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We study the family of singular perturbations of Blaschke products Ba,λ(z) =
z3 z−a

1−az
+ λ

z2. We analyse how the connectivity of the Fatou components varies 
as we move continuously the parameter λ. We prove that all possible escaping 
configurations of the critical point c−(a, λ) take place within the parameter space. 
In particular, we prove that there are maps Ba,λ which have Fatou components of 
arbitrarily large finite connectivity within their dynamical planes.
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1. Introduction

Given a rational map f : Ĉ → Ĉ, where Ĉ = C ∪ {∞} denotes the Riemann Sphere, we consider the 
discrete dynamical system provided by the iterates of f . This dynamical system splits Ĉ into two totally 
invariant sets, the Fatou set F(f), which is defined as the set of points z ∈ Ĉ such that the family {fn, n ∈ C}
is normal in some neighbourhood of z, and its complement, the Julia set J (f). The dynamics of the points 
z ∈ F(f) is stable in the sense of normality whereas the dynamics of the points z ∈ J (f) presents a chaotic 
behaviour. The Fatou set F(f) is open and, hence, J (f) is closed. The connected components of F(f)
are called Fatou components and are mapped under f among themselves. A Fatou component U is called 
periodic if there exists q ∈ N with fq(U) = U , and preperiodic if there exists q ∈ N such that fq(U) is 
periodic. All Fatou components of rational maps are either periodic or preperiodic (see [21]). Moreover, any 
cycle of periodic Fatou components of a rational map has at least a critical point, i.e. a point z ∈ Ĉ such 
that f ′(z) = 0, related to it. For a more detailed introduction to the dynamics of rational maps we refer 
to [4] and [14].
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