(

3 + a(3 + a)
)
c1 + d1

)
Da + (a2 + a− 1)

(
3 + a(3 + a)

)(
4 + a(9 + a(10

+ a(5 + a))−Da)w
)
z + 2

(
3 + a(3 + a)

)2√
2ω−

)
r
(
(1 + a)

(
a(2 + a)c1

− (1 + a)d1

)
− 2(2 + a)

(
a2 + a− 1

)
w
)

sin θ + 2
−1
2

(
3 + a(3 + a)

)(
4 + a(9 + a(10 + a(5 + a))−Da)− 2Da

)
r
(
a
(
(2 + a)c1 + d1 + ad1

)
− (1 + a)(1 + a(2 + a)w)

)
sin(2θ)

)
+ ε2F21(θ,y, ε), (7.31)

dz

dθ
=

−ε
√

2
(
3 + a(3 + a)

)
(1 + a)

(
4 + a(9 + a(10 + a(5 + a))−Da)− 2Da

)2

(
(1 + a)

√
2ω−

(
a(6c1

− 4d1)− d1(1 +Da) + a2(12c1 − 3d1 − 10w) + a3(8c1 − d18w) + 2a4(c1 − w)

+ 6w
)
z2
(
3 + a(3 + a)

)
r
(
(1 + a)

√
2ω− cos θ +

√
2
(
(1 + a)(d1

+ a(−(2 + a)c1 + d1)) + (2 + a)
(
a2 + a− 1

)
w
)

sin θ
))

+ ε2F22(θ,y, ε),

dw

dθ
=

−ε
√

2
(
3 + a(3 + a)

)
(1 + a)

(
4 + a(9 + a(10 + a(5 + a))−Da)−Da

)2

(
(1 + a)

√
2ω−

(
a(6c1 − 4d1)

− (1 +Da) + a2(12c1 − 3d1 − 10w) + a3(8c1 − d1 − 8w) + 2a4(c1 − w)

+ 6w
)
z − 2

(
3 + a(3 + a)

)
r
(
(1 + a)d1

√
2ω− cos θ +

√
2
(
(1 + a)(d1

+ a(−(2 + a)c1 + d1)) + (2 + a)(a2 + a− 1)w
)

sin θ
))

+ ε2F23(θ,y, ε),

with F2(θ,y, ε) =
(
F21(θ,y, ε), F22(θ,y, ε), F23(θ,y, ε)

)
a 2π–periodic function in θ. Now

we can apply Theorem 5 and calculate the averaged function g(y) = (g1(y),g2(y),g3(y))
corresponding to system (7.31), where

g1(y) =
−1

2
(
3 + a(3 + a)

)
ω3
−

(
− (1 + a)

(
2a
(
3 + a(3 + a)

)
c1

− 5d1 − a
(
8 + a(5 + a)

)
d1 + d1Da

)
r + 2(a2 + a− 1)

(
3 + a(3 + a)

)
rw
)
,

g2(y) =
−1(

4 + a(9 + a(10 + a(5 + a))−Da)− 2Da

)2

((
3 + a(3 + a)

)
2ω−(

(−1− a(4 + a(3 + a)))d1 − d1Da + 2
(
3 + a(3 + a)

)(
a(1 + a)(c1 − w)
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+ w
))
z
)
,

g3(y) =
1

4a
(
3 + a(3 + a)

)
ω−

(
− 2a(1 + a)b1

(
1 + a(4 + a(3 + a)) +Da

)
+

(2 + a)
(
3 + a(3 + a)

)(
2(2 +Da) + a(9 + a(10 + a(5 + a)) +Da)

)
r2

(1 + a)5
(
1 + a(3 + a)

)
+ 2
(
− 1 + a(1 + a)(2 + a)−Da

)
z2
)
.

The non-linear system g(y) = 0 has the solutions

s3 =

√√√√a(1 + a)3b1

(
1−Da + a(16 + a(45 + a(59 + 2a(20 + a(7 + a)))))

)
(2 + a)

(
3 + a(3 + a)

)2 ,

0,
(1 + a)

(
2a
(
3 + a(3 + a)

)
c1 −

(
5 + a(8 + a(5 + a))

)
d1 + d1Da

)
2(a2 + a− 1)

(
3 + a(3 + a)

) )
,

s3
1 =

(
0,

2a(1 + a)(3 + a(3 + a))c1 − (1 + a(4 + a(3 + a)))d1 +Dad1

2(a2 + a− 1)(3 + a(3 + a))
,√

(a3 + a2 − 1−Da) b1√
2

)
,

s3
2 =

(
0,

2a(1 + a)(3 + a(3 + a))c1 − (1 + a(4 + a(3 + a)))d1 +Dad1

2(a2 + a− 1)(3 + a(3 + a))
,

−
√

(a3 + a2 − 1−Da) b1√
2

)
.

The solution s3 has the Jacobian

det

(
∂g

∂y
(s3)

)
=

a

|a|2(3 + a(3 + a))2ω7
−

(
(1 + a)(a2 + a− 1)b1d1(1 + a(16 + a(45

+ a(59 + 2a(20 + a(7 + a)))))−Da)
)

which is non-zero, then by Theorem 5 we know that there is a periodic solution Φ(t, ε)
close to s3 such that Φ(0, ε) = s3 +O(ε). Going back through the change of variables, it
provides the periodic solution (7.17) of system (7.1).

The solutions s3
1 and s3

2 are such that

det

(
∂g

∂y
(s3
i )

)
=

−a
|a|2(3 + a(3 + a))2ω7

−

(
(1 + a)(a2 + a− 1)b1d1(1 + a(16 + a(45

+ a(59 + 2a(20 + a(7 + a)))))−Da)
)
,

for i = 1, 2. They also provide two additional periodic solution for system (7.1) if r =
εr1 + O(ε2) > 0, this is possible restricting ε to one of the half intervals ε ∈ (−ε1, 0) or
ε ∈ (0, ε1).
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7.3 Appendix F

Let Ra = (d− 1) (cd+ c− d3) + 1 and Rb = d2 − d− 1 then system (7.23) in cylindrical
coordinates writes

ṙ =ε
(
− r (a1(d(2Ra +Rb(Rb + 2)) +Rb(Ra +Rb + 1)) +R2

bw(d+Rb))

2Ra(d+Rb)

+
z cos θ(a1(−c(Rb + 1) +Rb(d+Rb + 2) +Ra + 1)− dRbw)

Rb(d+Rb)

+
r cos(2θ) (a1(Rb(d(Rb + 2) +Rb + 1) +Ra(Rb + 2)) +R2

bw(d+Rb))

2Ra(d+Rb)

− z sin θ (a1 (c(Ra − 1) + d (Ra +R2
b +Rb)− 2Ra + 1) +R3

bw)
√
RaR

3/2
b (d+Rb)

+
r sin(2θ)(a1(dRb(Rb + 2) +Ra)− (d+ 1)Rb(Rb + 1)w)

2
√
Ra

√
Rb(d+Rb)

)
,

θ̇ =ω0 + ε
(a1 cos2(θ)(dRb +Ra)√

Ra

√
Rb(d+Rb)

+

√
Rb(Rb + 1) sin2(θ)(−a1d+ dw + w)√

Ra(d+Rb)

− z sin θ(a1(−c(Rb + 1) +Rb(d+Rb + 2) +Ra + 1)− dRbw)

rRb(d+Rb)

cos θ
(
− z (a1 (c(Ra − 1) + d (Ra +R2

b +Rb)− 2Ra + 1) +R3
bz)

r
√
RaR

3/2
b (d+Rb)

(7.32)

sin θ (a1(Rb(d(Rb + 2) +Rb + 1) +Ra(Rb + 2)) +R2
bw(d+Rb))

Ra(d+Rb)

))
,

ż =ε
(z (a1(Rb(−c+ d+Rb + 2) +Ra) +R2

bw)

Ra

− a1drRb cos θ

Ra

+
rR

3/2
b sin θ(a1(d(Rb + 2) +Rb + 1) +Rbw(d+Rb))

R
3/2
a

)
,

ẇ =ε
(Z (a1(Rb(−c+ d+Rb + 2) +Ra) +R2

bw)

Ra

− a1drRb cos θ

Ra

rR
3/2
b sin θ(a1(d(Rb + 2) +Rb + 1) +Rbw(d+Rb))

R
3/2
a

)
.

System (7.26) in cylindrical coordinates.

ṙ =ε
(
− (a+ 1)d1r(a(a(a(a+ 5) + 10)−Da + 9)− 2Da + 4) cos2(θ)

(a+ 2)(a(a+ 3) + 3)
√

2ω2
+

+ sin θ
(√2(a+ 1)d1Z(a(a(a(2a(a(a+ 7) + 20) + 59) + 45) + 16) +Da + 1)

(a+ 2)(a(a+ 3) + 3)2
√

2ω3
+

− (a+ 1)Z(a(a(a(a+ 5) + 10)−Da + 9)− 2Da + 4)(a(a+ 1)(c1 −W ) +W )

(a+ 2)(a(a+ 3) + 3)ω3
+

)
+ sin θ2

(2a(a+ 1)c1r − 2 (a2 + a− 1) rW√
2ω2

+

− 2(a+ 1)2d1r

(a+ 2)
√

2ω2
+

)
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+ cos θ
(
− (a+ 1)d1Z(a(a(a(2a(a(a+ 7) + 20) + 59) + 45) + 16) +Da + 1)

(a+ 2)(a(a+ 3) + 3)2
√

2ω2
+

− (a+ 1)Z(a(a(a(a+ 5) + 10)−Da + 9)− 2Da + 4)(ac1 − (a+ 1)W )

(a+ 2)(a(a+ 3) + 3)
√

2ω2
+

− sin θ
(√2a(a+ 1)d1r(a(a(a(a+ 5) + 10)−Da + 9)− 2Da + 4)

(a+ 2)(a(a+ 3) + 3)
√

2ω3
+

+

√
2r(a(a(a(a+ 5) + 10)−Da + 9)− 2Da + 4)(ac1 − (a+ 1)W )

(a(a+ 3) + 3)
√

2ω3
+

)))
,

θ̇ =ω+ + ε
(√2(a+ 1)d1(a(a(a(a+ 5) + 10)−Da + 9)− 2Da + 4) cos2(θ)

(a+ 2)(a(a+ 3) + 3)
√

2ω3
+

+ sin θ
((a+ 1)d1Z(a(a(a(a+ 5) + 10)−Da + 9)− 2Da + 4)

2(a+ 2)(a(a+ 3) + 3)2
√

2ω2
+
r

(a(a(a+ 3) + 4) +Da + 1)

2(a+ 2)(a(a+ 3) + 3)2
√

2ω2
+
r

+
(a+ 1)Z(a(a(a(a+ 5) + 10)−Da + 9)− 2Da + 4)(ac1 − (a+ 1)W )

(a+ 2)(a(a+ 3) + 3)
√

2ω2
+
r

)
+ sin θ2

(√2(a+ 1)2d1(a(a(a(a+ 5) + 10)−Da + 9)− 2Da + 4)

(a+ 2)(a(a+ 3) + 3)
√

2ω3
+

+
(a(a(a(a+ 5) + 10)−Da + 9)− 2Da + 4)(ac1 − (a+ 1)W )

(a(a+ 3) + 3)ω3
+

)
+ cos θ

( 1

4(a+ 2)(a(a+ 3) + 3)2ω3
+
r

(
(a+ 1)d1Z(a(a(a(a+ 5)

+ 10)−Da + 9)− 2Da + 4)(a(a(a+ 3) + 4) +Da + 1)
)

− (a+ 1)Z(a(a(a(a+ 5) + 10)−Da + 9)− 2Da + 4)(a(a+ 1)(c1 −W ) +W )

(a+ 2)(a(a+ 3) + 3)ω3
+
r

)
+ sin θ

((a+ 1)d1(a(a(a+ 1)(a+ 2)−Da − 3)− 2(Da + 1))

(a+ 2)(a(a+ 3) + 3)
√

2ω2
+

+
2(a(a+ 1)(c1 −W ) +W )√

2ω2
+

))
, (7.33)

ż =− ε

(a+ 1)(a(a+ 3) + 3)
√

2ω3
+

(
(1 + a)

√
2ω+

(
a(6c1 − 4d1)− d1(1 +Da)

+ a2(12c1 − 3d1 − 10w) + a3(8c1 − d1 − 8w) + 2a4(c1 − w) + 6w
)
z − 2(3 + a(3

+ a))r
(

(1 + a)d1

√
2ω+ cos θ +

√
2
(

(1 + a)(d1 + a(−(2 + a)c1 + d1)) + (2 + a)(a2

+ a− 1)w
)

sin θ
))

+ b1wε
2,

ẇ =ε
( 1 + a

a(3 + a(3 + a))(4 + a(9 + a(10 + a(5 + a))−Da)− 2Da)

(
− ab1

(
1 + a

(
16
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+ a(45 + a(59 + 2a(20 + a(7 + a)))
))

+Da

)
− z2 +

(
a(1 + a)

(
a2 + a

− 1
)
(3 + a(3 + a))−

(
1 + a(5 + a(4 + a))

)
Da

)
z2
)

+

√
2ω+rZ(a(−a(a+ 2)(a+ 3) +Da + 3) + 2(Da + 4)) sin θ√

2a(a+ 1)(a(a(a(a+ 5) + 10)−Da + 9)− 2Da + 4)

+ cos θ

(
rZ

a2 + a
−

√
2(a+ 2)(a(a+ 3) + 3)

√
2ω+r

2 sin θ

a(a+ 1)2(a(a(a(a+ 5) + 10)−Da + 9)− 2Da + 4)

)

+
2(a+ 2)(a(a+ 3) + 3)r2 sin2(θ)

a(a+ 1)2(a(a(a(a+ 5) + 10)−Da + 9)− 2Da + 4)
.

System (7.30) in cylindrical coordinates.

ṙ =
ε

2(a(a+ 3) + 3)(a+ 2)2Da + 2(a(a+ 3) + 3)(a(a(a(a+ 5) + 10) + 9) + 4)(a+ 2)(
2(a+ 1)(a(a+ 3) + 3)(a(a(a(a+ 5) + 10) + 9) + 4)d1r cos2(θ)

2 cos θ
(

(1 + a)(d1 − 12w + a((3 + a(3 + a))(4 + a(9 + a(10 + a(5 + a))))c1

+ (16 + a(45 + a(59 + 2a(20 + a(7 + a)))))d1 − (51 + a(100

+ a(115 + a(82 + a(36 + a(9 + a))))))w))(w + z)−
√

2(3 + a(3

+ a))2
√

2ω−r(a((2 + a)c1 + d1 + ad1)− (1 + a)(2 + a)w) sin θ
)

− (3 + a(3 + a)) sin θ
(√

2(1 + a)
√

2ω−(6w − d1 + a(2(1 + a(3 + a(3 + a))c1

− (4 + a(3 + a))d1 − 2a(5 + a(4 + a))w))(w + z) + 4(3 + a(3 + a))r((1 + a)(a(2

+ a)c1 − (1 + a)d1)− (2 + a)(a2 + a− 1)w) sin θ
)

+Da

(
2(1 + a)(a(2 + a)(3

+ a(3 + a))c1 − d1 − 6w − a(3 + a(5 + a(3 + a))w)(w + z) cos θ

+ (1 + a)(2 + a)(3 + a(3 + a))d1r cos θ2

−
√

2(1 + a)(3 + a(3 + a))d1)
√

2ω−(w + z) sin θ
))
,

θ̇ =ω− +
ε

2(2 + a)(3 + 2a+ a2)2
√

2ω3
−r

(
2
√

2(1 + a)(3 + a(3 + a))d1(2(2 +Da)

+ a(9 + a(10 + a(5 + a)) +Da))r cos θ2 + (1 + a)(2(2 +Da)

+ a(9 + a(10 + a(5 + a)) +Da))
√

2ω−(d1 − d1Da + a2(6c1 + 3d1 − 8w)

+ 2a(3c1 + 2d1 − 6w) + a3(2c1 + d1 − 2w)− 6w)(w + z) sin θ

+ 2
√

2(3 + a(3 + a))(2(2 +Da) + a(9 + a(10 + a(5 + a)) +Da))r(d1

+ a(2 + a)(c1 + d1)− 2w − a(3 + a)w) sin θ2 + cos θ(−
√

2(1 + a)(2(2

+Da) + a(9 + a(10 + a(5 + a)) +Da))(a(6c1 − 4d1) + d1(Da − 1)

+ a2(12c1 − 3d1 − 10w) + a3(8c1 + d1 − 8w) + 2a4(c1 − w) + 6w)(w + z)

+ 2(3 + a(3 + a))
√

2ω−r(2d1(Da − 1) + a3(28c1 + 5d1 − 26w)

+ a2(30c1 + d1(Da − 1)− 20w) + 4a4(3c1 + d1 − 3w) + a5(2c1 + d1 − 2w)

+ 12w + a(12c1 − 5d1 + 3c1Da + 6w)) sin θ)
)
,
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ż =ε
(

2 (−(a+ 1)(a(a+ 1)(a(a+ 3) + 3)(a(a(a(a(a(a+ 5) + 7)− 4)− 17)− 12)

− 3)− 1)Z2 + a(a(a+ 3) + 3)(a(a+ 1)(a(a+ 3) + 3)(a(a(a(a+ 5) + 10) + 9)

+ 4)c1 − (a(a(a(2a(a(a+ 7) + 20) + 59) + 45) + 16) + 1)d1)Z

+ a(a+ 1)(a(a(a(a(a(a(a(a(a(a+ 12) + 65) + 208) + 435) + 623) + 621)

+424) + 183) + 40) + 1)b1) (a+ 1)2 + (−2(a(a(a(a(a(a(a(a(a(2a(a+ 11)

+ 107) + 296) + 495) + 470) + 141)− 219)− 312)− 180)− 46)− 1)(a+ 1)2

−2(a(a+ 1)(a+ 2)(a(a+ 3) + 3)(a(2a(a+ 3) + 5)− 1) + 1)Da(a+ 1)2
)
W 2

+W ((a+ 1)Da (2(a+ 1)(a(a(a+ 3) + 3)(a(a+ 1)(a+ 2)(a(a+ 3) + 3)c1

+ d1 − a(a(a+ 3)(3a(a+ 3) + 14) + 17)Z − 2Z)− 2Z) + (a+ 2)(a(a+ 3)

+ 3)r
(√

2(a+ 2)(a(a+ 1)(a+ 2)− 1)
√

2ω− sin θ − 2(a(a(a(a+ 5) + 10) + 9)

+4) cos θ)) + (a+ 1) (2(a+ 1)(a(a(a+ 3) + 3)(a(a+ 1)(a(a+ 3) + 3)(a(a(a(a

+ 5) + 10) + 9) + 4)c1 − (a(a(a(2a(a(a+ 7) + 20) + 59) + 45) + 16) + 1)d1)

+ a(56− a(a(a(a(a(a(a(a(a(3a+ 32) + 149) + 386) + 576) + 411)− 107)

− 519)− 501)− 243))Z + 2Z) + (a(a+ 3) + 3)r
(√

2(a(a(a(a(a(a(a(3a+ 26)

+ 93) + 168) + 134)− 26)− 131)− 84)− 14)
√

2ω− sin θ − 2(a(a(a(a(a(a(a(a

+8) + 27) + 50) + 58) + 52) + 45) + 30) + 10) cos θ))) +
1

2
(a(a+ 3)

+ 3)r (−2(a+ 2)(a(a + 3) + 3)(a(a(a(a+ 5) + 10) + 9) + 4)r + 2(a+ 2)(a(a

+ 3) + 3)(a(a(a(a+ 5) + 10) + 9) + 4) cos(2θ)r − 4(a+ 1)(a(a+ 1)(a(a+ 3)

+ 3)(a(a(a(a+ 5) + 10) + 9) + 4)d1 + (a(a(a(a(a(a(a(a+ 8) + 27) + 50) + 58)

+ 52) + 45) + 30) + 10)Z) cos θ +
√

2
√

2ω− ((a+ 2)(a(a+ 3) + 3)(a(a(a(a

+ 5) + 10) + 9) + 4)r sin(2θ)− 2(a+ 1) (2a(a+ 1)(a(a+ 2)c1 (7.34)

− (a+ 1)d1)(a(a+ 3) + 3)2 − a(a(a(a(a(a(a(a+ 8) + 25) + 34) + 2)− 56)

−77)− 48)Z + 14Z) sin θ)) +Da (−2(a(a(a(a(a(a(a+ 8) + 27) + 49)

+ 51) + 31) + 11) + 1)Z2(a+ 1)3 + 2a
(
a(a+ 1)2(a+ 2)2(a(a+ 3) + 3)

−1) b1(a+ 1)3 + 2a(a(a+ 3) + 3)(a(a+ 1)(a+ 2)(a(a+ 3) + 3)c1

+ d1)Z(a+ 1)2 − a(a(a+ 5) + 9)(a(a(a+ 5) + 9) + 12)r2

− 36r2 +
1

2
(a+ 2)(a(a+ 3) + 3)r ((a+ 2) (2(a(a+ 3) + 3)r cos(2θ)

+
√

2
√

2ω−(2(a(a(a(a+ 4) + 5) + 1)− 1)Z sin θ + (a(a+ 3) + 3)r sin(2θ))
)

−4(a+ 1)(a(a+ 1)(a(a+ 3) + 3)d1 + (a(a(a(a+ 5) + 10) + 9) + 4)Z) cos θ))
)

/
(
2a(1 + a)2(3 + a(3 + a))(10 + 8Da + a(30 + 22Da + a(52 + 20Da

+ a(58 + 7Da + a(50 + a(27 + a(8 + a)) +Da)))))
)

+ b1wε
2,

ẇ =
ε

(2a(1 + a)2(3 + a(3 + a))(2(2 +Da) + a(9 + a(10 + a(5 + a)) +Da)))(
(a+ 1)2(a(a(a(a+ 5) + 10) +Da + 9) + 2(Da + 2))

(
a5b1 + 4a4b1
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+ a3
(
7b1 − (W + Z)2

)
− a2

(
b1(Da − 5) + 3(W + Z)2

)
− a (b1(Da − 1)

+2(W + Z)2
)
− (Da − 1)(W + Z)2

)
+
√

2(a(a+ 3) + 3)(a+ 1)
√

2ω−r(a(a(a

+ 2)(a+ 3) +Da − 3) + 2(Da − 4)) sin θ(W + Z)− 4(a+ 2)(a(a+ 3)

+ 3)2r2 sin2(θ)
)
− wb1ε

2.
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