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LIMIT CYCLES OF DISCONTINUOUS PIECEWISE

POLYNOMIAL VECTOR FIELDS

TIAGO DE CARVALHO1, JAUME LLIBRE2 AND DURVAL JOSÉ TONON3

Abstract. When the first average function is non-zero we provide an upper
bound for the maximum number of limit cycles bifurcating from the periodic
solutions of the center ẋ = −y((x2 + y2)/2)m and ẏ = x((x2 + y2)/2)m with
m ≥ 1, when we perturb it inside a class of discontinuous piecewise polynomial
vector fields of degree n with k pieces. The positive integers m, n and k are
arbitrary. The main tool used for proving our results is the averaging theory for
discontinuous piecewise vector fields.

1. Introduction and statement of the main result

One of the main problems inside the qualitative theory of real planar differential
systems is the determination of their limit cycles. The notion of a limit cycle of a
planar differential system was defined by Poincaré [27], as a periodic orbit isolated in
the set of all periodic orbits of the differential system. Van der Pol [28], Liénard [20]
and Andronov [1] at the end of 1920s proved that a periodic orbit of a self–sustained
oscillation occurring in a vacuum tube circuit was a limit cycle in the sense defined by
Poincaré. After these results on the existence, non-existence and other properties of
the limit cycles, these were studied with interest by mathematicians and physicists,
and more recently also by many scientists of different areas (see for instance the
books [10, 32]).

In the last part of the XIX century Poincaré [27] defined the notion of a center
of a real planar differential system, i.e. of an isolated equilibrium point having a
neighbourhood such that all the orbits of this neighbourhood are periodic with the
unique exception of the equilibrium point. Later on one way to produce limit cycles
is by perturbing the periodic orbits of a center [29].

Iliev [19] in 1999 considered the polynomial vector fields

X (x, y) =
(
− y + εP (x, y, ε), x+ εQ(x, y, ε)

)
,

of degree n > 1 (i.e. the maximum of the degrees of polynomials P and Q is n),
which depend analytically on the small parameter ε, and he studied how many limit
cycles can bifurcate from the periodic orbits of the linear center ẋ = −y, ẏ = x when
ε > 0 is sufficiently small.

2010 Mathematics Subject Classification. 34A36, 34C05, 34C07, 34C23, 37G15, 70K05.
Key words and phrases. piecewise smooth vector fields, limit cycle, averaging theory.

1



2 T. DE CARVALHO, J. LLIBRE AND D. J. TONON

Buică, Giné and Llibre [8] in 2010 studied the same problem of Iliev but for the
polynomial vector fields

X (x, y) =

(
−y
(
x2 + y2

2

)m
+ εP (x, y, ε), x

(
x2 + y2

2

)m
+ εQ(x, y, ε)

)
,

of degree the maximum of 2m + 1 and n being the maximum of the degrees of the
polynomials P and Q, where again ε is a small parameter, and m ≥ 1 is an integer.
Of course, now the limit cycles bifurcate from the periodic solutions of the nonlinear
center ẋ = −y((x2 + y2)/2)m, ẏ = x((x2 + y2)/2)m.

Andronov, Vitt and Khaikin [2] started the study of the continuous and discon-
tinuous piecewise differential systems. These systems play an important role inside
the nonlinear dynamical systems. They appeared in a natural way in nonlinear
engineering models, and later on in electronic engineering, nonlinear control sys-
tems, biology, ... see for instance the books of di Bernardo, Budd, Champneys and
Kowalczyk [5], Simpson [31], and the survey of Makarenkov and Lamb [26], and the
hundreds of references quoted in these last three works.

There are many studies of the limit cycles of continuous and discontinuous piece-
wise differential systems in R2 with two pieces separated by a straight line. In general
these differential systems are linear, see for instance [3, 6, 9, 11, 12, 13, 14, 15, 16,
17, 18, 22, 23, 24, 30]. But there are very few works of continuous and discontinuous
piecewise differential systems with an arbitrary number k of pieces.

The objective of this paper is to study the number of limit cycles which can
bifurcate from the center ẋ = −y((x2 + y2)/2)m, ẏ = x((x2 + y2)/2)m, when it is
perturbed inside a class of discontinuous piecewise polynomial differential systems
of degree n with k pieces.

More precisely, we consider the polynomial planar vector field

X = X (x, y) =

(
−y
(
x2 + y2

2

)m
, x

(
x2 + y2

2

)m)
,

with either m = 0 (linear center) or m a positive integer (nonlinear center), and we
perturb X with a discontinuous piecewise polynomial vector field as follows

Xε = Xε(x, y) = X (x, y) + ε

k∑
i=1

χSi(x, y)
(
Pi(x, y), Qi(x, y)

)
,

where Pi and Qi are polynomials of degree at most n, the characteristic function
χK of a set K ⊂ R2 is defined by

χK(x, y) =

{
1 if (x, y) ∈ K,
0 if (x, y) /∈ K,

and the sets S1, . . . , Sk satisfying ∪ki=1Si = R2 and Si ∩ Sj = ∅ for i 6= j are defined
as follows. For a given positive integer k consider k angles 0 ≤ θ1 < . . . < θk < 2π.
Then the discontinuity set Σ for the discontinuous piecewise polynomial differential
vector field Xε is Σ = ∪ki=1Li, where Li is the ray starting at the origin and passing
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through the point (cos θi, sin θi) for i = 1, . . . , k, Si is the interior of the sector with
boundaries the rays Li−1 and Li going from Li−1 to Li in counterclockwise sense,
and S1 is the interior of the sector with boundaries the rays Lk and L1 going from
Lk to L1 in counterclockwise sense. See Figure 1.

S1

L1S2L2

S3

L3 . . .

Sk

. . . Lk

x

y

Figure 1. The sectors Si and the rays Li, for i = 1, . . . , k.

The main result of this paper is the following. For a definition of average function
of first order see Section 2.

Theorem 1. Assume that the average function of first order associated to the dis-
continuous piecewise polynomial differential system Xε is non-zero. Then, for ε > 0
sufficiently small the maximum number of limit cycles of Xε is n. Moreover, this
upper bound is reached.

Theorem 1 is proved in Section 2. Note that the maximum number n of limit
cycles stated in Theorem 1 does not depend on the numbers m and k, i.e., of pieces
of the discontinuous piecewise polynomial differential system Xε.

In Section 3 we provide some numerical examples of discontinuous polynomial
vector fields Xε presenting the maximum number of limit cycles stated in Theorem
1.

We provide in the appendix a summary about the averaging theory for comput-
ing periodic solutions of discontinuous piecewise vector fields that we shall use for
proving Theorem 1.

2. Proof of Theorem 1

We write the polynomials Pi and Qi which appear in the definition of the vector
field Xε as

Pi(x, y) =
n∑
s=0

n∑
j=s

ais,j−sx
syj−s and Qi(x, y) =

n∑
s=0

n∑
j=s

bis,j−sx
syj−s,
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with for i = 1, . . . , k. Doing the change of variables (x, y) 7→ (θ, ρ), where (θ, ρ) are
the polar coordinates defined by x = ρ cos θ and y = ρ sin θ, with ρ > 0. Then the
differential equation associated to the vector field Xε in polar coordinates is

ρ̇ = ε
k∑
i=1

(
cos θ(χSi · Pi)(ρ cos θ, ρ sin θ) + sin θ(χSi ·Qi)(ρ cos θ, ρ sin θ)

)
,

θ̇ =
ρ2m

2m
+
ε

ρ

k∑
i=1

(
cos θ(χSi ·Qi)(ρ cos θ, ρ sin θ))− sin θ(χSi · Pi)(ρ cos θ, ρ sin θ)

)
.

Taking θ as the new independent variable the previous differential system becomes
the differential equation

(1)
dρ

dθ
= εF (θ, ρ) +O(ε2),

where

F (θ, ρ) =
2m

ρ2m

k∑
i=1

(
cos θ(χSi · Pi)(ρ cos θ, ρ sin θ) + sin θ(χSi ·Qi)(ρ cos θ, ρ sin θ)

)
.

Therefore, from the appendix, the average function associated to the differential
equation (1) is

fn(ρ) =

∫ 2π

0
F (θ, ρ) dθ

=
2m

ρ2m

k∑
i=1

∫ θi+1

θi

(
cos θ Pi(ρ cos θ, ρ sin θ) + sin θ Qi(ρ cos θ, ρ sin θ)

)
dθ

=
2m

ρ2m

k∑
i=1

∫ θi+1

θi

cos θ
∑
s=0

∑
j=s

ais,j−sρ
j coss θ sinj−s θ

+ sin θ
∑
s=0

∑
j=s

bis,j−sρ
j coss θ sinj−s θ

 dθ.

From the summary on the averaging theory for the discontinuous piecewise dif-
ferential equations of the form (1) given in the appendix, we know that for ε > 0
sufficiently small each simple zero of the average function fn(ρ) provides a limit cycle
of the differential equation (1). In order to study the simple zeros of the function
fn(ρ) we shall apply the Descartes’s Theorem. We recall the Descartes Theorem
about the number of zeros of a real polynomial (for a proof see for instance [4]).

Descartes Theorem. Consider the real polynomial p(ρ) = ai1ρ
i1 + ai2ρ

i2 + · · · +
airρ

ir with 0 ≤ i1 < i2 < · · · < ir and aij 6= 0 real constants for j ∈ {0, 1, 2, · · · , r}.
When aijaij+1 < 0, we say that aij and aij+1 have a variation of sign. If the number
of variations of signs is m, then p(ρ) has at most m positive real roots. Moreover,
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it is always possible to choose the coefficients of p(ρ) in such a way that p(ρ) has
exactly r positive real roots.

In the next lemma we prove that the averaged function fn(ρ) is generated by a
linear combination of a set {g0(ρ), g1(ρ), . . . , gn(ρ)} of linearly independent functions.

Lemma 2. The average function fn(ρ) is a linear combination of the linearly in-
dependent set of functions Fn =

{
ρ−2m, ρ−2m+1, . . . , ρ−2m+n

}
. More precisely,

fn(ρ) =
n∑
r=0

2mArρ
−2m+r where

Ar =
k∑
i=1

∫ θi+1

θi

r∑
s=0

(
ais,r−s coss+1 θ sinr−s +bis,r−s coss θ sinr+1−s θ

)
dθ,

for r = 0, 1, . . . , n.

Proof. It is straightforward that Fn is a linearly independent set of n+ 1 functions.
Now we shall prove by induction on n that the function fn(ρ) is a linear combination
of the linearly independent set of functions Fn.

Indeed if n = 1 by direct computation we have that

f1(ρ) = 2mρ−2m[A0 + ρA1],

where

A0 =

k∑
i=1

∫ θi+1

θi

(
ai0,0 cos θ + bi0,0 sin θ

)
dθ,

A1 =
k∑
i=1

∫ θi+1

θi

(
cos θ(ai0,1 sin θ + ai1,0 cos θ) + sin θ(bi0,1 sin θ + bi1,0 cos θ)

)
dθ.

So the lemma holds for n = 1.

By hypothesis of induction we assume that fn−1(ρ) is a linear combination of
functions in Fn−1, i.e.

fn−1(ρ) =

n−1∑
r=0

2mArρ
−2m+r,

where

Ar =

k∑
i=1

∫ θi+1

θi

r∑
s=0

(
ais,r−s coss+1 θ sinr−s +bis,r−s coss θ sinr+1−s θ

)
dθ,

for r = 0, 1, . . . , n− 1.
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For n, by a direct integration of the average function we obtain

fn(ρ) =
2m

ρ2m

k∑
i=1

∫ θi+1

θi

(
cos θ

n∑
s=0

n∑
j=s

ais,j−s ρ
j coss θ sinj−s θ

+ sin θ
n∑
s=0

n∑
j=s

bis,j−s ρ
j coss θ sinj−s θ

)
dθ

=
2m

ρ2m

k∑
i=1

∫ θi+1

θi

( n−1∑
s=0

n−1∑
j=s

ais,j−sρ
j coss+1 θ sinj−s θ

+

n∑
s=0

ais,n−iρ
n coss+1 θ sinn−s θ

+

n−1∑
s=0

n−1∑
j=s

bis,j−sρ
j coss θ sinj−s+1 θ

+
n∑
s=0

bis,n−iρ
n coss θ sinn+1−s θ

)
dθ

= fn−1(ρ) +
2m

ρ2m−n

k∑
i=1

(∫ θi+1

θi

( n∑
s=0

ais,n−s coss+1 θ sinn−s θ

+
n∑
s=0

bis,n−s coss θ sinn+1−s θ
)
dθ

= fn−1(ρ) + 2mρ−2m+nAn,

where

An =
k∑
i=1

∫ θi+1

θi

n∑
s=0

(
ais,n−s coss+1 θ sinn−s θ + bis,n−s coss θ sinn+1−s θ

)
dθ.

This completes the proof of the induction and consequently of the lemma. �

For each r = 0, 1, . . . , n, Lemma 2 assures that the coefficients ais,r−s and bis,r−s
of the vector field Xε which appear in Ar are arbitrarily chosen. So, it follows that
the averaging function fn(ρ) is an arbitrary combinations of functions in the set Fn.
Using the Descartes Theorem, it follows that fn(ρ) can have at most n simple zeros,
and therefore for ε > 0 sufficiently small the discontinuous polynomial vector field
Xε can have at most n limit cycles if fn(ρ) is not identically zero. This completes
the proof of Theorem 1.
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3. Some examples

In order to exemplify the result of Theorem 1, we fix m = 1 and assume that R2

splits in two sectors S1 and S2 defined by the values θ1 = π/2 and θ2 = 3π/2.

For n = 1 we consider the discontinuous piecewise polynomial vector field

Xε(x, y) =
(
−y

2
(x2 + y2),

x

2
(x2 + y2)

)
+


(

2εx

π
, εy

)
if (x, y) ∈ S1,

(ε(1− y),−εy) if (x, y) ∈ S2.

Its average function is f1(ρ) = (2ρ − 4)/ρ2, having a unique positive simple zero,
namely 2. Therefore for ε > 0 sufficiently small the discontinuous piecewise poly-
nomial vector field Xε has one limit cycle (x(t, ε), y(t, ε)) such that it tends to the
circle of radius 2 when ε→ 0.

For n = 2 we consider the discontinuous piecewise polynomial vector field Xε(x, y)
defined by(
−y

2
(x2 + y2),

x

2
(x2 + y2)

)
+

 (ε(1− x2 − xy + y2),−εy2) if (x, y) ∈ S1,(
−2εy,−εy

(
10

3π
+

3x

2

))
if (x, y) ∈ S2.

Then its average function f2(ρ) = (2ρ2−10ρ+12)/(3ρ2), having two unique positive
simple zeros, namely 2 and 3. Therefore for ε > 0 sufficiently small the discontinuous
piecewise polynomial vector field Xε has two limit cycles (xi(t, ε), yi(t, ε)) for i = 1, 2
such that they tend to the circles of radius 2 and 3 when ε→ 0.

For n = 3 we consider the discontinuous piecewise polynomial vector field Xε(x, y)
defined by(
−y

2
(x2 + y2),

x

2
(x2 + y2)

)
+


(ε(2 + 4xy + y3),−4εx) if (x, y) ∈ S1,(

6εy, ε

(
−26y

3π
− 9xy

4
− 4x2y

3π

))
if (x, y) ∈ S2.

Its average function is f3(ρ) = (−ρ3+9ρ2−26ρ+24)/(3ρ2), having three unique posi-
tive simple zeros, namely 2, 3 and 4. Therefore for ε > 0 sufficiently small the discon-
tinuous piecewise polynomial vector field Xε has three limit cycles (xi(t, ε), yi(t, ε))
for i = 1, 2, 3 such that they tend to the circles of radius 2, 3 and 4 when ε→ 0.

4. Appendix: Averaging theory for discontinuous piecewise
differential systems

The results stated in this subsection on the averaging theory are valid for discon-
tinuous piecewise vector fields defined in Rn and are proved in [21], but we shall
state them for our discontinuous piecewise polynomial vector field Xε written in
polar coordinates as the differential equation (1).

Consider a non-autonomous discontinuous piecewise vector field

dρ

dθ
= X (θ, ρ) = εF (θ, ρ) + ε2R(θ, ρ, ε),
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where ρ ∈ R, θ ∈ R/(2πZ) and

F (θ, ρ) =

k∑
i=1

χSi(θ)Fi(θ, ρ), R(θ, ρ, ε) =

k∑
i=1

χi(θ)Ri(θ, c, ε),

where Fi : S1×D → R2, Ri : S1×D× (−ε0, ε0)→ R2 for i = 1, . . . , k are continuous
functions, 2π-periodic in the variable θ, and D is an open interval of R. Here the
Si are the open intervals (θi, θi+1) for i = 1, . . . , k and 0 ≤ θ1 < . . . < θk < 2π ≤
θk+1 = θ1 + 2π. We define

DρF (θ, ρ) =
k∑
i=1

χSi(θ, ρ)DρFi(θ, ρ).

The average function f : D → R is defined by

f(ρ) =

∫ T

0
F (θ, ρ) dθ.

We recall that if ρ(θ, ρ0) is the solution of the vector field X (θ, ρ) such that ρ(0, ρ0) =
ρ0, then we have

ρ(2π, ρ0)− ρ0 = εf(ρ) + Ø(ε2).

So for ε > 0 sufficiently small the simple zeros of the average function f(ρ) provides
limit cycles of the vector field X (θ, ρ).

In the next result we present a version of the averaging theory for discontinuous
piecewise vector fields, that is proved in [21], adapted to our differential equation
(1). We note that in [21] the averaging theory uses that the Brouwer degree of a
function f in a neighborhood of a zero ρ of the function f(ρ) is non-zero, while

here we substitute this condition saying that the zero ρ is simple (i.e.
df

dρ
(ρ) 6= 0),

because this last condition implies that the mentioned Brouwer degree is non-zero.
See for more details [7, 25].

Theorem 3. Assume that the following conditions hold for the discontinuous piece-
wise vector field X (θ, ρ).

(i) For i = 1, . . . , k the functions Fi(θ, ρ) and Ri(θ, ρ) are locally Lipschitz with
respect to ρ, and 2π-periodic with respect to θ.

(ii) Let ρ ∈ D be a simple zero of the average function f(ρ).

Then for ε > 0 sufficiently small, there exists a 2π-periodic solution ρ(θ, ε) of the
vector field X (θ, ρ) such that ρ(0, ε)→ ρ as ε→ 0.
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