


the Julia set J (f). The dynamics of the points in F(f) are stable whereas the dynamics in
J (f) present chaotic behaviour. The Fatou set F(f) is open and therefore J (f) is closed.
Moreover, if the degree of the rational map f is greater or equal than 2, then the Julia set
J (f) is not empty and is the closure of the set of repelling fixed points of f .

The connected components of F(f), called Fatou components, are mapped under f among
themselves. D. Sullivan [Sul85] proved that any Fatou component of a rational map is either
periodic or preperiodic. By means of the Classification Theorem (see e.g. [Mil06]), any
periodic Fatou component of a rational map is either the basin of attraction of an attracting
or parabolic cycle or is a simply connected rotation domain (a Siegel disk) or is a doubly
connected rotation domain (a Herman Ring). Moreover, any such component is somehow
related to a critical point, i.e. a point z ∈ Ĉ such that f ′(z) = 0. Indeed, the basin of
attraction of an attracting or parabolic cycle contains, at least, a critical point whereas
Siegel disks and Herman rings have critical orbits accumulating on their boundaries. For a
background on the dynamics of rational maps we refer to [Mil06] and [Bea91].

The aim of this paper is to study the dynamics of the degree 4 Blaschke products given
by

Ba(z) = z3
z − a

1 − āz
, (1)

where a, z ∈ C. This Blaschke family restricted to S
1 is the rational analogue of the double

standard family Aα,β(θ) = 2θ+α+ (β/π) sin(2πθ) (mod 1) of periodic perturbations of the
doubling map on S

1. Indeed, when |a| tends to infinity, the products Ba tend to e4πitz2

uniformly on compact sets of the punctured plane C
∗ = C \ {0}, where t ∈ R/Z denotes

the argument of a. Double standard maps extend to entire transcendental self-maps of C∗.
Although there is no explicit simple expression for the restriction of Ba to S

1, the global
dynamics are simpler than in the transcendental case. The double standard family has been
studied in several papers such as [MR07, MR08], [Dez10] and [dlLSS08].

For all values of a ∈ C, the points z = 0 and z = ∞ are superattracting fixed points of local
degree 3. We denote by A(0) and A(∞) their basins of attraction and by A∗(0) and A∗(∞)
their immediate basins of attraction, i.e. the connected components of the basins containing
the superattracting fixed points. If |a| ≤ 1, A(0) = A∗(0) = D and A(∞) = A∗(∞) = Ĉ \ D
and hence J (Ba) = S

1 (see Lemma 3.3). If |a| > 1, there are two critical points c±. If |a| = 2,
the two critical points collide in a single one. If |a| > 2 the two critical points are symmetric
with respect to S

1 (see Section 3) and so are their orbits. Consequently, if |a| > 2 it is enough
to control one of the critical orbits in order to understand the possible dynamics of Ba. On
the other hand, if 1 < |a| < 2 the Blaschke product Ba has two different free critical points
contained in S

1 which may lead to different dynamics.

The connectivity of the Julia set is a focus of attention when studying a family of rational
functions (see e.g. [Shi87], [Prz89], [Pil96] and [DR13]). It is known that, given a polynomial
P , its Julia set J (P ) is connected if and only if it has no free critical point captured by the
basin of attraction of infinity (see [Mil06]). However, such a classification does not exist for
general rational maps which, unlike polynomials, may have Herman Rings and even cantor
sets of Jordan curves [McM88]. It turns out that the family Ba shares some of the features of
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polynomials in this respect such as the non existence of Herman rings (see Proposition 3.5).
We also prove the following criterium.

Theorem A. Given a Blaschke product Ba as in (1), the following statements hold:

(a) If |a| ≤ 1, then J (Ba) = S
1.

(b) If |a| > 1, then A(∞) and A(0) are simply connected if and only if c+ /∈ A∗(∞).

(c) If |a| ≥ 2, then every Fatou component U such that U ∩ A(∞) = ∅ and U ∩ A(0) = ∅ is
simply connected.

Consequently, if |a| ≥ 2, then J (Ba) is connected if and only if c+ /∈ A∗(∞).

Next, we focus on the basins of attraction of attracting or parabolic cycles not contained
in S

1, other than 0 or ∞. These may only exist when |a| > 2. We distinguish two cases
depending on the location of the cycles with respect to D.

On the one hand, if Ba, |a| > 2, is such that has no attracting or parabolic cycle in
S
1, we can relate the Blaschke product with a cubic polynomial preserving the dynamics

of all orbits contained in C \ D. Indeed, for such parameters, Ba|S1 is quasisymmetrycally
conjugate to the doubling map θ → 2θ (mod 1) and a quasiconformal surgery, consisting
in gluing a superattracting cycle in D, can be performed obtaining cubic polynomials of
the form Mb(z) = bz2(z − 1) with b ∈ C (see [Pet07] and Section 4.2). These polynomials
have been the object of study of several papers (see e.g. [Mil09] and [Roe07]). This surgery
establishes a conformal conjugacy between Mb and Ba on the set of points which never enter
D under iteration of Ba and the points which are not attracted to z = 0 under iteration of
Mb. In particular, if Ba has an attracting or parabolic cycle contained in C \D, this surgery
conjugates Ba with Mb conformally in its basin of attraction.

On the other hand, if Ba has a periodic cycle with points both inside and outside D the
situation is different. Although the previous surgery construction is still possible, a lot of
information is lost since, under the new map, the critical point is always captured by the basin
of z = 0. Parameters for which the orbit of c+ ∈ C \ D enters the unit disk at least once are
called swapping parameters and connected components of the set of swapping parameters are
called swapping regions. Inside these regions, the non holomorphic dependence of Ba on the
parameter a gives rise to what appear to be small copies of the Tricorn, the bifurcation locus of
the antiholomorphic family (i.e. holomorphic on the variable z) of polynomials pc(z) = z2 + c
(see [CHRSC89] and Figure 9 (a)). J. Milnor [Mil92] showed that a similar situation takes
place for real cubic polynomials introducing the concept of antipolynomial-like mapping. We
distinguish between two types of attracting cycles for swapping parameters. We say that
a parameter is bitransitive if it has a cycle whose basin of attraction contains the two free
critical points. We say that a parameter is disjoint if there are two different cycles other
than zero or infinity. The very special dynamics taking place for swapping parameters allow
us to build a polynomial-like mapping in a neighbourhood of every bitransitive or disjoint
swapping parameter. A polynomial-like map is a locally defined map which is conjugate to a
polynomial (see Definition 2.3).
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Theorem B. Let a0 be a swapping parameter with an attracting or parabolic cycle of period
p > 1. Then, there is an open set W containing a0 and p0 > 1 dividing p such that, for
every a ∈ W , there exist two open sets U and V with c+ ∈ U such that (Bp0

a ;U, V ) is a
polynomial-like map. Moreover,

(a) If a0 is bitransitive, (Bp0
a ;U, V ) is hybrid equivalent to a polynomial of the form p2c(z) =(

z2 + c
)2

+ c.

(b) If a0 is disjoint, (Bp0
a ;U, V ) is hybrid equivalent to a polynomial of the form p2c(z) =(

z2 + c
)2

+ c or of the form z2 + c.

It is known that the boundary of every bounded Fatou component of a polynomial, with
the exception of Siegel disks, is a Jordan curve [RY08]. This is not true however for rational
functions although it can be stablished under some conditions (e.g. postcritically finite among
others [Pil96]). In our case, as a consequence of the two previous constructions, we know that
the boundary of every connected component of the basin of attraction of an attracting or
parabolic cycle of Ba not contained in S

1 and other than z = 0 and z = ∞ is a Jordan curve
(see Proposition 4.10). Indeed, if Ba has such a cycle, the previous constructions provide a
conjugation between Ba and a polynomial which sends the immediate basin of attraction of
the cycle of Ba to the immediate basin of attraction of a bounded cycle of the polynomial.

A rational map is hyperbolic if all its critical points are attracted to attracting cycles. A
hyperbolic component is a connected component of the open set H = {a|Ba is hyperbolic}.
The parametrization of hyperbolic components of rational functions which depend holomor-
phically on their parameters is well known (see [DH85a] and [BF14]). If the family of functions
does not depend holomorphically on parameters, some extra difficulties appear. S. Nakane
and D. Schleicher [NS03] study the parametrization of hyperbolic components with cycles of
even period for the family of antipolynomials pc,d(z) = zd + c. We focus on the parametriza-
tion of hyperbolic components with disjoint parameters using different methods than the
ones of [NS03]. Notice that, due to the symmetry of Ba, disjoint cycles are symmetric with
respect to S

1 and therefore have the same period and conjugate multiplier (see Theorem 4.5).
Hence, given a hyperbolic component U with disjoint parameters, it makes sense to define
the multiplier map Λ : U → D as the map which sends every a ∈ U to the multiplier of the
attracting cycle whose basin captures the critical orbit of c+.

Theorem C. Let U be a disjoint hyperbolic component such that U ⊂ {a ∈ C; |a| > 2}.
Then, the multiplier map is a homeomorphism between U and the unit disk.

Since the multiplier of any bitransitive cycle is a non-negative real number (see Proposition
4.11), the previous result does not hold for bitransitive components. This phenomena had
already been noticed in [NS03] for the polynomials p2c,d.

In Section 2 we introduce some notation and useful results to prove Theorems A, B and C.
In Section 3 we describe the basic properties of the Blaschke family Ba and prove Theorem A.
In Section 4 we study the parameter plane of the family: we describe the different kinds of
hyperbolic dynamics that may occur depending on the behaviour of the free critical points,
we introduce the relation with the family of cubic polynomials Mb, describe the dynamics
that can take place along the swapping regions proving Theorem B and finally we prove
Theorem C.
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2 Preliminaries and tools

Given a rational map f , we denote by < z0 >:= {z0, · · · , fp−1(z0) = zp−1} an attracting or
parabolic cycle of period p ≥ 1, where f(zi) = zi+1 with subindeces taken modulus p. We
denote with A(< z0 >) the basin of attraction of the cycle whereas A∗(< z0 >) denotes its
immediate basin of attraction, i.e. the connected components of A(< z0 >) which contain a
point of < z0 >. With A∗(zq) we denote the connected component of A∗(< z0 >) containing
zq. The marked point z0 of the cycle is usually taken so that A∗(z0) contains a critical point.

The Riemann-Hurwitz formula

When dealing with the simple connectivity of open sets, it is useful to consider the Riemann-
Hurwitz formula (see [Bea91]). It can be stated as follows.

Theorem 2.1 (Riemann-Hurwitz Formula). Let U and V be two connected domains of Ĉ of
finite connectivity mU and mV and let f : U → V be a degree k proper map branched over r
critical points counted with multiplicity. Then

mU − 2 = k(mV − 2) + r.

The following corollary is used several times along the paper.

Corollary 2.2. Let f be a rational map and let V be a simply connected domain. Let U
be a connected component of f−1(V ). If U contains at most one critical point (of arbitrary
multiplicity), then U is simply connected.

Proof. By construction, f |U : U → V is proper. Let r be the multiplicity of the critical point.
Then, f |U has at least degree r + 1. By The Riemann-Hurwitz formula, since mV = 1, we
have mU − 2 ≤ −(r + 1) + r = −1. Since mU is at least 1, we conclude that it is indeed 1
and U is simply connected.

Polynomial and antipolynomial-like mappings

The theory of polynomial like mappings [DH85b], introduced by A. Douady and J. Hub-
bard, allows us to understand why copies of the filled Julia set of polynomials appear in the
dynamical planes of rational maps or even entire transcendental or meromorphic maps.

Definition 2.3. A triple (f ;U, V ) is called a polynomial-like (resp. antipolynomial-like) map-
ping of degree d if U and V are bounded simply connected subsets of the plane, U ⊂ V and
f : U → V is holomorphic (resp. antiholomorphic) and proper of degree d. Its filled Julia set
is defined as

Kf =
⋂

n>0

f−n(V ) = {z ∈ U | fn(z) ∈ U ∀n ≥ 0}.

Observe that given any polynomial (resp. antipolynomial) P of degree d, there exists
a disk DR of radius R > 0 so that (P ;DR, P (DR)) is a polynomial-like mapping (resp.
antipolynomial-like mapping).
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Definition 2.4. We say that two (anti)polynomial-like maps (f ;U, V ) and (f ′;U ′, V ′) are
hybrid equivalent if there exist neighbourhoods Uf and Uf ′ of Kf and Kf ′ , respectively, and
a quasiconformal conjugation φ : Uf → Uf ′ between f and f ′ such that ∂φ = 0 almost
everywhere in Kf .

Polynomial-like mappings, as their name indicates, behave locally as polynomials do. This
is the content of the Straightening Theorem [DH85b].

Theorem 2.5 (The Straightening Theorem). Every polynomial-like mapping (f ;U, V ) of
degree d is hybrid equivalent to a polynomial P of degree d. If Kf is connected, P is unique
up to affine conjugation.

The antipolynomial-like theory was first introduced by Milnor (see [Mil09]) in order to
study why small copies of the Tricorn appear in the parameter plane of real cubic polyno-
mials. Hubbard and Schleicher (see [HS12]) used this theory afterwards in the study of the
Multicorns, the parameter plane of the antipolynomial maps pc,d(z) = zd + c. They stated
the Antiholomorphic Straightening Theorem.

Theorem 2.6 (The Antiholomorphic Straightening Theorem). Every antipolynomial-like
mapping (f ;U, V ) of degree d is hybrid equivalent to an antipolynomial P of degree d. If Kf

is connected, then P is unique up to affine conjugation.

Conjugation with the doubling map

Along the paper it is important to know whether the Blaschke products Ba are conjugate
to the doubling map of the circle θ → 2θ (mod 1), where θ ∈ R/Z (equivalently given
by z → z2, where z ∈ S

1). The following result tells us that the lift H of an increasing
covering map f of the circle of degree 2 is semiconjugate to the doubling map θ → 2θ. See
[dMvS93, MR07, Dez10] for further details.

Lemma 2.7. Let F : R → R be a continuous increasing map. Suppose that F (x + k) =
F (x) + 2k for any integer k and for any real x. Then, the limit

H(x) = lim
n→∞

Fn(x)

2n

exists uniformly on x. This map H is increasing, continuous and satisfies H(x+k) = H(x)+k
for any integer k and for any real x. H semiconjugates F with the multiplication by 2, i.e.
H(F (x)) = 2H(x) for any real x. Moreover, the map H is unique up to constant k ∈ N and
sends points of period d to points of period d.

If |a| ≥ 2, the circle map Ba|S1 is a degree 2 cover. We denote by Ha the lift of the map
ha : S1 → S

1 which semiconjugates Ba|S1 with the doubling map in S
1. Since Ha is unique

up to constant k ∈ N, the map ha is unique.

Definition 2.8. An orientation preserving map h : S1 → S
1 is quasisymmetric if h is injective

and such that, for z1, z2, z3 ∈ S
1,

if |z1 − z2| = |z2 − z3| ⇒
1

M
≤ |h(z1) − h(z2)|

|h(z2) − h(z3|)
≤M
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for some M > 0.

It is not difficult to prove that, if |a| > 3, Ba|S1 is and expanding map and, therefore, ha
is a quasisymmetric conjugacy (cf. [dMvS93]). The next theorem, due to C. Petersen [Pet07],
gives some conditions weaker than expansivity which guarantee that ha is a quasisymmetric
conjugacy. Recall that the ω-limit set ω(z) of a point z ∈ C is defined to be the accumulation
set of the orbit of z. A point z is called recurrent if and only if z ∈ ω(z).

Theorem 2.9. Let B : Ĉ → Ĉ be a Blaschke product with poles in D such that the restriction
B : S1 → S

1 is a (positively oriented) degree d ≥ 2 covering and such that S
1 contains no

non repelling periodic point and ω(c) ∩ S
1 = ∅ for every recurrent critical point c. Then,

B : S1 → S
1 is quasisymmetrically conjugate to Rd(z) = zd.

3 Dynamical plane of the Blaschke family

We consider the degree 4 Blaschke products of the form

Ba,t(z) = e2πitz3
z − a

1 − āz
, (2)

where a ∈ C and t ∈ R/Z. As all Blaschke products, the family Ba,t leaves S
1 invariant and

therefore its members are symmetric with respect to the unit circle, i.e. Ba,t(z) = I◦Ba,t◦I(z)
where I(z) = 1/z̄.

The next lemma tells us that, for the purpose of classification, we can get rid of the
parameter t. The proof is straightforward.

Lemma 3.1. Let α ∈ R and let η(z) = e−2πiαz. Then η conjugates the maps Ba,t and
Bae−2πiα,t+3α. In particular we have that Ba,t is conjugate to B

ae
2πit
3 ,0

.

Hence, we focus on the study of the family Ba(z) = z3 z−a
1−āz (1) for values a, z ∈ C.

Given the fact that these rational maps have degree 4, there are 6 critical points counted
with multiplicity. The fixed points z = 0 and z = ∞ are critical points of multiplicity 2 and
hence superattracting fixed points of local degree 3. The other two critical points, denoted
by c±, are given by

c± := c±(a) := a · 1

3|a|2
(

2 + |a|2 ±
√

(|a|2 − 4)(|a|2 − 1)
)
. (3)

The critical points c+ and c− are free and satisfy |c+| ≥ 1 and |c−| ≤ 1. If they are not
in S

1 (i.e. |a| > 2 or |a| < 1), they and their orbits are symmetric with respect to S
1. The

following result proves that the critical points determine the parameter if |a| ≥ 2 or |a| < 1.

Lemma 3.2. Given a Blaschke product Ba,t as in (2) with |a| ≥ 2 or |a| < 1, the parameter a
is continuously determined by the critical points c±. Moreover, if the image Ba(z0) 6= {0,∞}
of a point z0 is fixed, the parameter t is continuously determined by a.
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Proof. The continuous dependence of t with respect to a is clear. Let a = rae
2πiα, where

α ∈ R/Z and ra ≥ 2 (resp. ra < 1). It follows from (3) that the critical points c+ and c−
have the same argument α as a. It is left to see that ra depends continuously on |c+| = rc.
It follows from symmetry that |c−| = 1/rc. Consider R(rc) = rc + 1/rc. For rc ≥ 1, R is a
strictly increasing function which satisfies R(1) = 2. Using (3) we have:

R(rc)e
2πiα = c+ + c− =

2a

3|a|2 (2 + |a|2) =
2

3

rae
2πiα

r2a
(2 + r2a),

and, therefore, ra · R(rc) = 2(2 + r2a)/3. This quadratic equation yields two solutions ra± =

(3R±
√

9R2 − 32)/4. The solution ra+(R) takes the value 2 for R = 2 and is strictly increasing
and tending to infinity when R tends to infinity. The solution ra−(R) takes the value 1 for
R = 2 and is strictly decreasing and tending to zero when R tends to infinity. Therefore, each
critical point c+ ∈ C, |c+| ≥ 1 (resp. |c+| > 1), determines continuously a unique parameter
a such that |a| ≥ 2 (resp. |a| < 1).

Another relevant point to discuss is what type of dynamics may occur in S
1. It follows

directly from the invariance of S
1 under Ba and the fact that Ba : S

1 → S
1 cannot be a

degree 1 covering (and hence conjugate to an irrational rotation) that any point z ∈ S
1

either belongs to the Julia set or is attracted to an attracting or a parabolic periodic orbit
{z0, ..., zp−1} ∈ S

1.

For completeness we describe some features of the dynamics of Ba which depend on the
modulus of a. The first thing to consider is whether there is or not a preimage of ∞ in D.
This family has a unique pole at z∞ = 1/a and a unique zero z0 = a. Their position, together
with the positions of c±, influence the possible dynamics of Ba. We proceed to describe the
situation depending on |a| (see Figure 1).

When |a| < 1 we have that both critical points c± lie on the half ray containing a.
Moreover, |c−| < 1 and |c+| > 1. The only pole, z∞ = 1/a has modulus greater than one.
Hence, Ba : D → D is a holomorphic self map of D having z = 0 as a superattracting fixed
point. Since, by symmetry, there is no preimage of the unit disk outside the unit circle, Ba|D
is a degree 4 branched covering. By Schwarz Lemma we have that z = 0 is the only attracting
point of Ba in D which attracts all points in D. Summarizing, we have:

Lemma 3.3. If |a| < 1, Aa(0) = A∗
a(0) = D and by symmetry Aa(∞) = A∗

a(∞) = Ĉ \ D.
Hence, J (Ba) = S

1.

When |a| = 1 both critical points and the preimages of 0 and ∞ collapse at the point
z = a, where the function is not formally defined. Everywhere else we have the equality:

Ba(z) = z3
z − a

1 − z/a
= −az3.

For 1 < |a| < 2, it follows from (3) that c+ = a · k and c− = a · k̄ with k ∈ C. Hence,
by symmetry, |c±| = 1 (see Figure 1 (b)). The critical orbits lie in S

1 and are not related to
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z0c−
z∞

c+

(a) Case |a| < 1

z0z∞

c+

c−

γeγγi
Ωe

Ωi

(b) Case 1 < |a| < 2

z0

z∞

c

Ωi

Ωe

(c) Case |a| = 2

z0

c−z∞
c+

Ωe

Ωi

(d) Case |a| > 2

Figure 1: Different configurations of the critical points and the preimages of zero and infinity de-
pending on |a|.

each other. The circle map Ba|S1 has no degree defined. Indeed, it can be proven that some
points in S

1 have 2 preimages under Ba|S1 whereas other points have 4 preimages. In Figure
2 we show the dynamical planes of three maps Ba with 1 < |a| < 2.

When |a| = 2 we have a unique critical point c = a/2 of multiplicity 2 in the unit circle.
There are two preimages of S1 which meet at c (see Figure 1 (c)). There may or may not be
an attracting or parabolic cycle in S

1 when |a| = 2. The parameter might be, for example, of
Misiurewicz type (i.e. the free critical point is preperiodic). In this situation the only Fatou
components of Ba are the basins of z = 0 and z = ∞. We also remark for further use that
the map Ba|S1 is 2-to-1. In Figure 3 we show the dynamical planes of two maps Ba with
|a| = 2.

When |a| > 2, as is the case when |a| < 1, we have that both critical points c± lie on
the half ray containing a and are symmetric with respect to S

1. In this case we have two
disjoint preimages of the unit circle: one of them inside D, surrounding the pole z∞, and the
symmetric one outside surrounding the zero z0 = a (see Figure 1 (d)). As in the case |a| = 2,
Ba|S1 is 2-to-1. In Figures 4 and 6 (a) we show the dynamical planes of three maps Ba with
|a| > 2.

3.1 Connectivity of the Julia set: proof of Theorem A

The goal of this section is to prove Theorem A. Notice that statement (a) has already been
proven in Lemma 3.3. In Proposition 3.4 we prove statement (b).
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(a) Dynamical plane of B3/2i (b) Dynamical plane of B3/2

(c) Dynamical plane of B1.07398+0.5579i (d) Zoom in (c)

Figure 2: Dynamical planes of three Blaschke products Ba with 1 < |a| < 2. The colours work
as follows: a scaling of red if the orbit tends to infinity, black if it tends to zero, green if the orbit
accumulates on the cycle < z0 > such that c+ ∈ A∗(< z0 >) and yellow if there exists a cycle
< w0 > 6=< z0 > such that c− ∈ A∗(< w0 >) and the orbit accumulates on it. In case (a) there are no
other Fatou components than the basins of zero and infinity. In case (b) both free critical points are
attracted to a period 2 cycle. In Figures (c) and (d) the critical points are attracted to two different
cycles of period 1 (green) and period 4 (yellow), respectively.

Proposition 3.4. Let Ba be as in (1) and suppose |a| > 1. Then, the connected components
of A(∞) and A(0) are simply connected if and only if c+ /∈ A∗(∞).

Proof. By symmetry, the connected components of A(0) are simply connected if and only if
the ones of A(∞) are. Therefore, we focus on the simple connectivity of A(∞). By means of
the Riemann-Hurwitz formula (Theorem 2.1) and invariance of S1, the connected components
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Figure 3: Dynamical planes of B2 (left) and Ba0
, where a0 = 1.971917 + 0.333982i, (right) . In

the left case the point z = 1 is a superattracting fixed point. The parameter a0 has been chosen
numerically so that Ba0

|S1 has no attracting cycle. Colours are as in Figure 2.

Figure 4: Dynamical planes of Ba0
, where a0 = −0.87 + 2.05333i, (left) and B4 (right). In the left

case the critical point c+ belongs to A∗(∞) and the Julia set is disconnected. In the right case each
free critical orbit accumulates on a different basin of attraction. Colours are as in Figure 2.

of A(∞) \ A∗(∞) are simply connected if and only if A∗(∞) is simply connected since any
connected component of A(∞)\A∗(∞) can have at most one critical point (see Corollary 2.2).
Therefore, it is sufficient to prove that A∗(∞) is simply connected if and only if c+ /∈ A∗(∞).
Let us consider the Böttcher coordinate of the superattracting fixed point z = ∞ (see [Mil06],
Theorem 9.1). If there is no extra critical point in A∗(∞), the Böttcher coordinate can be
extended until it reaches ∂A∗(∞) and A∗(∞) is simply connected. If it does contain an
extra critical point, the Böttcher coordinate can only be extended until it reaches the critical
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point (see [Mil06], Theorem 9.3). Let U be the maximal domain of definition of the Böttcher
coordinate at ∞. Then, either ∂U consists of the union of two topological circles, say γ± ,
which are joined in a unique point which is the critical point, or ∂U is a topological circle
containing the critical point. If it is the last case, there is an extra preimage of Ba(U) attached
to the critical point. Hence, A∗(∞) would be mapped 4 to 1 onto itself. This is not possible
since Ba is of degree 4 and the only pole z∞ is inside the unit disk and hence does not belong
to A∗(∞). Let V+ and V− be the disjoint simply connected regions bounded by γ+ and γ−.
The result follows by noticing that both Ba(V+) and Ba(V−) contain Ĉ \Ba(U) and, hence,
both of them contain Julia set since J (Ba) is not empty and U is contained in F(Ba).

We now begin the proof of statement (c). In propositions 3.5 and 3.6 we prove that all
periodic Fatou components other than A∗(0) or A∗(∞) are simply connected.

Proposition 3.5. Let Ba be as in (1). Then Ba has no Herman Rings.

Proof. M. Shishikura [Shi87] proved that if a rational map has a Herman ring, then it has
two different critical points whose orbits accumulate on the two different components of the
boundary of it. If |a| ≤ 1, we have that the Julia set satisfies J (Ba) = S

1 (see Lemma 3.3),
so Ba cannot have Herman rings. If 1 < |a| ≤ 2, the two critical orbits lie in S

1 and, hence,
there can be no Herman rings.

We focus now on the case |a| > 2. By Shishikura’s result and symmetry, a cycle of Herman
rings would have components both inside and outside the unit disk. Hence, it would have at
least one component in the preimage of the unit disk Ωe = B−1

a (D)\D and another one in the
preimage of the complementary of the unit disk Ωi = B−1

a (C \ D) (see Figure 1 (d)). Recall
that Ωe is a simply connected set disjoint from S

1. Moreover, all its preimages are bounded,
none of them can intersect the unit circle and all of them are simply connected by Corollary
2.2. Every component of the cycle of Herman rings is contained in a preimage of Ωe of some
order n ≥ 0. We claim that such a cycle must have a component which surrounds either
the unit disk or Ωe. If this is so, this component cannot be contained in a simply connected
preimage of Ωe, which leads to a contradiction.

Let I(z) = 1/z be the reflection with respect to S
1. To prove the claim observe that, due

to symmetry, if A is a component of the cycle of Herman rings, then so is I(A). Moreover,
since infinity is a superattracting fixed point, all components are bounded and at least one of
them, say A′, surrounds the pole z∞ (by the Maximum Modulus Principle). Recall that z∞
is contained in Ωi and that, again by symmetry, I(Ωi) = Ωe. Then, either A′ surrounds the
unit disk or surrounds Ωi or is contained in Ωi. In the first case we are done. In the second
case I(A′) surrounds Ωe and we are also done. In the third case, Ba(A

′) separates infinity
and the unit disk and, hence, surrounds the unit disk. This finishes the proof.

Proposition 3.6. Let Ba be as in (1) with |a| ≥ 2. Let < z0 > be an attracting, super-
attracting or parabolic p-cycle of Ba other than {0} or {∞}. Then A∗(< z0 >) is simply
connected.
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Proof. Case 1: First we consider the case in which each connected component of the immedi-
ate basin of attraction contains at most one critical point (counted without multiplicity). For
the attracting case consider a linearizing domain A coming from Kœnigs linearization around
z0 (see [Mil06], Theorem 8.2). The subsequent preimages Un defined as the components of
B−n
a (A) such that z−n ∈ Un, contain at most one critical point and are hence simply con-

nected by Corollary 2.2. The result follows since the nested subsequence of preimages {Unp}
covers A∗(z0). The parabolic case follows similarly taking a petal instead of a linearizing do-
main (see [Mil06], Theorem 10.7) whereas in the superattracting case we may use a Bötcher
domain (see [Mil06], Theorem 9.1).

Case 2: Now consider the case in which one connected component, say A∗(z0), of the
immediate basin of attraction contains the two free critical points. This excludes the case
|a| = 2 (see Section 3). Without loss of generality we assume that z0 is a fixed point.
Indeed, the first return map from A∗(z0) onto itself has no other critical points since the
other components of the immediate basin of attraction contain none.

Due to symmetry of the critical orbits, the fixed point z0 lies in S
1. Hence, A∗(z0)

intersects S
1, which is invariant. If z0 is attracting, take the maximal domain A of the

Kœnigs linearization (see [Mil06], Lemma 8.5). Its boundary ∂A contains, due to symmetry,
the two critical points. Each critical point has a different simply connected preimage of Ba(A)
attached to it. Now consider V = B−1

a (A). The map Ba|V : V → A is proper and of degree
3 since z0 has three different preimages. Given that V contains exactly 2 critical points and
Ba|V is of degree 3, it follows from the Riemann-Hurwitz formula (see Theorem 2.1) that
V is simply connected. Using the same reasoning all of its preimages are simply connected.
Finally, since A∗(z0) is covered by the nested sequence of simply connected preimages of A,
we conclude that A∗(z0) is simply connected. The parabolic case is done similarly taking P
to be the maximal invariant petal (see [Mil06], Theorems 10.9 and 10.15). Notice that, due
to symmetry, for |a| > 2 we cannot have a superattracting cycle of local degree 2 with an
extra critical point in A∗(z0) .

We now finish the proof of statement (c). Assume that there exists a periodic Fatou
component other than A∗(0) and A∗(∞). Then, such periodic Fatou component has a critical
point related to it. Indeed, if it is Siegel disk, there is critical point whose orbit accumulates
on its boundary (see [Shi87]). If it is the basin of attraction of an attracting, superattracting
or parabolic cycle < z0 >, there is a critical point in c ∈ A∗(< z0 >) (cf. [Mil06]). Therefore,
there is at most one unoccupied critical point. Hence, by means of the Corollary 2.2 of
the Riemann-Hurwitz formula, any preperiodic Fatou component eventually mapped to a
periodic component other that A∗(∞) or A∗(0) is also simply connected.

The final statement of the theorem holds since the Julia set of a rational map is connected
if and only if all connected Fatou components are simply connected.
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4 Parameter plane of the Blaschke family

The aim of this section is to study the parameter plane of the Blaschke family Ba. Figure
5 shows the result of iterating the critical point c+. Since the two critical orbits of Ba are
related by symmetry unless 1 < |a| < 2, this information suffices also for c− everywhere else.
Indeed, if 1 < |a| < 2, the critical orbits may have completely independent behaviour. (see
Figure 2 (c), (d))

The next lemma explains the observed symmetries on the parameter plane. Its proof is
straightforward.

Lemma 4.1. Let ξ be a third root of the unity. Then, Ba and Bξa are conjugate by the
conformal map τ(z) = ξ̄z. Moreover, Ba and Bā are conjugate by the anticonformal map
Ĩ(z) = z.

Figure 5: Parameter plane of the Blaschke family Ba. The colours are as follows: red if c+ ∈ A(∞),
black if c+ ∈ A(0), green if O+(c+) accumulates on a periodic orbit in S

1, pink if O+(c+) accumulates
in a periodic orbit not in S

1 and blue in any other case. The inner red disk corresponds to the unit
disk.

4.1 Hyperbolic parameters

We say that a parameter a ∈ C is hyperbolic if Ba is hyperbolic, that is, if both free critical
points c± = c±(a) are attracted to attracting cycles. Recall that the two critical orbits are
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symmetric except for 1 < |a| ≤ 2, in which case they belong to S
1. Hence, if one fixed point

is attracted to the superattracting fixed point z = 0 (resp. z = ∞) the other one is attracted
to z = ∞ (resp. z = 0). Parameters for which this happens are called escaping parameters.
We denote the set of escaping parameters by E . We shall denote the set of non-escaping
parameters by B. Observe that B is not the connectedness locus of Ba. Indeed, in view
of Theorem A, parameters in E have a connected Julia set if the critical points belong to
A(0) \ A∗(0) or A(∞) \ A∗(∞). On the other hand, some Julia sets for 1 < |a| < 2 (which
must belong to B) may, a priori, be disconnected (although we believe that this is never
the case). Notice also that, if |a| = 1, the products Ba degenerate to degree 3 polynomials
without free critical points in which case a is neither escaping nor non-escaping.

Lemma 4.2. If |a| < 1 then a ∈ E. If 1 < |a| ≤ 2 then a ∈ B. The non-escaping set B is
bounded.

Proof. The first two statements are already proven. To prove the third one we have to
see that, if |a| is big enough, then the parameter a is escaping. First we prove that, if
|z| > λ(|a| + 1) with λ ≥ 1, then |Ba(z)| > λ|z|. It follows from the previous hypothesis that
|z − a| > λ and that |z|2 > |z|(|a| + 1) > |1 − az|. Therefore, we have

|Ba(z)| = |z|3 |z − a|
|1 − az| > |z|3 λ

|z|2 = λ|z|.

To finish the proof notice that, as |a| tends to infinity, the critical point c+(a) tends to
a ·2/3. Consequently, it can be checked that the modulus of the critical value v+ = Ba(c+(a))
grows as C|a|2 for some C > 0 and, for |a| big enough, |v+| > λ(|a| + 1) with λ > 1. We
conclude that |Bn

a (v+)| → ∞ when n→ ∞. Therefore, for |a| big enough, a ∈ E .

Following [Ree90] and [Mil92], we classify hyperbolic non-escaping parameters as follows.

Definition 4.3. Let Ba be a hyperbolic Blaschke product such that a ∈ B, |a| 6= 2. We say
that the map is:

(a) Adjacent if the critical points belong to the same component of the immediate basin of
attraction of an attracting cycle (see Figure 6 (left)).

(b) Bitransitive if the critical points belong to different components of the same immediate
basin of attraction of an attracting cycle (see Figure 2 (b)).

(c) Capture if one of the critical points belongs to the immediate basin of attraction of an
attracting cycle and the other one belongs to a preperiodic preimage of it (see Figure 6
(right)).

(d) Disjoint if the critical points belong to the immediate basin of attraction of two different
attracting cycles (see Figure 2 (c) and (d), Figure 4 (right) and Figure 11 (right)).
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c+c−

c−

c+

Figure 6: Dynamical planes of the Blaschke products B2.5 (left) and B1.52+0.325i (right). The colours
are as in Figure 2. The left case corresponds to an adjacent parameter a in a tongue (see Definition
4.4). The right case corresponds to a capture parameter.

We have omitted the parameters a with |a| = 2 in the previous definition since, for them,
the two free critical points collide in a single one.

Because of the non holomorphic dependence in the parameter a, this parameter slice
presents some special hyperbolic components which we call tongues in analogy to the Arnold
tongues which appear in the Arnold standard family of perturbations of rigid rotations (see
[Arn61], [Fag99] and [Gey01]). In this settings they cannot be defined as the level sets of
the rotation number (since there is no rotation number to speak about), but instead, we
may use the equivalent characterization of the existence of an attracting periodic orbit in S

1

with given combinatorics. Tongues for the double standard map were studied previously by
M. Misiurewicz and A. Rodrigues [MR07, MR08] and A. Dezotti [Dez10]. They are defined
as follows.

Definition 4.4. We define T as the set of parameters a, |a| ≥ 2, such that Ba|S1 has an
attracting cycle. The connected components of T are called tongues.

Tongues can be be classified according to the combinatorics of the attracting cycle, which
can be described via the semiconjugacy between Ba|S1 and the doubling map (see Lemma
2.7). A detailed study of T will appear in a forthcoming paper.

We proceed now to describe in which regions the different types of non-escaping hyperbolic
parameters belong.

Theorem 4.5. Let a ∈ B with |a| 6= 2. Then,

(a) If a is an adjacent parameter, either 1 < |a| < 2 or it belongs to a tongue. Conversely,
any parameter a belonging to a tongue is adjacent.
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(b) If a is a bitransitive parameter, then either 1 < |a| < 2 or c+ and c− enter and exit the
unit disk infinitely many times.

(c) If a is a capture parameter, then 1 < |a| < 2.

(d) If a is a disjoint parameter, then either 1 < |a| < 2 or |a| > 2. In the later case the orbits
of the two attracting cycles are symmetric with respect to the unit disk and, hence, have
the same period. Moreover, if the multiplier of one attracting cycle is λ, the multiplier
of the other attracting cycle is λ.

Proof. We begin with statement (a). If a is an adjacent parameter, then both critical points
belong to the same component of the immediate basin of attraction of a periodic cycle. Then,
either 1 < |a| < 2 or |a| > 2 and both critical points are attracted to an attracting cycle in
S
1. In this last case, a belongs, by definition, to a tongue. The converse holds by symmetry.

To prove statement (b) notice that, in the bitransitive case, the immediate basin of
attraction of the attracting cycle which the critical points are attracted to has at least two
different connected components. If |a| > 2, by symmetry, at least one is contained in the
unit disk and another one is on its complement. Thus, the critical orbits enter and exit D

infinitely many times.

Statement (c) follows directly from the fact that, for |a| ≥ 2, the critical orbits are
symmetric.

The first part of (d) follows from symmetry. In order to see that the attracting cycles
have conjugated multipliers, we conjugate Ba via a Möbius transformation M to a rational

map B̃a that fixes the real line. The result follows then from the fact that B̃′
a(z̄) = B̃′

a(z)
and that M preserves the multiplier of the periodic cycles.

4.2 Relation with cubic polynomials

In this section we introduce a quasiconformal surgery which relates, under certain condi-
tions, the dynamics of a Blaschke product Ba outside the unit disk with the ones of a cubic
polynomial of the form Mb(z) = bz2(z − 1) with b ∈ C (see Figure 7). They have z = 0
as a superattracting fixed point and a second critical point, c = 2/3, which is free. This
one dimensional slice (or a cover thereof) was introduced by Milnor in 1991 in a preliminary
version of [Mil09]. They have also been studied by P. Roesch [Roe07], among others. In
Figure 8 we show its parameter plane.

We proceed to introduce the quasiconformal surgery which relates the Blaschke products
Ba with the cubic polynomials Mb (cf. [Pet07]). For an introduction to the tools used in
quasiconformal surgery we refer to [Ahl06] and [BF14]. The idea of the surgery is to “glue”
the map R2(z) = z2 inside D keeping the dynamics of Ba outside D whenever the parameter
a is such that Ba|S1 is quasisymmetrically conjugate to the doubling map θ → 2θ (mod 1).

More precisely, we restrict to the set of parameters a such that |a| ≥ 2. For these
parameters, Ba|S1 is a degree 2 cover of S1 and is hence semiconjugate to the doubling map
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Figure 7: Dynamical planes of the Blaschke product B5.25 (left) and the cubic polynomial M−5.5

(right). The black regions of both figures correspond to the basins of attraction of the superattracting
fixed points z = 0. The cubic polynomial shows, in red, the basin of attraction of a period two
attracting cycle. The Blaschke product has two different attracting cycles of period two (5.25 is a
disjoint parameter). One outside the unit disk (green) and the other one inside (yellow).

Figure 8: Parameter plane of the polynomials Mb. Colours go as follows: black if the free critical
orbit tends to the superattracting cycle z = 0 and red if it tends neither to z = 0 nor to z = ∞. The
scaling from green to orange corresponds to parameters for which the critical orbit tends to z = ∞.

by a non decreasing continuous map ha, not necessarily surjective (see Lemma 2.7). We
know, by Theorem 2.9, that if |a| > 2 and the circle map Ba|S1 has neither attracting nor
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parabolic cycles, then ha is a quasisymmetric isomorphism of the circle. Therefore, we define
X to be the set of parameters a, |a| ≥ 2, such that ha is a quasisymmetric conjugacy between
Ba|S1 and R2.

Let a ∈ X . The map h := ha is quasisymmetric and conjugates Ba|S1 with the doubling
map. Since h is quasisymmetric, it extends to a quasiconformal map H : D → D (see [BA56],
[DE86], cf. [BF14]). We define the model map as follows:

F (z) =

{
Ba(z) for |z| > 1
H−1 ◦R2 ◦H(z) for |z| ≤ 1.

Proposition 4.6. Let a ∈ X . Then, there exists b ∈ C and a quasiconformal map ψ : C → C

such that ψ ◦ F ◦ ψ−1 = Mb, where Mb(z) = b2z(z − 1).

Proof. The map F is quasiregular since it is continuous in Ĉ, holomorphic outside D and
locally quasiconformal in D \ {0}. Its topological degree is 3 since gluing the map z → z2 in
D decreases the degree of Ba in 1. Indeed, recall from Section 3 that Ba has three preimages
of D and one preimage of C \ D in D. Instead, F has only two preimages of D and none of
C \ D in D.

We now define an F -invariant almost complex structure σ, i.e, an almost complex struc-
ture such that F ∗σ = σ, as

σ =





H∗σ0 on D

(Fm)∗(H∗σ0) on F−m(D) \ F−m+1(D), for m ≥ 1
σ0 otherwise,

where σ0 denotes the standard complex structure and ∗ denotes the pullback operation.
By construction, σ has bounded dilatation. Indeed, σ is, in D, the pull back of σ0 by a
quasiconformal map. Everywhere else either we pull back σ|D by a holomorphic map (so we
do not increase the dilatation) or we use the standard complex structure.

Let ψ be the integrating map of σ given by the Measurable Riemann Mapping Theorem
(see [Ahl06] p. 57, [BF14] Theorem 1.28) such that ψ(H−1(0)) = 0, ψ(∞) = ∞ and ψ(c+) =
2/3. Then, the following diagram commutes.

(C, σ)
F−−−−→ (C, σ)

yψ
yψ

(C, σ0)
ψ◦F◦ψ−1

−−−−−−→ (C, σ0).

The composition ψ ◦ F ◦ ψ−1 is a quasiconformal map preserving the standard complex
structure and, by Weyl’s Lemma (see [Ahl06] p. 16, [BF14] Theorem 1.14), ψ ◦ F ◦ ψ−1 is
holomorphic. Since this map has topological degree 3 and no poles it is a cubic polynomial.
By the chosen normalization, z = 0 is a superattracting fixed point and z = 2/3 is a critical
point, hence ψ ◦ F ◦ ψ−1 = Mb for some b ∈ C.
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Since F = Ba outside D, it follows that ψ is a quasiconformal conjugacy between Mb(a)

and Ba on this region, and so are all iterates on orbits which never enter D. Therefore, for
all parameters a ∈ X such that the orbit of the exterior critical point O(c+) never enters D

all relevant dynamics are preserved (see Figure 7). The study of the parameters a ∈ X such
that O(c+) meets D is done in the next section.

The surgery described above above defines a map Φ : X → Y between the subset X
of the parameter plane of Ba (see Figure 5) and a subset Y of the parameter plane of Mb

(see Figure 8). By Theorem 2.9 and the fact that every parameter a with |a| > 2 such that
Ba|S1 has a parabolic cycle belongs to the boundary of a tongue (which is to be proven in
a forthcoming paper), the set X includes all parameters with |a| > 2 such that a does not
belong to the closure of any tongue. The image set Y does not include any parameter b in
the main capture component (i.e. the set of parameters for which the basin of 0 contains
both critical orbits). We conjecture that Φ is a degree 3 cover between X and Y. Another
application of this surgery construction will be explained in Section 4.4 (see Proposition 4.10).

4.3 Swapping regions: Proof of Theorem B

Definition 4.7. We say that a parameter a, |a| > 2, is a swapping parameter if the exterior
critical point c+ eventually falls under iteration in D (or equivalently if c− eventually falls in
Ĉ \ D). A maximal open connected set of swapping parameters is called a swapping region.

The goal of this section is to describe the dynamics for parameters which belong to
swapping regions, i.e. parameters for which the critical orbit of c+, O(c+), enters the unit
disk at least once (see Figure 9 (b)). Exploratory work shows that small copies of the Tricorn,
the connectedness locus of the antipolynomials pc(z) = z2 + c (see [CHRSC89], [NS03] and
Figure 9 (a)), as well as small copies of the Mandelbrot set seem to appear embedded inside
these regions (see Figures 9 (c) and (d)). They appear as the accumulation set of parameters
for which O(c+) enters and exits the unit disk more and more times. In the limit we may
have parameters having attracting cycles which enter and exit the unit disk (see Figure 9
(c) and (d)). In this situation, we build, in Theorem B, a polynomial like of degree either
2 or 4. Milnor [Mil92] worked with cubic polynomials with real parameters and described
a similar structure than the one that we explain in Lemma 4.9. Using antipolynomial-
like mappings (see Section 2) he related the dynamics of the bitransitive parameters with
the ones of the Tricorn. We use his ideas to prove that when the polynomial-like map
build in Theorem B is of degree 4, it is hybrid equivalent to a polynomial of the form

p2c(z) =
(
z2 + c

)2
+ c =

(
z2 + c

)2
+ c.
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(a) The Tricorn. (b) A swapping region.

(c) A copy of the Tricorn. (d) A copy of the Mandelbrot set.

Figure 9: Figure (a) shows the Tricorn, the parameter plane of the antipolynomial pc(z) = z2 + c.
Figure (b) shows the biggest swapping region located in the tip of one of the three horns of the param-
eter space of the Blaschke family for a ∈ (−3.39603,−3.05761)× (5.45471, 5.79312). It corresponds to
the parameters bounded by the big black component. Figure (c) shows a zoom of (b) for which a copy
of the Tricorn can be observed (a ∈ (−3.22295,−3.22249) × (5.58172, 5.58218)). Figure (d) shows
a copy of the Mandelbrot set inside another swapping component for a ∈ (2.080306, 2.080311) ×
(1.9339165, 1.9339215). In Figures (b), (c) and (d) red points correspond to parameters for which
O(c+) → ∞ whereas black points correspond to parameters for which O(c+) → 0. Green points cor-
respond to bitransitive parameters (see Figure 11 (left)), whereas yellow points correspond to disjoint
parameters (see Figure 11 (right)). The red and black annuli surrounding the copies of the Tricorn
and the Mandelbrot set correspond to parameters for which c+ enters and exists the unit disk a finite
number of times before being captured by infinity or zero.
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The following lemma tells us that swapping regions are disjoint from tongues (see Defintion
4.4).

Lemma 4.8. A parameter a with |a| > 2 such that Ba has an attracting or parabolic cycle
in S

1 cannot be swapping.

Proof. Assume that Ba has an attracting cycle in S
1. Let A be the maximal domain of the

Kœnigs linearization of the cycle (see [Mil06], Theorem 8.2 and Lemma 8.5). By symmetry,
c± ∈ ∂A. By injectivity of the linearizer, A ∩ D is mapped into A ∩ D under Ba. Therefore,
O(c−) cannot exit the unit disk and the parameter is not swapping. The parabolic case is
derived similarly taking P to be the maximal petal having the critical points on its boundary
(see [Mil06], Theorems 10.9 and 10.15).

We are interested in the hyperbolic regions contained in the swapping areas. We shall
study them using the theories of polynomial and antipolynomial-like mappings. We focus in
the bitransitive parameters which, for |a| > 2, are necessarily inside swapping regions (see
Theorem 4.5 (b)).

We recall some notation from Section 3. For |a| > 2 the unit circle has two preimages
different from itself and not intersecting S

1, say γi ⊂ D and γe ⊂ C \ D (see Figure 1 (d)).
The map Ba sends γi and γe bijectively to S

1. Moreover, let Ωi be the region bounded by
γi and contained in D and let Ωe be the region bounded by γe and contained in C \ D. The
maps Ba|Ωi : Ωi → Ĉ \ D and Ba|Ωe : Ωe → D are conformal (there is only one preimage of
z = ∞ in D and one preimage of z = 0 in C \ D), so c± /∈ Ωi ∪ Ωe.

We now prove a lemma which deals with the period of attracting and parabolic cycles for
parameters inside swapping regions.

Lemma 4.9. Let a, |a| > 2, be a parameter inside a swapping region. If Ba has an attracting
or parabolic cycle, then its period is at least 3. Moreover, if a is bitransitive, the period is
even.

Proof. First of all notice that, from Lemma 4.8 and invariance of S1, no component of the
basin of attraction of the cycle can intersect neither γi nor γe. A parabolic or attracting cycle
needs to have a critical point in its immediate basin of attraction. The component in which
the critical point lies is contained neither in Ωi nor in Ωe. Moreover, since the periodic cycle
needs to enter and exit the unit disk, the immediate basin of attraction of the cycle has a
component in Ωi and another one in Ωe. Then, the immediate basin of attraction has at least
three different components and, hence, the cycle has at least period three.

Now assume that a is bitransitive. Suppose without lose of generality that the component
which contains c+ is mapped under k > 0 iterates to the component which contains c−.
Because of symmetry, the first return map from the component of c− to component of c+
also takes k iterates. Hence, the period of the attracting cycle is 2k.

We proceed now to prove Theorem B.
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Poof of Theorem B. First of all notice that, due to Lemma 4.8, A∗(< z0 >) neither intersects
γe nor γi. Since the cycle enters and exits the unit disk, A∗(< z0 >) has at least one connected
component entirely contained in Ωe. Let A∗(z0) be the connected component of A∗(< z0 >)
containing c+. Let n0 ∈ N be minimal such that Bn0

a0
(z0) = zn0 ∈ Ωe. Let S0 be the connected

component of B−n0
a0

(Ωe), containing c+ (and hence A∗(z0)). The set S0 is simply connected by
Corollary 2.2 since Ωe is simply connected and Bn0

a0
|S0 has a unique critical point. Recursively

define Sn to be the connected component of B−1
a0

(Sn−1) containing the point z−n of the cycle
(recall that the subindexes of the cycle are taken in Z/pZ). Again by Corollary 2.2, the
components Sn are simply connected for all n > 0. Let p0 ∈ N be the minimal such that
c+ ∈ Sp0 . Since Sp0−n0 ⊂ Ωe, we have that Sp0 ⊂ S0. Notice that p0 is a divisor of p.

The map Ba0 |Sn : Sn → Sn−1 is conformal if Sn contains no critical point and 2-to-1 if it
contains c+ or c− (it cannot contain both critical points at the same time since Sn ∩ S

1 = ∅).
Hence, the triple (Bp0

a0 ;Sp0 ,S0) is a polynomial-like map of degree 4 or 2 depending on whether
there is some Sq0 containing c− or not. As in Lemma 4.9, if such q0 exists, p0 = 2q0. Notice
that, if the parameter is bitransitive, this q0 exists and, therefore, the degree is 4. Since the
condition c+(a) ∈ Sp0(a) ⊂ S0(a) is open, the polynomial-like map can be defined for an
open set of parameters W around a0. From now on we consider a ∈W .

c−
c+

Ωe

Ωi
S0

S̃0 Sq
S2q0

S̃q0
Bq0
a ◦ I

Bn0
a

Figure 10: Sketch of the situation described in Theorem B for the degree 4 case.

We now use antipolynomial-like mappings to see that, in the case of degree 4 polynomial-
like mapping, the degree 4 polynomial to which (B2q0

a ;S2q0 ,S0) is hybrid equivalent can be

taken of the form p2c(z) =
(
z2 + c

)2
+ c. See Section 2 for an introduction to antipolynomial-

like mappings. We proceed to construct an antypolinomial-like map (f ;S2q0 , I(Sq0)) of degree
2, where I(z) = 1/z denotes the reflection with respect to S

1. This antipolynomial-like map
is hybrid equivalent to an antipolynomial of the form z2 + c. The result then follows if
f(I(Sq0)) = S0 and (f2;S2q0 ,S0) = (B2q0

a ;S2q0 ,S0).

Define S̃q = I(Sq), where q ∈ N. It is easy to see that Sq0 ⊂ S̃0. Indeed, taking n0 as

in the definition of S0, by symmetry, Bn0
a (S̃0) = Ωi. Since Bn0

a (Sq0) is contained in Ωi, we

conclude that Sq0 ⊂ S̃0 (see Figure 10). From Sq0 ⊂ S̃0 we can deduce that S2q0 ⊂ Ãq0 .

Finally, take f = I ◦ Bq0
a . Since Ba = I ◦ Ba ◦ I we have that f2 = B2q0

a . Then, the
antipolynomial-like map (I ◦Bq0

a ;S2q0 , S̃q0 = I(Sq0)) satisfies the desired conditions.

Theorem B tells us that all bitransitive parameters contained in swapping regions can
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be related to the dynamics of p2c(z), where pc(z) = z2 + c, since the polynomial-like map
has degree 4. However, notice that if an antipolynomial pc(z) has an attracting cycle of
even period 2q, then p2c(z) has two disjoint attracting cycles of period q. Therefore, there
are also parameters which appear as disjoint parameters in the copies of the Tricorn in the
parameter plane of the Blaschke family (see Figure 9 (c) and Figure 11 (right)). These disjoint
parameters also lead to degree 4 polynomial-like maps. Finally, the polynomial-like maps of
degree 2 obtained from the other disjoint parameters are hybrid equivalent to quadratic
polynomials z2 + c. These parameters correspond to the ones inside the small copies of the
Mandelbrot set observed by means of numerical computations (see Figure 9 (d)).

Figure 11: The left figure shows a connected component of the bitansitive cycle of Ba1
, where

a1 = −3.22271+5.58189i. The right figure shows the dynamical plane of Ba2
, where a2 = −3.22278+

5.58202i is a disjoint swapping parameter. Colours work as in Figure 2. Notice that, surrounding the
basin of attraction, appear some black and red annuli. These annuli correspond to points which enter
and exit D a finite number of times and then are attracted to zero or infinity.

4.4 Parametrizing hyperbolic components: Proof of Theorem C

The aim of this section is to study the multiplier map of the bitransitive and disjoint hyper-
bolic components of the Blaschke family Ba for parameters a such that |a| > 2. Recall that a
hyperbolic component is a connected component of the set of parameters for which Ba is hy-
perbolic. The section is structured as follows: first we prove a proposition that is useful later
on, then we see that the multiplier map is a homeomorphism between any disjoint hyperbolic
component and the unit disk proving Theorem C and finally we study the bitransitive case.

The following proposition tells us that, given Ba with |a| > 2, the boundaries of the
connected components of the basin of attraction of every attracting cycle contained in C

∗ \S1
are Jordan curves. The result is a direct consequence of the relation of the family Ba with
polynomials which has been described in Proposition 4.6 and Theorem B, respectively.

Proposition 4.10. Assume that Ba has an attracting cycle < z0 > which is contained in
C
∗\S1. Then, the boundaries of the connected components of the basin of attraction A(< z0 >)

24



are Jordan curves.

Proof. It follows from the hypothesis of the proposition that |a| > 2 since for 1 < |a| ≤ 2
any attracting cycle other than z = 0 or z = ∞ is contained in S

1 and for |a| < 1 there
are no attracting cycles in C

∗. It follows from Proposition 4.6 and Theorem B that the
closure of every connected component of A∗(< z0 >) is homeomorphic to the closure of a
connected component of a bounded attracting cycle of a polynomial. Since the boundary of
every bounded Fatou component of a polynomial other than a Siegel disk is a Jordan curve
(see [RY08]), the boundary of every connected component of A∗(< z0 >) is also a Jordan
curve. Finally, since all critical points are contained in the immediate basins of attraction of
attracting cycles, the closure of every connected component U of A(< z0 >) \ A∗(< z0 >)
is mapped homeomorphically to the closure of a connected component of A∗(< z0 >) and,
therefore, ∂U is a Jordan curve too.

We now prove Theorem C. The main idea of the proof is to build a local inverse of the
multiplier map Λ around every Λ(a0) ∈ D. It is done performing a cut and paste surgery
to change the multiplier of the attracting cycle using a degree 2 Blaschke product with an
attracting cycle of the desired multiplier as a model (see [BF14], Chapter 4.2).

Proof of Theorem C. Consider the family of degree 2 Blaschke products

bλ(z) = z
z + λ

1 + λz
,

where λ ∈ D. They have 0 and ∞ as attracting fixed points of multipliers λ and λ, respectively.
The only other fixed point 1−λ

1−λ
∈ S

1 is repelling. The multiplier λ and the repelling fixed

point in S
1 determine univalently the map bλ since any holomorphic self-map of degree 2 of

D has the previous form. Its Julia set satisfies J (bλ) = S
1. Furthermore, if |λ| < r < 1,

Dλ = b−1
λ (Dr) is a simply connected open set which compactly contains the disk of radius r,

Dr = {z, |z| < r}, whereas bλ(Dr) is compactly contained in Dr.

Let a0 ∈ U and let λ0 be the multiplier of the attracting cycle < z0 > of period p of
Ba0 such that c+ ∈ A∗(z0). Since there is no other critical point in A∗(< z0 >) \A∗(z0) and
∂A∗(z0) is a Jordan curve (Proposition 4.10), the map Bp

a0 : A∗(z0) → A∗(z0) has degree 2
and a unique fixed point z′0 in ∂A∗(z0). Let R : A∗(z0) → D be the Riemann map sending
z0 to 0 and z′0 to 1−λ0

1−λ0
. The map R ◦ Bp

a0 ◦ R−1 is, by construction, the restriction to D of

the Blaschke product bλ0(z). Fix r′ and r so that 0 ≤ |λ0| < r′ < r < 1. We proceed now
to perform a surgery to the product bλ0 which changes the multiplier of the attracting fixed
point 0 to λ for any |λ| < r′.

Let Dλ0 = b−1
λ0

(Dr) and let Aλ0 denote the annulus Dλ0 \ Dr. Define gλ : D → D as

gλ =





bλ0 on D \Dλ0

bλ on Dr

hλ on Aλ0 ,
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where hλ is chosen to be a quasiconformal map which interpolates bλ and bλ0 depending
continuously on λ. Such a interpolating map can be taken since the boundary maps gλ|∂Aλ0

are degree 2 analytic maps on analytic curves. The inner boundary map depends continuously
on λ whereas the outer map is independent of it. Therefore, the map hλ : Aλ0 → Aλ, where
Aλ denotes the annulus Dr \ bλ(Dr), can be chosen to be a quasiconformal covering map of
degree 2 which depends continuously on λ (see Exercise 2.3.3 of [BF14]). We define recursively
a gλ-invariant almost complex structure σ̃λ as

σ̃λ =





σ0 on Dr

h∗λσ0 on Aλ0
(bnλ0)∗σ̃λ on b−nλ0 (Aλ0),

where σ0 denotes the standard complex structure. Notice that, since any z ∈ D can go at
most once trough Aλ0 , σ̃λ has bounded dilatation. Indeed, ||h∗λσ0||∞ := k(λ) < 1 since hλ is
quasiconformal and the pull backs (bnλ0)∗ do not increase the dilatation. Moreover, λ→ σ̃λ(z)
varies continuously with λ for all z ∈ D. Notice also that the almost complex structures have
dilatation uniformly bounded by k := max|λ|≤r′k(λ) < 1 for all λ ∈ Dr′ .

Once we have performed the multiplier surgery in the degree 2 Blaschke model, we glue
it in Ba0 . This is done preserving the symmetry of the family, i.e. the new map is preserved
under pre and post composition by I(z) = 1/z. Define the model map Fλ as

Fλ =





(B−1
a0

)(p−1) ◦ R−1 ◦ gλ ◦ R on A∗(z0)
I ◦ Fλ ◦ I on I(A∗(z0))
Bλ0 elsewhere,

where (B−1
a0

)(p−1) denotes B−1
a0

◦ p−1· · · ◦B−1
a0

. It is well defined since Ba0 : A∗(zi) → A∗(zi+1)
is conformal for every i 6= 0. The map Fλ depends continuously on λ, is symmetric with
respect to S

1 and holomorphic everywhere except in R−1(Aλ0) ∪ I(R−1(Aλ0)). Notice also
that the periodic cycle < z0 > of Fλ has multiplier λ and that Fλ has a unique critical point
in C \ D which depends continuously on λ. We define recursively an Fλ-invariant almost
complex structure σλ as

σλ =





R∗σ̃λ on A∗(z0)
I∗σλ on I(A∗(z0))
(Bn

a0
)∗σλ on B−n

a0
(A∗(z0)) \A∗(z0)

(Bn
a0

)∗σλ on B−n
a0

(I(A∗(z0))) \ I(A∗(z0))
σ0 elsewhere.

Notice that we are pulling back the almost complex structure σλ by the antiholomorphic
map I(z) (see Section 1.2.1 of [BF14] for an introduction to pull backs under orientation
reversing maps) and that, since we only pull back under holomorphic and antiholomorphic
maps, ||σ̃λ||∞ = ||σλ||∞. By Theorem 2.9, Ba0 |S1 is conjugate to the doubling map and,
therefore, has a unique fixed point x0 ∈ S

1. Let φλ : Ĉ → Ĉ be the integrating map of σλ
obtained from the Measurable Riemann Mapping Theorem (see [Ahl06]) and normalized so
that it fixes 0, x0 and ∞. Since σλ(z) depends continuously on λ for all z ∈ Ĉ with dilatation
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which is uniformly bounded away from 1, the map φλ(z) depends continuously on λ for each
z ∈ Ĉ. It follows from the uniqueness of the integrating map and the symmetry of σλ with
respect to S

1 (i.e. σλ = I∗σλ) that φλ is also symmetric with respect to S
1. Therefore,

B̃λ = φλ ◦ Fλ ◦ φ−1
λ is a degree 4 holomorphic map of Ĉ symmetric with respect to S

1 which

has z = 0 and z = ∞ as superattracting cycles of local degree 3. Therefore, B̃λ is a Blaschke
product of the form Bã(λ),t̃(λ) (2). Since Fλ has a unique critical point in C\D which depends

continuously on λ and φλ(z) depends continuously on λ for each z ∈ Ĉ, Bã,t̃ has a unique
critical point c+(λ) ∈ C\D which depends continuously on λ. Therefore, since Bã(λ),t̃(λ) fixes

x0 ∈ S
1, we have by Lemma 3.2 that ã(λ) and t̃(λ) depend continuously on λ. Finally, by

lemma 3.1, Bã(λ),t̃(λ) is conjugate to a Blaschke product Ba(λ) (1), where a(λ) = ã(λ)e
2πit̃(λ)

3

depends continuously on λ.

To finish the proof we check that a(λ0) = a0 and, therefore, every a(λ) belongs to the same
hyperbolic component U as a0. We have not justified that the quasiconformal interpolating
map hλ0 equals bλ0 and, hence, Ba0 and Bã(λ0),t̃0 might be distinct. However, the integrating

map φλ0 is a conformal conjugacy between them in Ĉ \ A(< z0 >) ∪A(< I(z0) >) and is a

quasiconformal conjugacy in a neighbourhood of their Julia sets. Define φ̃λ0 to be the confor-
mal map from A(< z0 >) ∪A(< I(z0) >) to A(< φλ0(z0) >) ∪A(< I(φλ0(z0)) >) such that,
restricted to every connected component, coincides with the Riemann map normalized so that
the attracting cycles < z0 >, < I(z0) >, < z′0 > and < I(z′0) > are mapped to < φλ0(z0) >,
< I(φλ0(z0)) >, < φλ0(z′0) > and < I(φλ0(z′0)) > and their preimages are in correspondence.
Since Bp

a0 is conjugate to bλ0 (resp. bλ0) in A∗(z0) (resp. A∗(I(z0))) and so is Bp

ã(λ0),t̃0
in

A∗(φλ0(z0)) (resp. A∗(I(φλ0(z0)))), the conformal map φ̃λ0 is a conjugacy. Moreover, it ex-
tends to the boundary of every connected component of the basins of attraction since they
are Jordan domains by Proposition 4.10. Given that φλ0 and φ̃λ0 conjugate Ba0 and Bã(λ0),t̃0
in ∂A(< z0 >) ∪ ∂A(< I(z0) >) ⊂ J (Ba0) they coincide since they map periodic points to
periodic points. Consequently, the map ϕλ0 defined as φλ0 in Ĉ\(A(< z0 >) ∪A(< I(z0) >))

and φ̃λ0 in A(< z0 >) ∪ A(< I(z0) >) is a global conjugacy. Moreover, since ϕλ0 is qua-

siconformal in Ĉ \ (∂A(< z0 >) ∪ ∂A(< I(z0) >)), coincides with φλ0 in J (Bλ0) and φλ0 is
quasiconformal in a neighbourhood of J (Bλ0), ϕλ0 is quasiconformal by Rickman’s Lemma

(cf. [DH85b], [BF14]). Since ϕλ0 is conformal a.e. in Ĉ, it is 1-quasiconformal and therefore

conformal map of Ĉ by Weyl’s Lemma. Since ϕλ0 fixes 0 and ∞, leaves S1 invariant and fixes
x0 ∈ S

1, we conclude that ϕλ0 is the identity and Bã(λ0),t̃0 = Ba0 .

For every a0 ∈ U we have constructed a continuous local inverse to the multiplier map
Λ : U → D. Therefore, Λ is a homeomorphism.

We finish this section giving some ideas of what happens with bitransitive parameters
(see Figure 9 (c)). It follows from Theorem B that these parameters are strongly related to
the quadratic antiholomorphic polynomials pc(z) = z2 + c. Indeed, the polynomial-like map
constructed in Theorem B is hybrid equivalent to a degree 4 polynomial of the form p2c(z)
with a bitransitive attracting cycle. Therefore, the polynomial pc(z) also has an attracting
cycle of odd period since, otherwise, the attracting p2c(z) would have two disjoint attracting
cycles. Nakane and Schleicher [NS03] studied the parameter plane of the antipolynomials
pc,d = zd + c and, in particular, pc,2(z) = pc(z). If the period of the cycles of a hyperbolic
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component was even, they proved a result analogous to Theorem C. They also showed that
the multiplier map is not a good model for the odd period hyperbolic components. The
reason why the multiplier map is not good for this case is the fact that the antiholomorphic
multiplier ∂

∂z
fk(z0) of a cycle < z0 > of odd period k of an antiholomorphic map f(z) is

not a conformal invariant, only its absolute value is. They proved that the multiplier of the
period k cycle < z0 > of the holomorphic map f2(z) equals the square of the absolute value
of the previous antiholomorphic multiplier. Given a bitrinsitive hyperbolic component U of
p2c(z), it also follows from their work that the set of parameters c ∈ U for which the attracting
cycle has multiplier λ ∈ (0, 1) is a Jordan curve and that U contains a unique parameter c0
for which the cycle is superattracting. We expect a similar result for bitransitive hyperbolic
components of the Blaschke family Ba, but we only prove, for the sake of completeness, the
following result.

Proposition 4.11. Let < z0 > be a bitransitive cycle of a Blaschke product Ba as in (1)
with |a| > 2. Then it has non-negative real multiplier.

Proof. By Lemma 4.9, the cycle < z0 > has even period 2q. Let I(z) = 1/z. By symmetry,
I(Bq

a(z0)) = z0. Therefore, z0 is a fixed point of the antiholomorphic rational map f = I◦Bq
a.

Moreover, B2q
a = f2. Therefore, the multiplier of the cycle is given by

∂

∂z
B2q
a (z0) =

∂

∂z
f(z0) ·

∂

∂z
f(z0) =

∣∣∣∣
∂

∂z
f(z0)

∣∣∣∣
2

.
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