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0 INTRODUCTION

The anisotropic Kepler problem was introduced by Gutzwiller as a cla-
ssical mechanical system which approximates the following quantum mechani-
cal system: the study of bound states of an electron near a donor iméurity \
of a semiconductor., Foxr more détails on the physical connections we yefer
to [61,2,3,4,5] . 1 o

. i .

As it is known the anisotropic Kepler problem exhibits many quallta—
tive phenomena of interest in the theory of differential equations such as
non- integrability and chaotic behaviour, see [G5,6] and [D2,3]. This
paper is essentially devoted to the qualitative analysis of this proElem,
and also sufveys the recent techniques and results from it. :

]

The anisotropic Kepler problem is a one parameter family (of paﬁame;
ter M) of Hamiltonian systems w1th two degrees of freedom. The conf*gura-
tion space for the system is Q= R \{O} with coordinates g= (ql'q2)' and the
phase space is the tangent bundle to Q which we denote by TQ={( R \{d} )X Rz

We use coordinates p—(pl,p2) in each fiber. Then the Hamiltonian is,

H(gq,p) =M lp) 2+ V(@)

where H 1s defined on TQ, the mass matrix MJ; g ?) , and the potential
energy V(q)= ~1/]lq]] . The associated Hamilton equations are,
. -1
9=M p,
. 3 (1)
p = ~a/llall

Of course, the Hamiltonian H is an integral of (1). So, orbits of (1)
lie on the energy levels of H. In (II.1) we note that it is sufficient to

.study the cases H=-1, H=0, and H=l.

When u=1, (1) becomes the Kepler problem, which is an integrable sys-
tem. It is known that when u>1 system (1) does not have any real analytic

integral independent on the energy (see [D2] and [Mo])



Note that for U>1 the qz—axis is a "heavy" axis, this means that the

orbits oscillate more and more rapidly about the q2~axis as W increases.

For every energy level system (1) has a singularity at g=0. It has
been studied by Devaney in [D2,5) by using the blow up techniques of | g
McGehee [ Mc] . For non-negative energy levels we have another singularity
at |lgl =« ; again, blow up techniques can be applied, see Lacomba-Simd

in [ns] .

The blow up method réplaces the singularity by an invariant boundary
manifold and the system extends over it. So, the knowledge of the flow on
this boundary allows to study the behaviour of the orbits near the singu-
larity. Thus, the invariant boundaries glued to g=0 and ldlii=« are called the

collision manifold and the infinity manifold, respectively.

In system (1) the blow up of the singularities is essential in order
to make the gqualitative analysis of the flow. Thus, in Chapter I we descri-
be the global behaviour of the orbit structure of the Kepler problem by ta-

king into account the blow up of the singularities.

The first part of Chapter II is also devoted to the singularities of
the anisotropic Kepler problem. In the remaining part we analize the homo-
thetic orbits. Since these orbits are heteroclinic and transversal, they
play a major part in the gualitative analysis. Transversality was proved‘
by Devaney for negative energy levels [D4] ; we extend it to non-negative
energy levels in (II.6). In (II.7) we give the global behaviour of the
flow on the collision manifold for all u>1. This improves the results Qﬁ'

Devaney in [D2] .

As it was observed in [LS] the global orbit structure in the zero f’
energy level can be obtained from the global flow on the collision manifold.
This is shown in (III.l). The asymptotic behaviour of the orbits in thé

i

positive energy levels is given in (III.2).

In the non-negative energy levels we do not have recurrent orbits.

So, the interesting case is H<O. In order to describe recurrent motions

it 1s useful to introduce symbolic dynamics.



Gutzwiller and Devaney use symbolic dynamics to claspify the possible
types of orbits in the anisotropic Kepler problem, see [Dﬁ,pp.292-2973 .
As they said, their symbols do not take into account the @gmm@ggigg of the

problem. In this paper symbolic dynamics includes the symmetries, see

Theorems IV.17 and IV.17' given in (IV.7).

Proofs of these theorems need the qualitative analysis of the inter-
section of the stable and unstable invariant manifolds of the equilibrium
points of the problem with the surface of section d/dt(||q|[)=0. Such an ana-
lysis is the key point of this study and it is made in the first five sec-

tions of Chapter 1IV.

In fact, theorems of Gutzwiller, Devaney, Iv.17 and IV.17' prove the
existenceng a subshift with an infinite alphabet as a "subsystem” of an

adequate Poincaré map foryu>9/8.

In Chapter V we describe the transition from the integrable case u=1
to the chaotic one Y>9/8. That is, (V.2) shows that the chaotic behaviour ob-

served for U>9/8 is completely lost when 13us9/8.

In Chapter VI we study the symmetric periodic orbits with respect to the
six symmetries of the problem. For the simplest ones we describe their geome-
try, see Theorem VI.5. Also, for each periodic sequence of the subshift given
in Theorem IV.17 and IV.17', we show the existence of a symmetric peripdic or-

bit which realizes it, see Thecorem VI.6.

Vull expressar el meu agraiment a en Jaume Llibre per 1'excel.lent
direceid d'aquest treball i per la paciéncia i encoratjament que sempre
m'ha mostrat. A en Carles Simd 17 agraeiwxo la seva bona disposicid, la
lectura acurada d'aquesta memoria 1 totes les idees sugerides.

També em cal agrair l'interés i ajut rebut per tots els meus com-
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