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1. Introduction and Statement
of Our Main Result

The averaging theory is a classical method for
studying the solutions of the nonlinear dynamical
systems, and in particular, their periodic solutions.
For a general introduction to the averaging theory
see the book by Sanders et al. [2007], and the refer-
ences quoted there. Recently many works extending
and improving the averaging method for computing
periodic solutions were presented, see for instance
[Buică et al., 2012; Llibre et al., 2014; Llibre &
Novaes, 2015; Cândido et al., 2017]. Most of these
results enhance the number of periodic solutions
that can be detected by averaging method. For
instance, Cândido et al. [2017] formulated an aver-
aging method for detecting periodic orbits bifurcat-
ing from a manifold of periodic solutions or from a
continuum of zeros of the averaging function. For
the sake of completeness we reproduce this result
here, see Theorem 1.

The periodic orbits detected by this theorem
are nonhyperbolic. Thus its stability cannot be

directly determined. For this reason in [Cândido &
Llibre, 2016] there is no discussion about the sta-
bility of the periodic solution found in the Lorenz
system. Furthermore, the stability of the periodic
solution found for the Maxwell–Block system by
Cândido et al. [2017] was studied using approxima-
tion to the related eigenvalues. This method does
not work in general (cf. [Murdock, 1988, Sec. 5])
however the results used here justify its use in that
case.

The first contribution in this work is to present
a result (see Theorem 2) that can provide a com-
plete description of the stability of the nonhyper-
bolic solutions found by Theorem 1. Then we apply
this result to study the stability of the periodic
solution of the Lorenz system that was found by
Cândido and Llibre [2016], doing this we answer
the question about its stability that was left open.
Finally, we apply Theorem 1 to give an analytic
proof of the existence of the periodic solutions in
the Thomas system. Some of these solutions were
known only by numerical methods. Therefore we use
Theorem 2 to study the stability of such solutions.
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We consider differential systems of the form

ẋ = F0(t,x) + εF1(t,x) + ε2F2(t,x)

+ ε3F3(t,x) + ε4F4(t,x) + ε5F̃(t,x, ε), (1)

with x in some open subset Ω of R
n, t ∈ [0,∞), ε ∈

[−ε0, ε0]. We assume Fi and F̃ for all i = 1, 2, 3, 4
are T -periodic in the variable t. Let x(t, z, 0) be the
solution of the unperturbed system

ẋ = F0(t,x),

such that x(0, z, 0) = z. We define M(t, z) the fun-
damental matrix of the linear differential system

ẏ =
∂F0(t,x(t, z, 0))

∂x
y,

such that M(0, z) is the identity. The displacement
map of system (1) is defined as

d(z, ε) = x(T, z, ε) − z. (2)

In order to have d(z, ε) well defined we assume that
for |ε| �= 0 sufficiently small the next assumption
holds.

(H) there exists an open set U ⊂ Ω such that for all
z ∈ U the unique solution x(t, z, ε) is defined
on the interval [0, t(z,ε)) with t(z,ε) > T .

This hypothesis is always true when the unper-
turbed system has a manifold of T -periodic solu-
tions. The standard method of averaging for finding
periodic solutions consists in writing the displace-
ment map (2) as power series of ε in the following
way

d(z, ε) = g0(z) + εg1(z) + ε2g2(z)

+ ε3g3(z) + ε4g̃(z, ε),

where for i = 0, 1, 2, 3, 4 we have

gi(z) = M(T, z)−1 yi(T, z)
i!

,

with

y0(t, z) = x(t, z, 0) − z,

y1(t, z) = M(t, z)
∫ t

0
M(τ, z)−1F1(τ,x(τ, z, 0))dτ,

y2(t, z) = M(t, z)
∫ t

0
M(τ, z)−1

[
2F2(τ,x(τ, z, 0)) + 2

∂F1

∂x
(τ,x(τ,x, 0))y1(τ, z)

+
∂2F0

∂x2
(τ,x(τ, z, 0))y1(τ, z)2

]
dτ,

y3(t, z) = M(t, z)
∫ t

0
M(τ, z)−1

[
6F3(τ,x(τ, z, 0)) + 6

∂F2

∂x
(τ,x(τ, z, 0))y1(τ, z)

+ 3
∂2F1

∂x2
(τ,x(τ, z, 0))y1(τ, z)2 + 3

∂F1

∂x
(τ,x(τ, z, 0))y2(τ, z)

+ 3
∂2F0

∂x2
(τ,x(τ, z, 0))y1(τ, z) � y2(τ, z) +

∂3F0

∂x3
(τ,x(τ, z, 0))y1(τ, z)3

]
dτ,

y4(t, z) = M(t, z)
∫ t

0
M(τ, z)−1

[
24F4(τ,x(τ, z, 0)) + 24

∂F3

∂x
(τ,x(τ, x, 0))y1(τ, z)

+ 12
∂2F2

∂x2
(τ,x(τ, z, 0))y1(τ, z)2 + 12

∂F2

∂x
(τ,x(τ, z, 0))y2(τ, z)

+ 12
∂2F1

∂x2
(τ,x(τ, z, 0))y1(τ, z) � y2(τ, z) + 4

∂3F1

∂x3
(τ,x(τ, z, 0))y1(τ, z)3

+ 4
∂F1

∂x
(τ,x(τ, z, 0))y3(τ, z) + 3

∂2F0

∂x2
(τ,x(τ, z, 0))y2(τ, z)2
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+ 4
∂2F0

∂x2
(τ,x(τ, z, 0))y1(τ, z) � y3(τ, z) + 6

∂3F0

∂x3
(τ,x(τ, z, 0))y1(τ, z)2 � y2(τ, z)

+
∂4F0

∂x4
(τ,x(τ, z, 0))y1(τ, z)4

]
dτ.

The functions g1, g2, g3 and g4 will be called here
the averaged functions of orders 1–4 respectively of
system (1).

We say that system (1) has a periodic solution
bifurcating from the point z0 if there exists a branch
of solutions z(ε) for the displacement function such
that d(z(ε), ε) = 0 and z(0) = z0.

Now we shall present our result on the existence
and stability of the periodic solutions of system (1).
The methodology used here was introduced for
studying differential systems such that the unper-
turbed part has a submanifold of T -periodic solu-
tions, see for instance [Buică et al., 2012; Llibre &
Novaes, 2015]. The main difference of this work with
the previous ones is that the first nonzero averaged
function vanishes over a graph.

Let π : R
m × R

n−m → R
m and π⊥ : R

m ×
R

n−m → R
n−m denote the projections onto the

first m coordinates and onto the last n − m coor-
dinates, respectively. For a point z ∈ U we also
consider z = (a, b) ∈ R

m × R
n−m. Consider the

graph

Z = {zα = (α, β(α)) : α ∈ V } ⊂ U (3)

such that m < n, V is an open set of R
m and

β : V → R
n−m is a C4 function.

The next theorem provides sufficient conditions
for the existence of periodic solutions in the dif-
ferential system (1). This theorem was proved by
Cândido et al. [2017]; here we also provide a scheme
of its proof. We need this theorem for the statement
of our main result in Theorem 2.

Theorem 1. Let r ∈ {0, 1, 2} such that r is the first
subindex such that gr �≡ 0. In addition to hypothesis
(H) assume that

(i) the averaged function gr vanishes on the
graph (3). That is gr(zα) = 0 for all α ∈ V ,
and

(ii) the Jacobian matrix

Dgr(zα) =

(
Λα Γα

Bα ∆α

)

where Λα = Daπgr(zα), Γα = Dbπgr(zα),
Bα = Daπ

⊥gr(zα) and ∆α = Dbπ
⊥gr(zα), sat-

isfies that det(∆α) �= 0 for all α ∈ V .
(iii) We define the functions

f1(α) = −Γα∆−1
α π⊥gr+1(zα) + πgr+1(zα),

f2(α) =
1
2
Γαγ2(α) +

1
2

∂2πgr

∂b2
(zα)γ1(α)2

+
∂πgr+1

∂b
(zα)γ1(α) + πgr+2(zα),

γ1(α) = −∆−1
α π⊥gr+1(zα),

γ2(α) = −∆−1
α

(
∂2π⊥gr

∂b2
(zα)γ1(α)2

+ 2
∂π⊥g+1

∂b
(zα)γ1(α)

+ 2π⊥gr+2(α)
)

.

(4)

Then the following statements hold.

(a) If there exists α∗ ∈ V such that f1(α∗) = 0 and
det(Df1(α∗)) �= 0, for |ε| �= 0 sufficiently small
there is an initial condition z(ε) ∈ U such that
z(0) = zα∗ and the solution x(t, z(ε), ε) of sys-
tem (1) is T -periodic.

(b) Assume that f1 ≡ 0. If there exists α∗ ∈ V
such that f2(α∗) = 0 and det(Df2(α∗)) �= 0, for
|ε| �= 0 sufficiently small there is an initial con-
dition z(ε) ∈ U such that z(0) = zα∗ and the
solution x(t, z(ε), ε) of system (1) is T -periodic.

Theorem 1 shows that the functions f1 and
f2 provide sufficient conditions for the existence of
periodic solutions of the differential system (1).

For periodic solutions detected by statement
(a) of Theorem 1 the next result reveals how the
higher order function f2 can be used for determin-
ing the stability of the periodic solution x(t, z(ε), ε).

Theorem 2. Consider r, Γα, ∆α, f1 and f2 as
defined in Theorem 1 and the Jacobian matri-
ces Dgr(z) = (pij(z)) and Dgr+1(z) = (qij(z)).
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Assume that there exists α∗ ∈ V such that f1(α∗) =
0 and det(Df1(α∗)) �= 0. We define the matrix
function

A(ε) = A0 + εA1, (5)

where

A0 = Dgr(zα∗), (6)

A1 = (Dpij(zα∗) · z1 + qij(zα∗)), (7)

z1 = (−Df1(α∗)−1f2(α∗),

Dβ(α∗)(−Df1(α∗)−1f2(α∗)) + γ1(α∗)). (8)

Then the periodic orbit x(t, z(ε), ε) has the same
type of hyperbolic stability as the matrix A(ε) pro-
vided that :

(s1) A0 has no multiple eigenvalues on the imagi-
nary axis, and

(s2) there exists c > 0 such that every eigenvalue
λ(ε) of A(ε) satisfies |Re(λ(ε))| > cε for all
sufficiently small |ε| > 0.

The same class of results can be obtained for
periodic orbits detected by statement (b) of Theo-
rem 1 using the bifurcation function of order 3. The
expressions of such functions are explicitly given by
Cândido et al. [2017]. Theorem 2 can provide the
stability of periodic solutions that bifurcate from a
family of periodic orbits of the unperturbed part of
the differential system (1). As shown in Sec. 3 this
result does not require smooth conditions. Thus we
believe that the ideas presented here can be used,
after some modifications, in the context of piecewise
continuous systems having periodic solutions bifur-
cating from families of periodic orbits as studied by
Tian and Han [2017].

2. Applications

Lorenz differential system

Consider the differential system

ẋ = a(x − y),

ẏ = x(b − z) − y,

ż = xy − cz,

(9)

with a, b, c being real coefficients. In a recent publi-
cation, Cândido and Llibre [2016] have found a peri-
odic orbit bifurcating from the origin of system (9),
see Fig. 1. The next theorem completes this work

Fig. 1. Solution of system (9) starting at (0.05,−0.01, 0.05)
being attracted by the stable periodic orbit (dashed curve)
founded by Theorem 1. The parameters of the system are
a2 = −2, b = 2, c1 = 1 and ε = 1/100.

giving the stability characterization of that periodic
solution.

Theorem 3. Let a = −1 + a2ε
2 and c = c1ε.

Assume that b > 1, a2 < 0, c1 �= 0 and |ε| �= 0
sufficiently small. Then the Lorenz differential sys-
tem (9) has a periodic orbit bifurcating from the
origin. Furthermore for c1 > 0 this periodic orbit
is an attractor, otherwise for c1 < 0 the periodic
orbit has a stable manifold formed by two topolog-
ical cylinders and an unstable manifold formed by
two topological cylinders.

Theorem 3 is proved in Sec. 3 using Theorems 1
and 2.

Thomas systems

A circulant system is a differential system defined
by a function f(x, y, z) having the variables cycli-
cally symmetric according to

ẋ = f(x, y, z),

ẏ = f(y, z, x),

ż = f(z, x, y),
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where the function f(u, v, w) is fixed and the vari-
ables are rotated. In 1999, René Thomas proposed
two circulant systems having cyclic symmetry

ẋ = sin y − βx,

ẏ = sin z − βy,

ż = sin x − βz,

(10)

ẋ = −bx + ay − y3,

ẏ = −by + az − z3,

ż = −bz + ax − x3.

(11)

System (10) is defined by the function
f(u, v, w) = −au + sin v and system (11) is defined
by f(u, v, w) = −au + bv − v3. The chaotic behav-
ior generated by these systems was presented by
Thomas [1999], this system was also studied by
Sprott and Chlouverakis [2007]. System (10) is
sometimes called Thomas system, see for instance
[Sprott, 2010, Chapter 3]. The next results give

sufficient conditions for the existence of periodic
solutions on these differential systems.

One can check that the origin is an equilibrium
point of system (10), and that it has the eigenvalues
1 − β, (−1 − 2β − i

√
3)/2 and (−1 − 2β + i

√
3)/2.

When β = −1/2 the origin has a pair of complex
eigenvalues on the imaginary axis and the bifurca-
tion of a periodic orbit occurs.

Theorem 4. Let β = −1/2 + β1ε + β2ε
2 where

βi ∈ R for i = 1, 2. For ε > 0 sufficiently small
and β1 > 0 the differential system (10) has an iso-
lated periodic solution bifurcating from the origin.

Theorem 4 is proved in Sec. 3 using Theo-
rems 1 and 2 taking r = 0. System (11) has 27
steady states but we will be interested in the pair
of symmetric equilibrium points P± = ±(

√
a − b,√

a − b,
√

a − b). Taking a = 5
√

3ω/6 and b =√
3ω/3 with ω > 0, these equilibrium points have

the eigenvalues −√
3ω and ±ωi. The next theorems

show that periodic orbits originate at P− and P+.

(a) (b)

Fig. 2. Solution φ−(t, ε) for different values of ε: (a) ε = 1/250, (b) ε = 1/50, (c) ε = 1/8, (d) ε = 1/6, (e) ε = 1/5 and
(f) ε = 1/4.
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(c) (d)

(e) (f)

Fig. 2. (Continued)

Theorem 5. Let a = 5
√

3ω/6 + εa1, b =
√

3ω/3 + εb1 with ω > 0 and (5b1 − 2a1) < 0. Then for ε > 0
sufficiently small the differential system (11) has two periodic solutions

φ±(t, ε) = P± +
√

ε

(
2e2

√
3πξ cos(tω),

e2
√

3π

3
ξ(3 sin(tω) −

√
3 cos(tω)),−1

3
e2

√
3πξ(3 sin(tω) +

√
3 cos(tω))

)

+O(ε), (12)
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such that φ+(t, ε) bifurcates from P+ and φ−(t, ε)
bifurcates from P−. Here

ξ =

√
π(5b1 − 2a1)

−3e4
√

3π(
√

3 − 5π) + 6
√

3e2
√

3π − 3
√

3
.

The periodic orbit analytically found in Theo-
rem 5 was detected numerically by Thomas [1999],
he also showed for specific values of a and b that
these periodic solutions lead to strange attractors
after a cascade of period-doubling. The following
figures illustrate this phenomena. Here a1 = 6,
b1 = 1 and ω = 1 is the time interval from 0 to 1000.
Figure 2(a) shows the solution starting at (−0.8,
−0.8,−0.45) being attracted by the periodic orbit
φ−(t, ε), see Eq. (12). As we increase ε the periodic
orbit grows in size and complexity, see Figs. 2(b)
and 2(c). The approximation to the periodic orbit
provided by (12) can be seen as a dashed curve.
Figures 2(d)–2(f) show the appearance of the
strange attractor as ε increases.

3. Proofs

Proof [Proof of Theorem 1]. For a detailed proof see
[Cândido et al., 2017], but for the sake of complete-
ness we present here the ideas of the proof. Define
the function g(z, ε) = d(z, ε)/εr where d(z(ε), ε) is
the displacement function and r is defined as the
statement of the theorem. We have that

g(z(ε), ε) = gr(z) +
3−r∑
i=1

gr+i(z)εi + O(ε4−r+1).

From here the proof just applies Lemma 3 of [Lli-
bre & Novaes, 2015]. Here we present a sketch of the
proof of this lemma, more details can be obtained
in Sec. 2 of [Llibre & Novaes, 2015]. The first step
is to write g = (πg, π⊥g). Using π⊥g we define the
function

δ⊥ : R
m × [−ε0, ε0] × R

n−m → R
n−m

((a, ε), b) 	→ π⊥g((a, b), ε)

= π⊥gr(a, b) + επ⊥gr+1(a, b) + O(ε2).

Then from hypothesis (i) and (ii) we have that
δ⊥((α, 0), β(α))= π⊥gr(α, β(α))= 0 and Db(π⊥δ)×
((α, 0), β(α)) = ∆α. Since det(∆α) �= 0, we apply
the Implicit Function theorem obtaining a C4 func-
tion β : U×(−ε1, ε1) → R

n−m where U×(−ε1, ε1) is
a neighborhood of V ×{0} such that β(α, 0) = β(α)

and π⊥g((α, β(α, ε)), ε) = δ⊥(α, β(α, ε), ε) = 0.
Mainly,

β(α, ε) = β(α) +
3−r∑
i=1

γi(α)εi + O(ε4−r) (13)

and the functions γi for i = 1, 2, 3, are shown in
Eq. (15) of [Llibre & Novaes, 2015]. The function
β(α) is given in (3). Now for all α ∈ V we consider
the function δ(α, ε) = πg(α, β(α, ε), ε). Writing this
function as a power series of ε we obtain

δ(α, ε) =
3−r∑
i=1

εifi(α) + O(ε4−r). (14)

We use the auxiliary function

F(α, ε) =
δ(α, ε)

ε

= f1(α) +
3−r∑
i=2

εi−1fi(α) + O(ε3−r), (15)

for studying the branches of zeros of (14). If
there exists α∗ ∈ V such that f1(α∗) = 0 and
det(Df1(α∗)) �= 0 then by the Implicit Func-
tion theorem we have a branch of zeros such that
F(α(ε), ε) = 0 and

α(ε) = α∗ + O(ε). (16)

Consequently πg(α(ε), β(α(ε), ε), ε) = 0 and
π⊥g(α(ε), β(α(ε), ε), ε) = 0, then g(α(ε), β(α(ε),
ε), ε) = 0. This means that z(ε) = (α(ε), β(α(ε), ε))
is a branch of zeros to the displacement function, i.e.
d(z(ε), ε) = εrg(z(ε), ε) = 0. Thus for |ε| > 0 suffi-
ciently small x(t, z(ε), ε) is a T -periodic solution of
system (1). This concludes the proof of statement
(a) of Theorem 1. The proof of statement (b) is
analogous. �

A fundamental notion in qualitative theory of
differential equations is hyperbolicity. A constant
matrix will be called hyperbolic if its eigenvalues lie
out of the imaginary axis, in which case its index is
the number of eigenvalues in the right half-plane.
Consider a matrix function A(ε) = A0 + εA1 +
· · · + ε(k−1)Ak depending on a parameter ε. If A0

is hyperbolic of index i, then one can see that for
ε > 0 sufficiently small, A(ε) will be hyperbolic with
the same index i.

If A0 is not hyperbolic the placement of the
eigenvalues of A(ε) may be hard to determine. To
deal with this problem we use a method introduced
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by Murdock and Robinson [1980a, 1980b]. The
matrix A(ε) is called k-hyperbolic of index i if for
every smooth matrix function B(ε) there exists an
ε0 > 0 such that A(ε) + εkB(ε) is hyperbolic of
index i for all ε in the interval 0 < ε < ε0. The next
result will be needed for proving Theorem 2.

Assume that there exists a matrix function S(ε)
that block diagonalizes A(ε) into its left, right and
center blocks L(ε), C(ε), R(ε) which for ε = 0 have
their eigenvalues respectively in the left half-plane,
on the imaginary axis, and in the right half-plane.
Thus

S(ε)−1A(ε)S(ε) =



L(ε) 0 0

0 C(ε) 0

0 0 R(ε)


.

Theorem 6 [Murdock, 1988, Theorem 5.7]. Let
C(ε) be the center block of A(ε) and let its size be
m×m. Then A(ε) is k-hyperbolic provided that :

(a) A0 has no multiple eigenvalues on the imagi-
nary axis.

(b) There exists c > 0 such that every eigenvalue
λ(ε) of C(ε) satisfies |Reλ(ε)| ≥ cek−1 for all
small ε.

Proof [Proof of Theorem 2]. The statement r ∈
{0, 1} allows to obtain more information about
functions (13) and (15). We can write

β(α, ε) = β(α) + εγ1(α) + ε2γ2(α)

+O(ε4−r), (17)

F(α, ε) = f1(α) + εf2(α) + O(ε3−r), (18)

where f1 is defined in statement (iii) of Theorem 1
and f2, γ1 and γ2 are defined in (4). Using the
Implicit Function theorem in (18) we have that the
branch of zeros (16) is written as

α(ε) = α(0) + εα′(0) + O(ε2)

= α∗ + ε(−Df−1
1 (α∗)f2(α∗)) + O(ε2), (19)

where Df−1
1 (α∗) is the inverse of the Jacobian

matrix of the function f1(α) at the point α∗. Sub-
stituting (19) into (17) and expanding the result in

Taylor’s series around ε = 0 we obtain

β(α(ε), ε) = β(α(0)) + ε(Dβ(α(0))α′(0)

+ γ1(α(0))) + O(ε2)

= β(α∗) + ε(Dβ(α∗))

× (−Df−1
1 (α∗)f2(α∗))

+ γ1(α(0)) + O(ε2). (20)

Here Dβ(α∗) is the Jacobian matrix of function
β(α) at α∗. From (19) and (20) we have that

z(ε) = (α(ε), β(α(ε), ε)) = zα∗ + εz1 + O(ε2),
(21)

with zα∗ = (α∗, β(α∗)) and z1 is defined in (8).
Using (21) we can write the Jacobian matrix of

the displacement function at z(ε) as a power series
of ε around ε = 0 as

∂d(z(ε), ε)
∂z

= A0 + εA1 + O(ε2), (22)

where a classical result about ordinary differen-
tial equations says that when (22) is a hyperbolic
matrix, the periodic solution x(t, z(ε), ε) will be
hyperbolic with the same kind of stability. This is
also referred to as linear stability. Thus the proof
of the theorem follows from applying Theorem 6
in the 1-jet (5) observing that hypotheses (s1) and
(s2) are equivalent with the hypotheses (a) and (b)
respectively. Thus the matrix is two-hyperbolic and
the theorem is proved. �

Proof [Proof of Theorem 3]. The existence of such
periodic orbit is proved in Theorem 4 of [Cândido &
Llibre, 2016]. Following the ideas of this proof we
see that, after some changes of variables, system (9)
can be put into the normal form for applying The-
orem 1,

ż = εF1(z, θ) + ε2F2(z, θ) + ε3F2(z, θ) + O(ε4)

given by Eq. (22) of [Cândido & Llibre, 2016],
with z = (ρ, z) and the derivative with respect
to θ. Thus calculating the higher order averaging
functions of this system for i = 0, 1, 2, 3 we have
gi(z) = (gi1(z), gi2(z)) where g0(z) ≡ 0 and

g11(z) = 0, g12(z) =
π(ρ2 − 2c1z)

ω
, g21(z) = −πρ(8a2ω

2 − 4c1z + 3ρ2)
8ω3

,

g22(z) =
π(ρ2(c1ω(ω − 2π) + 3z) + 2c1z(2πc1ω − z))

2ω3
,
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g31(z) = −πρ(4z(2a2ω
2 + 2πc2

1ω − 3c1z) + ρ2(c1ω(3ω − 4π) + 15z))
16ω5

,

g32(z) =
π

96ω5
(9ρ4ω(4π − 5ω) − 8c1z(12a2ω

4 + 16π2c2
1ω

2 − 36πc1ωz + 9z2)

+ 4ρ2(3c1ω(9ω − 28π)z + 45z2) − 2ω2(6a2ω(ω + 2π) + c2
1(6πω − 8π2 + 3))).

Thus we can calculate the functions fi(α) for i = 1, 2 with respect to the averaging functions above and
the graph

Z =
{
zα =

(
α, β(α) =

α2

2c1

)
: α > 0

}
,

obtaining

f1(α) = −πα(8a2ω
2 + α2)

8ω3
and f2(α) = −πα3(2ω2(4a2 + c2

1) + 5α2)
32c1ω5

.

By the hypothesis of Theorem 3 one can check that α∗ = 2ω
√−2a2 is a simple zero of function f1(α).

Then we can apply Theorem 2 with r = 1. By (21) we can write the initial point of the periodic solution
as z(ε) = zα∗ + εz1 with

z1 =
(

(16a2 − c2
1)ω

√−2a2

2c1
, 4a2ω

2

(
12a2

c2
1

− 1
))

and the matrix (5) becomes

A(ε) =


 0 0

4π
√−2a2 −2c1π

ω


+ ε




6a2π

ω

√−2a2c1π

ω2

π
√−2a2

ωc1
(c2

1(ω − 4π) − 8a2ω)
2π(c2

1π − 2a2ω)
ω2


.

The matrix A(ε) has the two distinct eigenvalues

λ1 = −2c1π

ω
+ ε

(
2c1π

ω

)2

+ O(ε2) and

λ2 = ε
2a2π

ω
+ O(ε2).

As a2 is negative by hypothesis, we have that
for ε > 0 sufficiently small if c1 > 0, Re(λ1) <
Re(λ2) < 0, consequently the periodic orbit is

an attractor. Otherwise, if c1 < 0, Re(λ2) <
0 < Re(λ1) then the periodic orbit has a stable
manifold formed by two topological cylinders, and
an unstable manifold formed by two topological
cylinders. �

Proof [Proof of Theorem 4]. Using the change of
variables (X,Y,Z) =

√
ε(x + z, (−x−√

3y + 2z)/2,
(−x +

√
3y + 2z)/2) the differential system (10)

becomes

Ẋ = X

(
1
2
−β2ε

2

)
−

sin

(√
ε(−X +

√
3Y +2Z)

2

)

3
√

ε
+

sin(
√

ε(X + Z))
3
√

ε
+

2 sin

(√
ε(X +

√
3Y − 2Z)

2

)

3
√

ε
,

Ẏ = Y

(
1
2
− β2ε

2

)
+

sin(
√

ε(X + Z))
ε
√

3
−

sin

(√
ε(−X +

√
3Y + 2Z)

2

)
√

ε
√

3
,
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Ż = Z

(
1
2
− β2ε

2

)
−

sin

(√
ε(X +

√
3Y − 2Z)

2

)

3
√

ε
+

sin(
√

ε(X + Z))
3
√

ε
+

sin

(√
ε(−X +

√
3Y + 2Z)

2

)

3
√

ε
,

(23)

we remark that for all δ ∈ R the function sin(δw)/δ
is well defined and

lim
δ→0

sin(δw)
δ

= w.

Thus the equation above can also be written as

Ẋ = −
√

3
2

Y +
ε

16
(X3 + X2(

√
3Y + 2Z)

+ X(Y 2 − 4
√

3Y Z + 4(Z2 − 4β))

+ Y (
√

3Y 2 − 2YZ + 4
√

3Z2)) + O(ε2),

Ẏ =
√

3
2

X +
ε

16
(−

√
3X3 + X2(Y − 2

√
3Z)

−X(
√

3Y 2 + 4Y Z + 4
√

3Z2)

+ Y (Y 2 + 2
√

3Y Z + 4(Z2 − 4β))) + O(ε2),

Ż =
3
2
Z +

ε

24
(−X3 − 6X2Z + 3XY 2

− 2Z(3Y 2 + 2(6β + Z2))) + O(ε2).

In order to put the differential system (23) into
the normal form for applying the averaging the-
ory we consider the cylindrical change of variables
(X,Y,Z) = (ρ cos θ, ρ sin θ,w) with ρ > 0. Then we
check that θ̇ =

√
3/2 +O(ε2) for |ε| �= 0 sufficiently

small. Thus taking θ as the new independent vari-
able we obtain the differential system

ż = F0(z, θ) + εF1(z, θ) + ε2F2(z, θ) + O(ε3),
(24)

with z = (ρ,w), F0(z, θ) = (0,
√

3w), and Fi(z, θ) =
(Fi1(z, θ), Fi2(z, θ)) for i = 1, 2, where

F11(z, θ) =
ρ

8
√

3
(ρ2 + 2ρw(cos(3θ) −

√
3 sin(3θ))

+ 4(w2 − 4β)),

F12(z, θ) =
1
72

(w(
√

3(−48β − 3ρ2 + 28w2)

+ 18rw sin(3θ))

− 2
√

3ρ cos(3θ)(ρ2 − 9w2)),

F21(z, θ) =
ρ

5760
(ρ(−30w sin(3θ)(32β + ρ2 + 8w2)

+ 10
√

3w cos(3θ)(−96β + 7ρ2 + 40w2)

+ 3ρ sin(6θ)(ρ2 − 40w2)

−
√

3ρ cos(6θ)(ρ2 − 120w2))

+ 20
√

3(−192β2 + ρ4 + 6ρ2(w2 − 4β)

+ 20w4 − 96βw2)),

F22(z, θ) =
1

5760
√

3
(−12w(960β2 + 5ρ4

+ 120β(ρ2 + 4w2) − 50ρ2w2 − 228w4)

− 30ρ cos(3θ)(ρ4 + 3ρ2w2 − 104w4

+ 96βw2)+ ρw(cos(6θ)(360ρw2 − 69ρ3)

+ 2
√

3 sin(3θ)(cos(3θ)(360ρw2 − 23ρ3)

+ 5w(−96β + 3ρ2 + 104w2)))).

System (24) is 2π-periodic and it is in the normal
form when applying Theorem 1. Furthermore for
an initial condition z0 = (ρ0, w0) the solution of
the unperturbed differential system corresponding
to (24) is given by

Φ(θ, z) = (ρ0, w0e
√

3θ).

Then we consider the set Z ⊂ R
2 such that Z =

{(α, 0) : α > 0}. Clearly, for zα ∈ Z the solution
Φ(θ, zα) can be assumed 2π-periodic, and therefore
the differential system (24) satisfies the hypothesis
(H). Moreover the fundamental matrix of the vari-
ational differential system along Φ(θ, zα) is

M(θ, zα) =

(
1 0

0 e
√

3θθ

)
.

Computing the averaging functions we obtain

g0(z) = (0, (e2π
√

3 − 1)w) and

gi(z) = (gi1(z), gi2(z))
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for i = 1, 2 where

g11(z) =
ρ

12
(
√

3π(ρ2 − 16β) + (e2
√

3π − 1)w(ρ + e2
√

3πw + w)),

g12(z) =
1

144
(ρ3 − e2

√
3π(ρ3 + 12

√
3πρ2w + 28w3 + 192

√
3πβw) + 28e6

√
3πw3),

g21(z) =
(1 + 16

√
3π + 54π2)ρ5

1728
+

e14
√

3πρw4

108
+

e10
√

3πρw3(15ρ − 196w)
15120

+
e12

√
3πρw3(21ρ + 13w)

5616
+

e8
√

3πρw2(171ρ2 − 700ρw + 3192(w2 − β))
229824

+
e2

√
3π(ρ2w(288β + 48

√
3π(ρ2 − 16β) − 19ρ2) − 2ρ5)
3456

+
467ρ4w

169344

− 5ρ2(3815w3 + 28652βw)
1742832

− ρ3(3024π(
√

3 + 4π)β + 115w2)
18144

+
e6

√
3πρw2(112β − 42

√
3π(16β + ρ2) + 31ρ2 + 42ρw)
4536

− e4
√

3πρw

84672
(−232ρ3 + 105ρ2w + 84

√
3π(5ρ3 − 7ρ2w + 80βρ + 112βw)

+ 96βρ + 9408βw) + ρ

(
4
3
π(2πβ2 −

√
3β2) − w4

80
+

65βw2

648

)
,

g22(z) = e10
√

3π

(
−ρ2w3

252
− 7ρw4

456
+

19w5

480

)
+

ρ3(32β + 12
√

3π(ρ2 − 16β) − ρ2)
6912

+ (ρ2(1071w − (619 + 504
√

3π)ρ) − 288β((6 + 28
√

3π)ρ + 49w))

× e6
√

3πw2

84672
+

e8
√

3πw2

24192
(ρ(−21ρ2 + 4(73 − 196

√
3π)ρw + 644w2)

+ 112β(3ρ + 28(1 − 4
√

3π)w)) +
e4

√
3πw

22464
(−9984β2 − 123ρ4

+ 377ρ3w − 1248βρ2 + 78
√

3π(16β + ρ2)2 − 936βρw) +
7e16

√
3πw5

216

− e12
√

3πw3(49ρ2 + 225ρw + 196(4β + 7w2))
30240

+
35e14

√
3πρw4

2808

+ e2
√

3π

(
(41 − 52π(

√
3 + 3π))ρ4w

7488
− ρ3(784(1 − 2

√
3π)β + 1457w2)

169344

− ρ2w(3360(3(
√

3 − 2π)π − 1)β + 1157w2)
60480

+ ρ

(
85βw2

1764
− 6085w4

373464

)

− 23w5

864
+

(1 + 4
√

3π)ρ5

6912
+

17βw3

270
+

4
9
w(β2 − 3

√
3πβ2)

)
.
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We point out that the function g0(z) satisfies the
hypothesis (i) for the graph Z = {(α, 0) : α > 0}.
We apply Theorem 1 to system (24) taking r = 0.
Then we have ∆α = 1−e−2

√
3π �= 0 and the function

f1(α) =
πα(α2 − 16β1)

4
√

3
,

has the positive simple zero α∗ = 4
√

β1, where
Df1(α∗) = 8πβ1/

√
3. Then system (24) has a 2π-

periodic orbit by Theorem 1. The periodic orbit
of system (10) is obtained when going back to the

change of variables. Now we want to study the sta-
bility of this periodic orbit using Theorem 2. First
using (4) we compute the function

f2(α) =
α

1728
(2304π(2πβ2 −

√
3β2)

+ (1 − 2e2
√

3π + e4
√

3π + 16
√

3π + 54π2)α4

− 288π(
√

3 + 4π)βα2).

Then if ϕ(t, ε) is the periodic solution founded
above we can use (21) and (8) to write ϕ(0, ε) =
z0 + εz1 where

z0 = (4
√

β1, 0),

z1 =

(
−2((1 − 2e2

√
3π + e4

√
3π − 2

√
3π)β2 − 9

√
3πβ2)

9
√

3π
√

β
,−4e2

√
3πβ5/2

27
(4
√

3π(1 + coth(
√

3π)) − 1)

)
.

Then by (6) and (7) we can write the matrix (5) as

A(ε) =

(
0 0

0 1 − e−2
√

3π

)
+ ε




8πβ1√
3

4β1

3
(e2

√
3π − 1)

−β1

3
(e2

√
3π − 1) −8e2

√
3ππβ1√
3


.

The matrix A(ε) has two eigenvalues λ1 = ε8πβ1√
3

+

O(ε2) and λ2 = 1 − e−2
√

3π − ε8e2
√

3ππβ1√
3

+ O(ε2).
Consequently this matrix satisfies the hypotheses
(s1) and (s2) with c = β1, i.e. |λi| > εβ1 for i = 1, 2
and ε > 0 sufficiently small. �

Proof [Proof of Theorem 5]. We will prove the
result only for the equilibrium point P+. The proof
for the point P− follows exactly the same steps.
First we translate the equilibrium point P+ to
the origin and rescale the system using the change
of variables (X,Y,Z) =

√
ε(x + z, (−x − √

3y +
2z)/2, (−x − √

3y + 2z)/2), the differential sys-
tem (11) becomes

Ẋ = −ωY +
√

ε(X2 + 2X(
√

3Y + 2Z)

−Y (Y + 4
√

3Z))
3ω 4

√
3

4
√

2ω
+

ε

8
(X(8a1 − 20b1

+ 3(Y 2 + 4
√

3Y Z + 4Z2)) + Y (−3
√

3Y 2

− 6Y Z − 4
√

3(2a1 − 3b1 + 3Z2))

+ 3X3 − 3X2(
√

3Y − 2Z)) + O(ε3/2),

Ẏ = ωX +
√

ε(
√

3X2 − 2XY + 4
√

3XZ

−
√

3Y 2 + 4Y Z)
3ω 4

√
3

4
√

2ω
+

ε

8
(8a1(

√
3X + Y )

− 4b1(3
√

3X + 5Y )

+ 3(
√

3X3 + X2(Y + 2
√

3Z)

+ X(
√

3Y 2 − 4Y Z + 4
√

3Z2)

+ Y (Y 2 − 2
√

3Y Z + 4Z2))) + O(ε3/2),

Ż = −
√

3ωZ +
√

ε(X2 + Y 2 + 2Z2)
3
√

ω 4
√

3
2
√

2

+
ε

4
(8Z(b1 − a1) − X3 − 6Z(X2 + Y 2)

+ 3XY 2 − 4Z3) + O(ε3/2).

This system can be written into the normal
form for applying the averaging theory. We use
the cylindrical change of variables (X,Y,Z) =
(ρ cos θ, ρ sin θ,w) with ρ > 0. Then we check that
θ̇ =

√
3/2 + O(ε1/2) for ε > 0 sufficiently small.
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Then we take θ as the new independent variable obtaining the differential system

ż = F0(z, θ) +
√

εF1(z, θ) + εF2(z, θ) + O(ε3/2), (25)

with z = (ρ,w), F0(z, θ) = (0,−√
3w), and Fi(z, θ) = (Fi1(z, θ), Fi2(z, θ)) for i = 1, 2, where

F11(z, θ) =
3 4
√

3ρ(
√

3ρ sin(3θ) + ρ cos(3θ) + 4w)
4
√

2
√

ω
,

F12(z, θ) = −3 4
√

3(2ρ2 − 8w2 +
√

3ρw sin(3θ) − 3ρw cos(3θ))
4
√

2
√

ω
,

F21(z, θ) = − ρ

32ω
(3ρ(9ρ cos(6θ) + 2

√
3 sin(3θ)(3ρ cos(3θ) + 8w) + 64w cos(3θ))

+ 4(−8a1 + 20b1 − 3ρ2 + 96w2)),

F22(z, θ) =
1

32ω
(ρ(6

√
3 sin(3θ)(−3ρ2 + 26w2 + 9ρw cos(3θ)) + (46ρ2 − 468w2)

× cos(3θ) − 27ρw cos(6θ)) + 2w(16a1 − 40b1 + 75ρ2 − 376w2)).

We consider the period T = 2π, thus system (25) is in normal form when applying Theorem 1. Taking the
initial condition z0 = (ρ0, w0) the solution of the unperturbed differential system corresponding to (25)
is given by Φ(θ, z) = (ρ0, w0e

−√
3θ). Again we consider the set Z ⊂ R

2 such that Z = {(α, 0) : α > 0}.
Thus for zα ∈ Z the solution Φ(θ, zα) is 2π-periodic, and therefore the differential system (25) satisfies the
hypothesis (H). Moreover the fundamental matrix of the variational differential system along Φ(θ, zα) is

M(θ, zα) =

(
1 0

0 e−
√

3θθ

)
.

The averaging functions for this system are g0(z) = (0, (1−e2π
√

3)w) and gi(z) = (gi1(z), gi2(z)) for i = 1, 2
where

g11(z) =
33/4(1 − e−2

√
3π)ρw√

2
√

ω
, g12(z) = −33/4e−4

√
3π(e2

√
3π − 1)(e2

√
3πρ2 − 4w2)

2
√

2
√

ω
,

g21(z) =
ρe−8

√
3π

112ω
(e8

√
3π(28π(8a1 − 5(4b1 + 3ρ2)) +

√
3(84ρ2 − 168w2 − 23ρw)) − 56

√
3e2

√
3πw2

+ 84
√

3w2 +
√

3e4
√

3πw(51ρ + 140w) − 28
√

3e6
√

3πρ(3ρ + w)),

g22(z) =
e−10

√
3π

8736ω
(−1820

√
3e10

√
3πρ3 + 26208

√
3w3 + 1092

√
3e2

√
3πw2(3ρ − 32w)

− 52
√

3e4
√

3πw2(81ρ − 658w) − 39879
√

3e6
√

3πρ2w + e8
√

3π(2184πw(8a1 − 20b1 − 75ρ2)

+
√

3(1820ρ3 − 25480w3 + 936ρw2 + 39879ρ2w))).

Function g0(z) vanishes on the graph Z = {(α, 0) : α > 0}. We apply Theorem 1 to system (25). Here
r = 0 and ∆α = 1 − e−2

√
3π �= 0. The bifurcation functions are

f1(α) = 0, f2(α) =
3(
√

3e−4
√

3π(1 − 2e2
√

3π) +
√

3 − 5π)α3 + 8παa1 − 20παb1

4ω
.
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Function f2 has the positive simple zero

α∗ = 2e2
√

3π

√
π(5b1 − 2a1)

3
√

3 − 6
√

3e2
√

3π + 3
√

3e4
√

3π − 15e4
√

3ππ
,

where Df2(α∗) = (10πb1 − 4πa1)/ω. By statement
(b) of Theorem 1, system (25) has a 2π-periodic
solution. The periodic solution of system (12)
is obtained when going back to the change of
variables. �
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