Nonlinearity 29 (2016) 3464-3495

Tongues in degree 4 Blaschke products

Jordi Canela^{1,4}, Núria Fagella^{2,4} and Antonio Garijo^{3,4}

¹ Institute of Mathematics Polish Academy of Sciences (IMPAN), ul. Śniadeckich 8, 00-656 Warszawa, Poland

² Dept. de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08005 Barcelona, Spain

³ Dept. d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, Tarragona 43007, Spain

E-mail: canela@maia.ub.es

Received 27 October 2015, revised 29 June 2016 Accepted for publication 26 July 2016 Published 21 September 2016

Recommended by Professor Rafael de la Llave

Abstract

The goal of this paper is to investigate the family of Blasche products $B_a(z) = z^3 \frac{z-a}{1-\bar{a}z}$, which is a rational family of perturbations of the doubling map. We focus on the tongue-like sets which appear in its parameter plane. We first study their basic topological properties and afterwards we investigate how bifurcations take place in a neighborhood of their tips. Finally we see how the fixed tongue extends beyond its natural domain of definition.

Keywords: holomorphic dynamics, Blaschke products, circle maps, tongues Mathematics Subject Classification numbers: 37F45, 37F10, 37F50, 37E10

(Some figures may appear in colour only in the online journal)

1. Introduction

Given a rational map $f: \mathbb{C} \to \mathbb{C}$, where $\mathbb{C} = \mathbb{C} \cup \{\infty\}$ denotes the Riemann sphere, we consider the dynamical system given by the iterates of f. The Riemann sphere splits into two totally f-invariant subsets: the *Fatou set* $\mathcal{F}(f)$, which is defined to be the set of points $z \in \mathbb{C}$ where the family $\{f^n, n \in \mathbb{N}\}$ is normal in some neighborhood of z, and its complement, the *Julia set* $\mathcal{J}(f)$. The dynamics of the points in $\mathcal{F}(f)$ are stable in the sense of normality or equicontinuity, whereas the dynamics in $\mathcal{J}(f)$ present chaotic behavior. The Fatou set is open and its connected components, called *Fatou components*, are mapped under f among themselves.

⁴ The three authors were supported by the Spanish project MTM2011-26995-C02-02 and the Catalan project CIRIT 2009-SGR792. The first author was also supported by the Spanish government grant FPU AP2009-4564 and the grant 346300 for IMPAN from the Simons Foundation and the matching 2015–2019 Polish MNiSW fund.