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STABILITY OF PERIODIC ORBITS IN THE AVERAGING

THEORY: APPLICATIONS TO LORENZ AND THOMAS’

DIFFERENTIAL SYSTEMS

MURILO R. CÂNDIDO AND JAUME LLIBRE

Abstract. We study the kind of stability of the periodic orbits provided
by higher order averaging theory. We apply these results for determining the

k−hyperbolicity of some periodic orbits of the Lorenz and Thoma’s differential

system.

1. Introduction and statement of our main result

The averaging theory is a classical method for studying the solutions of the
non-linear dynamical systems, and in particular their periodic solutions. For a
general introduction to the averaging theory see the book of Sanders, Verhulst and
Murdock [9], and the references quoted there. Recently many works extending and
improving the averaging method for computing periodic solutions were presented,
see for instance [1, 5, 4, 3]. Most of these results enhance the number of periodic
solutions that can be detected by averaging method. Although few comments are
made about the stability of these periodic solutions. To fill this gap the present work
provides an strategy to determine the stability of the periodic orbits that bifurcate
from of periodic orbits which form a manifold, or from points inside a continuum
set that vanish some averaging functions, see Theorem 2. The detection of such
bifurcations is possible by applying the Lyapunov–Schimdt reduction method over
higher order averaging functions, see Theorem 1. This theorem was already used
in [2] and [4] without the stability analysis.

We consider differential systems of the form

ẋ = F0(t,x) + εF1(t,x) + ε2F2(t,x) + ε3F3(t,x) + ε4F4(t,x) + ε5F̃(t,x, ε), (1)

with x in some open subset Ω of Rn, t ∈ [0,∞), ε ∈ [−ε0, ε0]. We assume Fi and

F̃ for all i = 1, 2, 3, 4 are T–periodic in the variable t. Let x(t, z, 0) be the solution
of the unperturbed system

ẋ = F0(t,x),

such that x(0, z, 0) = z. We define M(t, z) the fundamental matrix of the linear
differential system

ẏ =
∂F0(t,x(t, z, 0))

∂x
y,

such that M(0, z) is the identity. The displacement map of system (1) is defined as

d(z, ε) = x(T, z, ε)− z. (2)

In order to have d(z, ε) well defined we assume that for |ε| 6= 0 sufficiently small
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(H) there exists an open set U ⊂ Ω such that for all z ∈ U the unique solution
x(t, z, ε) is defined on the interval [0, t(z,ε)) with t(z,ε) > T .

This hypothesis is always true when the unperturbed system has a manifold of T -
periodic solutions. The standard method of averaging for finding periodic solutions
consists in write the displacement map (2) as power series of ε in the following way

d(z, ε) = g0(z) + εg1(z) + ε2g2(z) + ε3g3(z) + ε4g̃(z, ε),

Where for i = 0, 1, 2, 3, 4 we have

gi(z) = M(T, z)−1
yi(T, z)

i!
,

being

y0(t, z) =x(t, z, 0)− z,

y1(t, z) =M(t, z)

∫ t

0

M(τ, z)−1F1(τ,x(τ, z, 0))dτ,

y2(t, z) =M(t, z)

∫ t

0

M(τ, z)−1

[
2F2(τ,x(τ, z, 0)) + 2

∂F1

∂x
(τ,x(τ,x, 0))y1(τ, z)

+
∂2F0

∂x2
(τ,x(τ, z, 0))y1(τ, z)2

]
dτ,

y3(t, z) =M(t, z)

∫ t

0

M(τ, z)−1

[
6F3(τ,x(τ, z, 0)) + 6

∂F2

∂x
(τ,x(τ, z, 0))y1(τ, z)

+ 3
∂2F1

∂x2
(τ,x(τ, z, 0))y1(τ, z)2 + 3

∂F1

∂x
(τ,x(τ, z, 0))y2(τ, z)

+ 3
∂2F0

∂x2
(τ,x(τ, z, 0))y1(τ, z)� y2(τ, z) +

∂3F0

∂x3
(τ,x(τ, z, 0))y1(τ, z)3

]
dτ,

y4(t, z) =M(t, z)

∫ t

0

M(τ, z)−1

[
24F4(τ,x(τ, z, 0)) + 24

∂F3

∂x
(τ,x(τ, x, 0))y1(τ, z)

+ 12
∂2F2

∂x2
(τ,x(τ, z, 0))y1(τ, z)2 + 12

∂F2

∂x
(τ,x(τ, z, 0))y2(τ, z)

+ 12
∂2F1

∂x2
(τ,x(τ, z, 0))y1(τ, z)� y2(τ, z) + 4

∂3F1

∂x3
(τ,x(τ, z, 0))y1(τ, z)3

+ 4
∂F1

∂x
(τ,x(τ, z, 0))y3(τ, z) + 3

∂2F0

∂x2
(τ,x(τ, z, 0))y2(τ, z)2

+ 4
∂2F0

∂x2
(τ,x(τ, z, 0))y1(τ, z)� y3(τ, z)

+ 6
∂3F0

∂x3
(τ,x(τ, z, 0))y1(τ, z)2 � y2(τ, z) +

∂4F0

∂x4
(τ,x(τ, z, 0))y1(τ, z)4

]
dτ.

The functions g1, g2, g3 and g4 will be called here the averaged functions of order
1, 2, 3 and 4 respectively of system (1).

We say that system (1) has a periodic solution bifurcating from the point z0
if there exists a branch of solutions z(ε) for the displacement function such that
d(z(ε), ε) = 0 and z(0) = z0.

Now we shall present our result about the existence and stability of the periodic
solutions of system (1). The methodology used here was introduced for studying
differential systems such that the unperturbed part has a sub-manifold of T -periodic
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solutions, see for instance [1] and [4]. The main difference of this work with the
previous ones is that the first nonzero averaged function vanishes over a graph.

Let π : Rm×Rn−m → Rm and π⊥ : Rm×Rn−m → Rn−m denote the projections
onto the first m coordinates and onto the last n−m coordinates, respectively. For
a point z ∈ U we also consider z = (a, b) ∈ Rm × Rn−m. Consider the graph

Z = {zα = (α, β(α)) : α ∈ V } ⊂ U (3)

such that m < n, V is an open set of Rm and β : V → Rn−m is a C4 function.

The next theorem provides sufficient conditions for the existence of periodic
solutions in the differential system (1). This theorem was proved in [3] here we also
provide an scheme of its proof. We need this theorem for the statement of our main
result in Theorem 2.

Theorem 1. Let r ∈ {0, 1, 2} such that r is the first subindex such that gr 6≡ 0. In
addition to hypothesis (H) assume that

(i) the averaged function gr vanishes on the graph (3). That is gr(zα) = 0 for
all α ∈ V , and

(ii) the Jacobian matrix

Dgr(zα) =

(
Λα Γα
Bα ∆α

)
where Λα = Daπgr(zα), Γα = Dbπgr(zα), Bα = Daπ

⊥gr(zα) and ∆α =
Dbπ

⊥gr(zα), satisfies that det(∆α) 6= 0 for all α ∈ V .

We define the functions

f1(α) =− Γα∆−1α π⊥gr+1(zα) + πgr+1(zα),

f2(α) =
1

2
Γαγ2(α) +

1

2

∂2πgr
∂b2

(zα)γ1(α)2 +
∂πgr+1

∂b
(zα)γ1(α) + πgr+2(zα),

γ1(α) =−∆−1α π⊥gr+1(zα), (4)

γ2(α) =−∆−1α

(
∂2π⊥gr
∂b2

(zα)γ1(α)2 + 2
∂π⊥gr+1

∂b
(zα)γ1(α) + 2π⊥gr+2(α)

)
.

Then the following statements hold.

(a) If there exists α∗ ∈ V such that f1(α∗) = 0 and det (Df1(α∗)) 6= 0, for
|ε| 6= 0 sufficiently small there is an initial condition z(ε) ∈ U such that
z(0) = zα∗ and the solution x(t, z(ε), ε) of system (1) is T -periodic.

(b) Assume that f1 ≡ 0. If there exists α∗ ∈ V such that f2(α∗) = 0 and
det (Df2(α∗)) 6= 0, for |ε| 6= 0 sufficiently small there is an initial condition
z(ε) ∈ U such that z(0) = zα∗ and the solution x(t, z(ε), ε) of system (1)
is T -periodic.

Theorem 1 shows that the function f1 and f2 provides sufficient conditions for
the existence of periodic solutions of the differential system (1).

For periodic solutions detected by statement (a) of Theorem 1 the next result
reveals how the higher order function f2 can be used for determining the stability
of the periodic solution x(t, z(ε), ε).

Theorem 2. Consider r, Γα, ∆α, f1 and f2 as defined in Theorem 1 and the
Jacobian matrices Dgr(z) = (pij(z)) and Dgr+1(z) = (qij(z)). Assume that there
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exists α∗ ∈ V such that f1(α∗) = 0 and det (Df1(α∗)) 6= 0. We define the matrix
function

A(ε) = A0 + εA1, (5)

where

A0 =Dgr(zα∗), (6)

A1 = (Dpij(zα∗).z1 + qij(zα∗)) , (7)

z1 =
(
−Df1(α∗)−1f2(α∗), Dβ(α∗)

(
−Df1(α∗)−1f2(α∗)

)
+ γ1(α∗)

)
. (8)

Then the periodic orbit x(t, z(ε), ε) has the same type of hyperbolic stability as the
matrix A(ε) provided that:

(s1) A0 has no multiple eigenvalues on the imaginary axis, and
(s2) there exists c > 0 such that every eigenvalue λ(ε) of A(ε) satisfies |Re(λ(ε))| >

cε for all sufficiently small |ε| > 0.

The same class of result can be obtained for periodic orbits detected by statement
(b) of Theorem 1 using the bifurcation function of order 3. The expressions of such
functions are explicitly given in [3].

2. Applications

Lorenz differential system. Consider the differential system

ẋ =a(x− y),

ẏ =x(b− z)− y, (9)

ż =x y − cz,

with a, b, c being real coefficients. In recent publication [2] the authors have found
a periodic orbit bifurcating from the origin of system (9), see Figure 2. The next
theorem completes this work giving the stability characterization of that periodic
solution.

Theorem 3. Let a = −1 + a2ε
2 and c = c1ε. Assume that b > 1, a2 < 0, c1 6= 0

and |ε| 6= 0 sufficiently small. Then the Lorenz differential system (9) has a periodic
orbit bifurcating from the origin. Furthermore for c1 > 0 this periodic orbit is an
attractor, otherwise for c1 < 0 the periodic orbit has a stable manifold formed by two
topological cylinders and an unstable manifold formed by two topological cylinders.
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Figure 1. Solution of system (9) starting at (0.05,−0.01, 0.05)
being attracted by the stable periodic orbit (dashed courve)
founded by Theorem 1. The parameters of the system are a2 =
−2, b = 2 c1 = 1 and ε = 1/100.

Theorem 3 is proved in section 3 using Theorems 1 and 2.

Thomas’ systems. A circulant system is a differential system defined by a func-
tion f(x, y, z) having the variables cyclically symmetric according to

ẋ = f(x, y, z),

ẏ = f(y, z, x),

ẋ = f(z, x, y),

where the function f(u, v, w) is fixed and the variables are rotated. In 1999 René
Thomas propose two circulant systems having cyclic symmetry

ẋ = sin y − βx,
ẏ = sin z − βy, (10)

ż = sinx− βz,

ẋ =− bx+ ay − y3,
ẏ =− by + az − z3, (11)

ż =− bz + ax− x3.
System (10) is defeined by the function f(u, v, w) = −au+ sin v and system (11) is
defined by f(u, v, w) = −au + bv − v3. The chaotic behaviour generated by these
systems was presented in [12], system (10) was also studied by Sprott and Chlouver-
akis in [11]. System (10) is sometimes called Thomas’ system, see for instance [10,
Chapter 3]. The next results give sufficient conditions for the existence of periodic
solutions on these differential systems.

One can check that the origin is an equilibrium point of system (10), and that

it has the eigenvalues 1 − β, (−1 − 2β − i
√

3)/2 and (−1 − 2β + i
√

3)/2. When
β = −1/2 the origin has a pair of complex eigenvalues on the imaginary axis and
the bifurcation of a periodic orbit occurs.

Theorem 4. Let β = −1/2 + β1ε + β2ε
2 where βi ∈ R for i = 1, 2. For ε > 0

sufficiently small and β1 > 0 the differential system (10) has an isolated periodic
solution bifurcating from the origin.

Theorem 4 is proved in section 3 using Theorems 1 and 2 taking r = 0. System
(11) has 27 stead states but we will be interested into the pair symmetric equilibrium
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points P± = ±
(√
a− b,

√
a− b,

√
a− b

)
. Taking a = 5

√
3ω/6 and b =

√
3ω/3 with

ω > 0, these equilibrium points have the eigenvalues −
√

3ω and ±ωi. The next
theorems show that periodic orbits are born at P− and P+.

Theorem 5. Let a = 5
√

3ω/6+εa1, b =
√

3ω/3+εb1 with ω > 0 and (5b1−2a1) <
0. Then for ε > 0 sufficiently small the differential system (11) has two periodic
solutions

φ±(t, ε) =P± +
√
ε
(

2e2
√
3πξ cos(tω),

e2
√
3π

3
ξ
(

3 sin(tω)−
√

3 cos(tω)
)
,

− 1

3
e2
√
3πξ

(
3 sin(tω) +

√
3 cos(tω)

))
+O(ε), (12)

such that φ+(t, ε) bifurcates from P+ and φ−(t, ε) bifurcates from P−. Here ξ =√
π(5b1 − 2a1)

−3e4
√
3π
(√

3− 5π
)

+ 6
√

3e2
√
3π − 3

√
3

.

The periodic orbit analytically found in Theorem 5 was detected numerically
by Thomas in [12], he also shows for specific values of a and b that these periodic
solutions give born to a strange attractors after a cascade of doubling. The following
figures illustrate this phenomena. Here a1 = 6, b1 = 1 and ω = 1 the time interval
is from 0 to 1000. Figure 2 shows the solution starting at (−0.8,−0.8,−0.45) being
attracted by the periodic orbit φ−(t, ε), see equation (12). As we increase ε the
periodic orbit grows in size and complexity, see Figures 3, 4. The approximation
to the periodic orbit provided by (12) can be seen as a dashed curve. Figures 5, 6
and 7 shows the appearance of the strange attractor as ε increase.

Figure 2. ε = 1/250 Figure 3. ε = 1/50
Figure 4. ε = 1/8

Figure 5. ε = 1/6 Figure 6. ε = 1/5 Figure 7. ε = 1/4

3. Proofs

Proof of Theorem 1. For a detailed proof see [3], but for the sake of completeness
we present here the ideas of the proof. Define the function g(z, ε) = d(z, ε)/εr
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where d(z(ε), ε) is the displacement function and r is defined as in the statement
of the theorem. We have that

g(z(ε), ε)) = gr(z) +

3−r∑
i=1

gr+i(z)εi +O
(
ε4−r+1

)
.

From here the proof is just apply Lemma 3 of [4]. Here we present an sketch of the
proof of this lemma, more details can be obtained in the Section 2 of [4]. The first
step is to write g = (πg, π⊥g). Using π⊥g we define de function

δ⊥ : Rm × [−ε0, ε0]× Rn−m → Rn−m

((a, ε), b) 7→ π⊥g((a, b), ε) = π⊥gr(a, b) + επ⊥gr+1(a, b) +O(ε2).

Then from hypothesis (i) and (ii) we have that δ⊥((α, 0), β(α)) = π⊥gr(α, β(α)) =
0 and Db

(
π⊥δ

)
((α, 0), β(α)) = ∆α. Since det(∆α) 6= 0, we apply the Implicit Func-

tion Theorem obtaining a C4 function β : U×(−ε1, ε1)→ Rn−m where U×(−ε1, ε1)
is a neighbourhood of V × {0} such that β(α, 0) = β(α) and π⊥g((α, β(α, ε)), ε) =
δ⊥(α, β(α, ε), ε) = 0. Mainly,

β(α, ε) = β(α) +

3−r∑
i=1

γi(α)εi +O(ε4−r), (13)

and the functions γi for i = 1, 2, 3, are shown in equation (15) of [4]. The func-
tion β(α) is given in (3). Now for all α ∈ V we consider the function δ(α, ε) =
πg(α, β(α, ε), ε). Writing this function as a power series of ε we obtain

δ(α, ε) =

3−r∑
i=1

εifi(α) +O(ε4−r). (14)

We use the auxiliary function

F(α, ε) =
δ(α, ε)

ε
= f1(α) +

3−r∑
i=2

εi−1fi(α) +O(ε3−r), (15)

for studying the branches of zeros of (14).If there exits α∗ ∈ V such that f1(α∗) = 0
and det (Df1(α∗)) 6= 0 then by the Implicit Function Theorem we have that there
exists a branch of zeros such that F(α(ε), ε) = 0 and

α(ε) = α∗ +O(ε). (16)

Consequently πg(α(ε), β(α(ε), ε), ε) = 0 and π⊥g(α(ε), β(α(ε), ε), ε) = 0, then
g(α(ε), β(α(ε), ε), ε) = 0. This means that z(ε) =

(
α(ε), β(α(ε), ε)

)
is a branch of

zeros to the displacement function, i. e., d(z(ε), ε) = εrg(z(ε), ε) = 0. Thus for
|ε| > 0 sufficiently small x(t, z(ε), ε) is a T -periodic solution of system (1). This
concludes the proof of statement (a) of Theorem 1. The proof of statement (b) is
analogous. �

A fundamental notion in qualitative theory of differential equations is hyperbol-
icity. A constant matrix will be called hyperbolic if its eigenvalues lie out of the
imaginary axis, in which case its index is the number of eigenvalues in the right
half-plane. Consider a matrix function A(ε) = A0 +εA1 + · · ·+ε(k−1)Ak depending
on a parameter ε. If A0 is hyperbolic of index i, then one can see that for ε > 0
sufficiently small A(ε) will be hyperbolic with the same index i.

If A0 is not hyperbolic the placement of the eigenvalues of A(ε) may be hard to
determine. To deal with this problem we use a method introduced by Murdock and
Robinson, see [7] and [8]. The matrix A(ε) is called k-hyperbolic of index i if for
every smooth matrix function B(ε) there exists an ε0 > 0 such that A(ε) + εkB(ε)
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is hyperbolic of index i for all ε in the interval 0 < ε < ε0. The next result will be
needed for proving Theorem 2.

Assume that there exists a matrix function S(ε) that block diagonalizes A(ε)
into its left, right and center blocks L(ε), C(ε), R(ε) which for ε = 0 have their
eigenvalues respectively in the left half-plane, on the imaginary axis, and in the
right half-plane. Thus

S(ε)−1A(ε)S(ε) =

L(ε) 0 0
0 C(ε) 0
0 0 R(ε)

 .
Theorem 6 ([6, Theorem 5.7]). Let C(ε) be the center block of A(ε) and let its
size be m×m. Then A(ε) is k-hyperbolic provided that:

(a) A0 has no multiple eigenvalues on the imaginary axis.
(b) There exists c > 0 such that every eigenvalue λ(ε) of C(ε) satisfies |Reλ(ε)| ≥

c ek−1 for all small ε.

Proof of Theorem 2. The statement that r ∈ {0, 1} allows to obtain more informa-
tion about functions (13) and (15). We can write

β(α, ε) =β(α) + εγ1(α) + ε2γ2(α) +O(ε4−r), (17)

F(α, ε) =f1(α) + εf2(α) +O(ε3−r), (18)

where f1 is defined in statement (iii) of Theorem 1 and f2, γ1 and γ2 are defined
in (4). Using the Implicit Function Theorem in the (18) we have that the branch
of zeros (16) writes

α(ε) = α(0) + εα′(0) +O(ε2) = α∗ + ε
(
−Df−11 (α∗)f2(α∗)

)
+O(ε2), (19)

where Df−11 (α∗) is the inverse of the Jacobian matrix of the function f1(α) at the
point α∗. Substituting (19) into (17) and expanding the result in Taylor’s series
around ε = 0 we obtain

β(α(ε), ε) = β(α(0)) + ε (Dβ(α(0))α′(0) + γ1(α(0))) +O(ε2)

= β(α∗) + ε
(
Dβ(α∗)

(
−Df−11 (α∗)f2(α∗)

)
+ γ1(α(0)

)
+O(ε2). (20)

Here Dβ(α∗) is the Jacobian matrix of function β(α) at α∗. From (19) and (20)
we have that

z(ε) =
(
α(ε), β(α(ε), ε)

)
= zα∗ + εz1 +O(ε2), (21)

with zα∗ = (α∗, β(α∗)) and z1 is defined in (8).

Using (21) we can write the Jacobian matrix of the displacement function at
z(ε) as a power series of ε around ε = 0 as

∂d(z(ε), ε)

∂z
= A0 + εA1 +O(ε2), (22)

a classical result about ordinary differential equations says that when (22) is a
hyperbolic matrix, the periodic solution x(t, z(ε), ε) will be hyperbolic with the
same kind of stability. This is also referred as linear stability. Thus the proof of the
theorem follows from applying Theorem 6 in the 1-jet (5) observing that hypothesis
(s1) and (s2) are equivalent with the hypothesis (a′) and (b′) respectively. Thus
the matrix is 2−hyperbolic and the theorem is proved. �



STABILITY AND PERIODIC OSCILLATIONS 9

Proof of Theorem 3. The existence of such periodic orbit is proved in Theorem 4
of [2]. Following the ideas of this proof we see that, after some changes of variables,
system (9) can be put into the normal form for applying Theorem 1,

ż = εF1

(
z, θ
)

+ ε2F2

(
z, θ
)

+ ε3F2

(
z, θ
)

+O(ε4)

given by equation (22) of [2], with z = (ρ, z) and the derivative with respect to θ.
Thus calculating the higher order averaging functions of this system for i = 0, 1, 2, 3
we have gi(z) = (gi1(z), gi2(z)) where g0(z) ≡ 0 and

g11(z) =0,

g12(z) =
π
(
ρ2 − 2c1z

)
ω

,

g21(z) =−
πρ
(
8a2ω

2 − 4c1z + 3ρ2
)

8ω3
,

g22(z) =
π
(
ρ2(c1ω(ω − 2π) + 3z) + 2c1z(2πc1ω − z)

)
2ω3

,

g31(z) =−
πρ
(
4z
(
2a2ω

2 + 2πc21ω − 3c1z
)

+ ρ2(c1ω(3ω − 4π) + 15z)
)

16ω5
,

g32(z) =
π

96ω5

(
9ρ4ω(4π − 5ω)− 8c1z

(
12a2ω

4 + 16π2c21ω
2 − 36πc1ωz + 9z2

)
+ 4ρ2(

3c1ω(9ω − 28π)z + 45z2
)
− 2ω2

(
6a2ω(ω + 2π) + c21

(
6πω − 8π2 + 3

)) )
.

Thus we can calculate the functions fi(α) for i = 1, 2 with respect to the averaging
functions above and the graph

Z =

{
zα =

(
α, β(α) =

α2

2c1

)
: α > 0

}
,

obtaining

f1(α) = −
πα
(
8a2ω

2 + α2
)

8ω3
and f2(α) = −

πα3
(
2ω2

(
4a2 + c21

)
+ 5α2

)
32c1ω5

.

By the hypothesis of Theorem 3 one can check that α∗ = 2ω
√
−2a2 is a simple zero

of function f1(α). Then we can apply Theorem 2 with r = 1. By (21) we can write
the initial point of the periodic solution as z(ε) = zα∗ + εz1 with

z1 =

(
(16a2 − c21)ω

√
−2a2

2c1
, 4a2ω

2

(
12a2
c21
− 1

))
,

and the matrix (5) becomes

A(ε) =

(
0 0

4π
√
−2a2 −2c1π

ω

)
+ε

 6a2π

ω

√
−2a2c1π

ω2

π
√
−2a2
ωc1

(
c21(ω − 4π)− 8a2ω

) 2π(c21π − 2a2ω)

ω2

 .

The matrix A(ε) has the two distinct eigenvalues

λ1 = −2c1π

ω
+ ε

(
2c1π

ω

)2

+O(ε2) and λ2 = ε
2a2π

ω
+O(ε2).

As a2 is negative by hypothesis, we have that for ε > 0 sufficiently small if c1 > 0,
Re(λ1) < Re(λ2) < 0 consequently the periodic orbit is an attractor. Otherwise, if
c1 < 0, Re(λ2) < 0 < Re(λ1) then the periodic orbit has a stable manifold formed
by two topological cylinders, and an unstable manifold formed by two topological
cylinders. �
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Proof of Theorem 4. Using the change of variables (X,Y, Z) =
√
ε
(
x + z, (−x −√

3y + 2z)/2, (−x+
√

3y + 2z)/2
)

the differential system (10) becomes

Ẋ =X

(
1

2
− β2ε2

)
−

sin
(√
ε
(
−X +

√
3Y + 2Z

)
/2
)

3
√
ε

+
sin(
√
ε(X + Z))

3
√
ε

+
2 sin

(√
ε
(
X +

√
3Y − 2Z

)
/2
)

3
√
ε

,

Ẏ =Y

(
1

2
− β2ε2

)
+

sin(
√
ε(X + Z))

ε
√

3
−

sin
(√
ε
(
−X +

√
3Y + 2Z

)
/2
)

√
ε
√

3
, (23)

Ż =Z

(
1

2
− β2ε2

)
−

sin
(√
ε
(
X +

√
3Y − 2Z

)
/2
)

3
√
ε

+
sin(
√
ε(X + Z))

3
√
ε

+
sin
(√
ε
(
−X +

√
3Y + 2Z

)
/2
)

3
√
ε

,

we remark that for all δ ∈ R the function sin(δ w)/δ is well defined and

lim
δ→0

sin(δ w)

δ
= w.

Thus the equation above can also be written as

Ẋ =−
√

3

2
Y +

ε

16

(
X3 +X2

(√
3Y + 2Z

)
+X

(
Y 2 − 4

√
3Y Z + 4

(
Z2 − 4β

))
+ Y

(√
3Y 2 − 2Y Z + 4

√
3Z2

))
+O(ε2),

Ẏ =

√
3

2
X +

ε

16

(
−
√

3X3 +X2
(
Y − 2

√
3Z
)
−X

(√
3Y 2 + 4Y Z + 4

√
3Z2

)
+ Y

(
Y 2 + 2

√
3Y Z + 4

(
Z2 − 4β

)))
+O(ε2),

Ż =
3

2
Z +

ε

24

(
−X3 − 6X2Z + 3XY 2 − 2Z

(
3Y 2 + 2

(
6β + Z2

)) )
+O(ε2).

In order to put the differential system (23) into the normal form for applying
the averaging theory we consider the cylindrical change of variables (X,Y, Z) =(
ρ cos θ, ρ sin θ, w

)
with ρ > 0. Then we check that θ̇ =

√
3/2 + O(ε2) for |ε| 6= 0

sufficiently small. Thus taking θ as the new independent variable we obtain the
differential system

ż = F0

(
z, θ
)

+ εF1

(
z, θ
)

+ ε2F2

(
z, θ
)

+O(ε3), (24)

with z = (ρ, w), F0

(
z, θ
)

=
(
0,
√

3w
)
, and Fi

(
z, θ
)

=
(
Fi1
(
z, θ
)
, Fi2

(
z, θ
))

for
i = 1, 2, where

F11

(
z, θ
)

=
ρ

8
√

3

(
ρ2 + 2ρw

(
cos(3θ)−

√
3 sin(3θ)

)
+ 4

(
w2 − 4β

))
,

F12

(
z, θ
)

=
1

72

(
w
(√

3
(
−48β − 3ρ2 + 28w2

)
+ 18rw sin(3θ)

)
− 2
√

3ρ cos(3θ)
(
ρ2 − 9w2

) )
,

F21

(
z, θ
)

=
ρ

5760

(
ρ
(
−30w sin(3θ)

(
32β + ρ2 + 8w2

)
+ 10
√

3w cos(3θ)(
−96β + 7ρ2 + 40w2

)
+ 3ρ sin(6θ)

(
ρ2 − 40w2

)
−
√

3ρ cos(6θ)
(
ρ2 − 120w2

))
+ 20
√

3
(
−192β2 + ρ4 + 6ρ2

(
w2 − 4β

)
+ 20w4 − 96βw2

) )
,
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F22

(
z, θ
)

=
1

5760
√

3

(
− 12w

(
960β2 + 5ρ4 + 120β

(
ρ2 + 4w2

)
− 50ρ2w2 − 228w4

)
− 30ρ cos(3θ)

(
ρ4 + 3ρ2w2 − 104w4 + 96βw2

)
+ ρw

(
cos(6θ)

(
360ρw2 − 69ρ3

)
+ 2
√

3 sin(3θ)
(
cos(3θ)

(
360ρw2 − 23ρ3

)
+ 5w

(
−96β + 3ρ2 + 104w2

))) )
.

System (24) is 2π-periodic and it is into the normal form for applying Theorem 1.
Furthermore for an initial condition z0 = (ρ0, w0) the solution of the unperturbed

differential system corresponding to (24) is given by Φ(θ, z) =
(
ρ0, w0e

√
3θ
)

. Then

we consider the set Z ⊂ R2 such that Z = {(α, 0) : α > 0}. Clearly for zα ∈ Z
the solution Φ(θ, zα) can be assumed 2π-periodic, and therefore the differential
system (24) satisfies the hypothesis (H). Moreover the fundamental matrix of the
variational differential system along Φ(θ, zα) is

M(θ, zα) =

(
1 0

0 e
√
3θθ

)
.

Computing the averaging functions we obtain g0(z) =
(
0, (e2π

√
3−1)w

)
and gi(z) =

(gi1(z), gi2(z)) for i = 1, 2 where

g11(z) =
ρ

12

(√
3π
(
ρ2 − 16β

)
+
(
e2
√
3π − 1

)
w
(
ρ+ e2

√
3πw + w

))
,

g12(z) =
1

144

(
ρ3 − e2

√
3π
(
ρ3 + 12

√
3πρ2w + 28w3 + 192

√
3πβw

)
+ 28e6

√
3πw3

)
,

g21(z) =

(
1 + 16

√
3π + 54π2

)
ρ5

1728
+
e14
√
3πρw4

108
+
e10
√
3πρw3(15ρ− 196w)

15120

+
e12
√
3πρw3(21ρ+ 13w)

5616
+
e8
√
3πρw2

(
171ρ2 − 700ρw + 3192

(
w2 − β

))
229824

+
e2
√
3π
(
ρ2w

(
288β + 48

√
3π
(
ρ2 − 16β

)
− 19ρ2

)
− 2ρ5

)
3456

+
467ρ4w

169344

−
5ρ2

(
3815w3 + 28652βw

)
1742832

−
ρ3
(
3024π

(√
3 + 4π

)
β + 115w2

)
18144

+
e6
√
3πρw2

(
112β − 42

√
3π
(
16β + ρ2

)
+ 31ρ2 + 42ρw

)
4536

− e4
√
3πρw

84672

(
−232ρ3 + 105ρ2w + 84

√
3π
(
5ρ3 − 7ρ2w + 80βρ+ 112βw

)
+ 96βρ+ 9408βw

)
+ ρ

(
4

3
π
(

2πβ2 −
√

3β2

)
− w4

80
+

65βw2

648

)
,

g22(z) =e10
√
3π

(
−ρ

2w3

252
− 7ρw4

456
+

19w5

480

)
+
ρ3
(
32β + 12

√
3π
(
ρ2 − 16β

)
− ρ2

)
6912

+
(
ρ2
(

1071w −
(

619 + 504
√

3π
)
ρ
)
− 288β

((
6 + 28

√
3π
)
ρ+ 49w

))
e6
√
3πw2

84672
+
e8
√
3πw2

24192

(
ρ
(
−21ρ2 + 4

(
73− 196

√
3π
)
ρw + 644w2

)
+112β

(
3ρ+ 28

(
1− 4

√
3π
)
w
))

+
e4
√
3πw

22464

(
−9984β2 − 123ρ4

+377ρ3w − 1248βρ2 + 78
√

3π
(
16β + ρ2

)2 − 936βρw
)

+
7e16

√
3πw5

216
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−
e12
√
3πw3

(
49ρ2 + 225ρw + 196

(
4β + 7w2

))
30240

+
35e14

√
3πρw4

2808

+ e2
√
3π

((
41− 52π

(√
3 + 3π

))
ρ4w

7488
−
ρ3
(
784

(
1− 2

√
3π
)
β + 1457w2

)
169344

−
ρ2w

(
3360

(
3
(√

3− 2π
)
π − 1

)
β + 1157w2

)
60480

+ ρ

(
85βw2

1764
− 6085w4

373464

)
−23w5

864
+

(
1 + 4

√
3π
)
ρ5

6912
+

17βw3

270
+

4

9
w
(
β2 − 3

√
3πβ2

))
.

We point out that the function g0(z) satisfies the hypothesis (i) for the graph
Z = {(α, 0) : α > 0}. We apply Theorem 1 to system (24) taking r = 0. Then we

have ∆α = 1− e−2
√
3π 6= 0 and the function

f1(α) =
πα
(
α2 − 16β1

)
4
√

3
,

has the positive simple zero α∗ = 4
√
β1, where Df1(α∗) = 8πβ1/

√
3. Then system

(24) has a 2π-periodic orbit by Theorem 1. The periodic orbit of system (10) is
obtained going back through the change of variables. Now we want to study the
stability of this periodic orbit using Theorem 2. First using (4) we compute the
function

f2(α) =
α

1728

(
2304π

(
2πβ2 −

√
3β2

)
+
(

1− 2e2
√
3π + e4

√
3π + 16

√
3π + 54π2

)
α4

− 288π
(√

3 + 4π
)
βα2

)
.

Then if ϕ(t, ε) is the periodic solution founded above we can use (21) and (8) to
write ϕ(0, ε) = z0 + εz1 where

z0 =
(

4
√
β1, 0

)
,

z1 =

−2
((

1− 2e2
√
3π + e4

√
3π − 2

√
3π
)
β2 − 9

√
3πβ2

)
9
√

3π
√
β

,

− 4e2
√
3πβ5/2

27

(
4
√

3π
(

1 + coth
(√

3π
))
− 1
))

.

Then by (6) and (7) we can write the matrix (5) as

A(ε) =

(
0 0

0 1− e−2
√
3π

)
+ ε


8πβ1√

3

4β1
3

(
e2
√
3π − 1

)
−β1

3

(
e2
√
3π − 1

)
−8e2

√
3ππβ1√
3

 .

The matrix A(ε) has two eigenvalues λ1 = ε
8πβ1√

3
+O(ε2) and λ2 = 1− e−2

√
3π −

ε
8e2
√
3ππβ1√
3

+ O(ε2). Consequently this matrix satisfies the hypothesis (s1) and

(s2) with c = β1, i. e., |λi| > εβ1 for i = 1, 2 and ε > 0 sufficiently small. �

Proof of Theorem 5. We will prove the result only for the equilibrium point P+.
The proof for the point P− follows exactly the same steps. First we translate
the equilibrium point P+ to the origin and rescale the system using the change
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of variables (X,Y, Z) =
√
ε
(
x + z, (−x −

√
3y + 2z)/2, (−x −

√
3y + 2z)/2

)
the

differential system (11) becomes

Ẋ =− ωY +
√
ε
(
X2 + 2X

(√
3Y + 2Z

)
− Y

(
Y + 4

√
3Z
))3ω 4

√
3

4
√

2ω

+
ε

8

(
X
(

8a1 − 20b1 + 3
(
Y 2 + 4

√
3Y Z + 4Z2

))
+ Y

(
−3
√

3Y 2 − 6Y Z

− 4
√

3
(
2a1 − 3b1 + 3Z2

))
+ 3X3 − 3X2

(√
3Y − 2Z

))
+O(ε3/2),

Ẏ =ωX +
√
ε
(√

3X2 − 2XY + 4
√

3XZ −
√

3Y 2 + 4Y Z
)3ω 4
√

3

4
√

2ω

+
ε

8

(
8a1

(√
3X + Y

)
− 4b1

(
3
√

3X + 5Y
)

+ 3
(√

3X3 +X2
(
Y + 2

√
3Z
)

+ X
(√

3Y 2 − 4Y Z + 4
√

3Z2
)

+ Y
(
Y 2 − 2

√
3Y Z + 4Z2

)))
+O(ε3/2),

Ż =−
√

3ωZ +
√
ε(X2 + Y 2 + 2Z2)

3
√
ω 4
√

3

2
√

2
+
ε

4

(
8Z(b1 − a1)−X3

− 6Z
(
X2 + Y 2

)
+ 3XY 2 − 4Z3

)
+O(ε3/2).

This system can be written into the normal form for applying the averaging theory.
We use the cylindrical change of variables (X,Y, Z) =

(
ρ cos θ, ρ sin θ, w

)
with ρ > 0.

Then we check that θ̇ =
√

3/2 +O(ε1/2) for ε > 0 sufficiently small. Then we take
θ as the new independent variable obtaining the differential system

ż = F0

(
z, θ
)

+
√
εF1

(
z, θ
)

+ εF2

(
z, θ
)

+O(ε3/2), (25)

with z = (ρ, w), F0

(
z, θ
)

=
(
0,−
√

3w
)
, and Fi

(
z, θ
)

=
(
Fi1
(
z, θ
)
, Fi2

(
z, θ
))

for
i = 1, 2, where

F11

(
z, θ
)

=
3 4
√

3ρ
(√

3ρ sin(3θ) + ρ cos(3θ) + 4w
)

4
√

2
√
ω

,

F12

(
z, θ
)

=−
3 4
√

3
(
2ρ2 − 8w2 +

√
3ρw sin(3θ)− 3ρw cos(3θ)

)
4
√

2
√
ω

,

F21

(
z, θ
)

=− ρ

32ω

(
3ρ
(

9ρ cos(6θ) + 2
√

3 sin(3θ)(3ρ cos(3θ) + 8w) + 64w cos(3θ)
)

+ 4
(
−8a1 + 20b1 − 3ρ2 + 96w2

) )
,

F22

(
z, θ
)

=
1

32ω

(
ρ
(

6
√

3 sin(3θ)
(
−3ρ2 + 26w2 + 9ρw cos(3θ)

)
+
(
46ρ2 − 468w2

)
.

cos(3θ)− 27ρw cos(6θ)) + 2w
(
16a1 − 40b1 + 75ρ2 − 376w2

) )
.

We consider the period T = 2π, then system (25) is into normal form for ap-
plying Theorem 1. Taking the initial condition z0 = (ρ0, w0) the solution of
the unperturbed differential system corresponding to (25) is given by Φ(θ, z) =(
ρ0, w0e

−
√
3θ
)

. Again we consider the set Z ⊂ R2 such that Z = {(α, 0) : α > 0}.
Thus for zα ∈ Z the solution Φ(θ, zα) is 2π-periodic, and therefore the differential
system (25) satisfies the hypothesis (H). Moreover the fundamental matrix of the
variational differential system along Φ(θ, zα) is

M(θ, zα) =

(
1 0

0 e−
√
3θθ

)
.
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The averaging functions for this system are g0(z) =
(
0, (1− e2π

√
3)w
)

and gi(z) =
(gi1(z), gi2(z)) for i = 1, 2 where

g11(z) =
33/4

(
1− e−2

√
3π
)
ρw

√
2
√
ω

,

g12(z) =−
33/4e−4

√
3π
(
e2
√
3π − 1

)(
e2
√
3πρ2 − 4w2

)
2
√

2
√
ω

,

g21(z) =
ρe−8

√
3π

112ω

(
e8
√
3π
(

28π
(
8a1 − 5

(
4b1 + 3ρ2

))
+
√

3
(
84ρ2 − 168w2 − 23ρw

))
− 56

√
3e2
√
3πw2 + 84

√
3w2 +

√
3e4
√
3πw(51ρ+ 140w)

− 28
√

3e6
√
3πρ(3ρ+ w)

)
,

g22(z) =
e−10

√
3π

8736ω

(
− 1820

√
3e10

√
3πρ3 + 26208

√
3w3 + 1092

√
3e2
√
3πw2(3ρ− 32w)

− 52
√

3e4
√
3πw2(81ρ− 658w)− 39879

√
3e6
√
3πρ2w + e8

√
3π (2184πw.(

8a1 − 20b1 − 75ρ2
)

+
√

3
(
1820ρ3 − 25480w3 + 936ρw2 + 39879ρ2w

)))
.

Function g0(z) vanishes on the the graph Z = {(α, 0) : α > 0}. We apply Theorem

1 to system (25). Here r = 0 and ∆α = 1− e−2
√
3π 6= 0. The bifurcation functions

are

f1(α) = 0,

f2(α) =
3
(√

3e−4
√
3π
(

1− 2e2
√
3π
)

+
√

3− 5π
)
α3 + 8παa1 − 20παb1

4ω
.

Function f2 has the positive simple zero

α∗ = 2e2
√
3π

√
π(5b1 − 2a1)

3
√

3− 6
√

3e2
√
3π + 3

√
3e4
√
3π − 15e4

√
3ππ

,

where Df2(α∗) = (10πb1 − 4πa1)/ω. By statement (b) of Theorem 1 system (25)
has a 2π-periodic solution. The periodic solution of system (12) is obtained going
back through the change of variables. �
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