

On a family of rational perturbations of the doubling map

Jordi Canela^a*, Núria Fagella^a and Antonio Garijo^b

^aDepartement de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, Barcelona 08005, Spain; ^bDepartement d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona 43007, Spain

(Received 16 February 2015; accepted 8 May 2015)

The goal of this paper is to investigate the parameter plane of a rational family of perturbations of the doubling map given by the Blaschke products $B_a(z) = z^3(z-a)/(1-\bar{a}z)$. First we study the basic properties of these maps such as the connectivity of the Julia set as a function of the parameter *a*. We use techniques of quasiconformal surgery to explore the relation between certain members of the family and the degree 4 polynomials $(\bar{z}^2 + c)^2 + c$. In parameter space, we classify the different hyperbolic components according to the critical orbits and we show how to parametrize those of disjoint type.

Keywords: holomorphic dynamics; Blaschke products; circle maps; polynomial-like mappings

1. Introduction

Given a rational map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, where $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ denotes the Riemann sphere, we consider the dynamical system given by the iterates of *f*. The Riemann sphere splits into two totally *f*-invariant subsets: the *Fatou set* $\mathcal{F}(f)$, which is defined to be the set of points $z \in \hat{\mathbb{C}}$ where the family $\{f^n, n \in \mathbb{N}\}$ is normal in some neighbourhood of *z*, and its complement, the *Julia set* $\mathcal{J}(f)$. The dynamics of the points in $\mathcal{F}(f)$ are stable whereas the dynamics in $\mathcal{J}(f)$ present chaotic behaviour. The Fatou set $\mathcal{F}(f)$ is open and therefore $\mathcal{J}(f)$ is closed. Moreover, if the degree of the rational map *f* is greater than or equal to 2, then the Julia set $\mathcal{J}(f)$ is not empty and is the closure of the set of repelling periodic points of *f*.

The connected components of $\mathcal{F}(f)$, called *Fatou components*, are mapped under f among themselves. Sullivan [33] proved that any Fatou component of a rational map is either periodic or preperiodic. By means of the Classification Theorem (see, e.g. [20]), any periodic Fatou component of a rational map is either the basin of attraction of an attracting or parabolic cycle or is a simply connected rotation domain (a Siegel disc) or is a doubly connected rotation domain (a Herman ring). Moreover, any such component is somehow related to a *critical point*, i.e. a point $z \in \hat{\mathbb{C}}$ such that f'(z) = 0. Indeed, the basin of attraction of an attracting or parabolic cycle discs and Herman rings have critical orbits accumulating on their boundaries. For a background on the dynamics of rational maps we refer to [3,20].

The aim of this paper is to study the dynamics of the degree 4 Blaschke products given by

^{*}Corresponding author. Email: canela@maia.ub.es