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THE PSEUDO-HOPF BIFURCATION FOR PLANAR

DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL

SYSTEMS

JUAN CASTILLO1, JAUME LLIBRE2 AND FERNANDO VERDUZCO1

Abstract. The creation or destruction of a crossing limit cycle when a sliding

segment changes its stability, is known as pseudo-Hopf bifurcation. In this
paper, under generic conditions, we find an unfolding for such bifurcation, and

we prove the existence and uniqueness of a crossing limit cycle for this family.

1. Introduction

The study of limit cycles is one of the most important problem in the qualitative
theory of ordinary differential equations, however, the proof of their existence are
generally very complicated. A large list of papers about the arising of limit cycles in
piecewise smooth systems in the plane can be found in the literature of recent years,
and in these some techniques has been developed to find them. In smooth systems
there is a well known mechanism to search for the occurrence of limit cycles, the
Hopf bifurcation theorem, see [13, 19]. There are analogous results for piecewise
smooth systems, for the case of continuous systems see for example [6, 7, 26, 27], and
for the case of discontinuous systems see [1, 8, 11, 12, 14, 18]. In the discontinuous
ones we can have more than one limit cycle, either all crossing cycles or including
one sliding cycle, and in fact, the determination of the number of limit cycle has
been the subject of several recent papers, see [2, 3, 4, 10, 15, 16, 17, 20, 22, 23, 24].

When the appearance of more than one limit cycle is considered, often the mech-
anism to obtain one of them is by the collision of two invisible tangencies. This is,
the creation or destruction of one crossing limit cycle occurs when a sliding segment
changes its stability, this phenomenon is presented without demonstration in [18]
and called pseudo-Hopf bifurcation. The appearance of a crossing limit cycle may
occur in cases where there is not sliding segment, see [9, 21, 25].

In this paper we find an unfolding for the pseudo-Hopf bifurcation for planar
discontinuous piecewise linear (DPWL) systems with two zones separated by a
straight line. We prove the existence and uniqueness of a crossing limit cycle for all
possible dynamic scenarios. It is important to mention that the unfolding found has
seven parameters, but at moment that the dynamics on each zone be established, it
reduces to five. However, in our result it will not be necessary to establish a priori
the dynamics in each zone.
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The rest of the paper is organized as follows. In section 2 we define the mathe-
matical concepts used. In section 3 we state the main results. In section 4 we find
the unfolding. The existence, uniqueness and stability of the crossing limit cycle is
given in section 5. Finally, in section 6 we give the conclusions of this work.

2. Preliminaries

Consider the planar DPWL system with two zones separated by the straight line
Σ =

{
x ∈ R2 : σ(x) = cTx− c0 = 0

}
,

(1) ẋ = f(x) =

{
f−(x) = A1x+ b1 if σ(x) < 0,
f+(x) = A2x+ b2 if σ(x) > 0,

where Ai are 2× 2 matrices and bi ∈ R2 for i = 1, 2.

We distinguish three open regions in the straight line Σ:

The sliding region: Σs =
{
x ∈ Σ : cT f−(x) > 0 and cT f+(x) < 0

}
,

the escaping region: Σe =
{
x ∈ Σ : cT f−(x) < 0 and cT f+(x) > 0

}
, and

the crossing region: Σc =
{
x ∈ Σ :

(
cT f−(x)

) (
cT f+(x)

)
> 0
}

.

Any segment contained in Σs ∪ Σe is called a sliding segment. The solutions on
Σs ∪ Σe can be constructed by the Filippov’s convex method, see [5]. Filippov’s
method takes a simple convex combination fs(x) of the two vector fields f∓(x) to
each sliding point x ∈ Σs ∪ Σe, i.e.

fs(x) =
f̃s(x)

∆(x)
,

where f̃s(x) = (cT f−(x))f+(x)−(cT f+(x))f−(x) and ∆(x) = cT (f−(x)−f+(x)) 6=
0. fs is called the sliding vector field, while f̃s is called the regularized sliding vector
field.

A point x ∈ R2 is an equilibrium point of f− if f−(x) = 0 and σ(x) < 0. The
equilibrium point is virtual for f− if f−(x) = 0 and σ(x) > 0.

A point x̃ ∈ Σ is a pseudo-equilibrium of (1) if fs(x̃) = 0. The pseudo-equilibrium
is admissible if x̃ ∈ Σs ∪ Σe, or virtual if x̃ ∈ Σc.

A point x̂ is a boundary equilibrium of (1) if

f−(x̂)f+(x̂) = 0, and fs(x̂) = 0.

Since the three kinds of regions in Σ are relatively open, their boundaries are the
called tangency points: q ∈ Σ such that cT f−(q) = 0 or cT f+(q) = 0 (see [12, 18]).
That is, points where one of the two vector fields is tangent to Σ. In particular, the
boundary equilibria are tangency points, since they are located on the boundary of
the sliding region where one of the vector fields vanishes. The simplest tangency is
the fold singularity, which is defined as follows.

A point q ∈ Σ is a fold singularity of (1) if either

(i) cT f−(q) = 0 and cTA1f
−(q) 6= 0, or

(ii) cT f+(q) = 0 and cTA2f
+(q) 6= 0, or

(iii) q is a hyperbolic focus of f− or f+.
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A fold singularity is a point with quadratic tangency with Σ, or is a boundary
focus. A quadratic tangency point can be classified in visible or invisible as follows:

(i) q ∈ Σ is an invisible (visible) quadratic tangency point for f− if

cT f−(q) = 0 and r1 = cTA1f
−(q) > 0 (< 0).

(ii) q ∈ Σ is an invisible (visible) quadratic tangency point for f+ if

cT f+(q) = 0 and r2 = cTA2f
+(q) < 0 (> 0).

The case where system (1) has a quadratic tangency point for one vector field,
and a boundary focus for the other one, at the same point on the switching line
is called fold-focus singularity. When system (1) has a double boundary focus at
the same point on the switching line, that is, when there is a boundary focus for
both sides, this singularity is called the focus-focus singularity. Finally, a fold-fold
singularity is when the DPWL system (1) has a double quadratic tangecy at the
same point on Σ.

For the case of the invisible fold-fold singularity, when the vectors f−(q0) and
f+(q0) are antiparallel with q0 ∈ ∂Σc, the singularity is called fused-focus in [18].
We are going to call two-fold singularity to the fold-fold, fold-focus or focus-focus
singularities.

3. Statements of the main results

The idea is to unfold the two-fold singularity q0 in such way that two fold points,
q1 and q2, from f− and f+, respectively, delimit a sliding segment, and when they
change their relative position on Σ, after collapse in q0, the sliding segment change
its stability. As will be proved in this article, for some configurations of the fold
points, this change of stability in the sliding segment is accompanied by the birth
or destruction of a crossing limit cycle. See Figure 1. With this idea, we assume
that f(x) satisfy the following generic hypothesis:

(H0) The pairs of vectors { c, AT1 c } and { c, AT2 c } are linearly independent.

s

+ + +

e

µ < 0 µ = 0 µ > 0

Figure 1. Change of stability of the sliding segment for the case
of two invisible fold points.
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Under Hypothesis (H0), the DPWL system (1) has two fold points q1 and q2.
This is clear because of, if we define the straight lines

Li : cT (Aix+ bi) = 0, then Li ∩ Σ = {qi},
for i = 1, 2. Besides there exist γ1 and γ2 with γ2 6= 0 such that

AT2 c = γ1c+ γ2A
T
1 c.

The first theorem in this section give us an unfolding for piecewise linear systems
that satisfy the generic hypothesis (H0).

Theorem 1. Under hypothesis (H0) the change of coordinates

(2) y = h(x) =

 γ2Q1(x− q1) if σ(x) ≤ 0,

Q2(x− q1) if σ(x) ≥ 0,

where Q1 =

(
cT

cTA1

)
and Q2 =

(
cT

cTA2

)
, transforms the differential system

(1) into the differential system

(3) ẏ = F (y) =


F−(y) =

(
0 1
c1 c2

)
y +

(
0

γ2r1

)
if y1 < 0,

F+(y) =

(
0 1
d1 d2

)
y +

(
b

r2 + d2b

)
if y1 > 0,

where

(4)
c1 = −det(A1), c2 = trace(A1), d1 = −det(A2),
d2 = trace(A2), r1 = cTA1(A1q1 + b1), r2 = cTA2(A2q2 + b2),
b = cT (A2q1 + b2).

Theorem 1 is proved in section 4.

Remark 1. (a) If q2 → q1 then b→ 0, i.e. at b = 0, the fold points collapse at q0.

(b) If rj = 0 then the fold point qj is a boundary equilibrium point, which must be
a boundary focus, with eigenvalues αj ± iβj for j = 1, 2.

(c) If r1 > 0 then q1 is an invisible fold point.

(d) If r2 < 0 then q2 is an invisible fold point.

The following corollary establishes the Σ-equivalence of the change of coordinates
(2), see [12].

Corollary 1. If γ2 > 0 then h (Σa) = Σa for a ∈ {s, e, c}.

Proof. For x ∈ Σ we have h(x) =

(
0

γ2c
TA1(x− q1)

)
=

(
0

cTA2(x− q1)

)
.

Then

eT1 F
−(h(x)) = (1 , 0)

(
γ2c

TA1(x− q1)
(·)

)
= γ2c

TA1(x− q1) + γ2c
T b1 − γ2c

T b1

= γ2c
T f−(x),



PSEUDO-HOPF BIFURCATION 5

and

eT1 F
+(h(x)) = (1 , 0)

(
cTA2(x− q1) + b

(·)

)
= cTA2(x− q1) + cT (A2q1 + b2)

= cT f+(x).

�

Remark 2. The change of coordinates (2) classifies all the DPWL systems (1) that
satisfy (H0) into two classes: those systems that have a sliding segment (γ2 > 0)
and those that have a crossing segment (γ2 < 0).

y=h(x)
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Figure 2. Change of coordinates (2).

From now on we will assume that γ2 > 0. Figure 2 shows the effect of the
orthogonalization of the change of coordinates (2). From the unfolding (3), for
b = 0, we find nine different scenarios in which the two-fold singularity can be
unfolded in a such way that is it possible to observe a change of stability in a
sliding segment. See Figure 3.

The main theorem of the paper establishes that the unfolding (3) undergoes the
pseudo-Hopf bifurcation only at four cases (r1 ≥ 0 and r2 ≤ 0).

Theorem 2 (Pseudo-Hopf bifurcation theorem). Suppose that the DPWL system
(1) satisfy (H0) with γ2 > 0. If r1 ≥ 0 and r2 ≤ 0, then for each b sufficiently small
with bΛ0 < 0, system (1) has a unique crossing limit cycle. If Λ0 < 0 the limit
cycle is stable, while if Λ0 > 0 it is unstable, where

Λ0 =



c2
γ2r1

− d2

r2
if r1 > 0, r2 < 0 (fused-focus),

α2 if r1 > 0, r2 = 0 (fold-focus),

α1 if r1 = 0, r2 < 0 (fold-focus),

α1

β1
+
α2

β2
if r1 = 0, r2 = 0(focus-focus).
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r1

r2

Figure 3. The two-fold singularity for the unfolding (3).

Theorem 2 is proved in section 5.

Remark 3. It is not necessary to calculate the change of coordinates (2), nor the
unfolding (3) to use Theorem 2, it is enough to calculate the expressions given in
(4) from the original DPWL system (1).

4. Proof of Theorem 1

For x ∈ Σ we have

h(x) =


γ2Q1(x− q1) =

(
γ2c

T (x− q1)
γ2c

TA1(x− q1)

)
=

(
0

cTA2(x− q1)

)
if σ(x) ≤ 0,

Q2(x− q1) =

(
cT (x− q1)
cTA2(x− q1)

)
=

(
0

cTA2(x− q1)

)
if σ(x) ≥ 0.

That is, h sends Σ on y1 = 0. For σ(x) ≤ 0 we have ẏ = F−(y) = Ā1y + b̄1, where

Ā1 = Q1A1Q
−1
1 =

(
cTA1Q

−1
1

cTA2
1Q
−1
1

)
=

(
0 1
c1 c2

)
,

because of

QiQ
−1
i =

(
cTQ−1

i

cTAiQ
−1
i

)
= I, for i = 1, 2,

and

b̄1 = γ2Q1(A1q1 + b1) =

(
0

γ2r1

)
.
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For σ(x) ≥ 0 we have ẏ = F+(y) = Ā2y + b̄2, where

Ā2 = Q2A2Q
−1
2 =

(
cTA2Q

−1
2

cTA2
2Q
−1
2

)
=

(
0 1
d1 d2

)
,

and

b̄2 = Q2(A2q1 + b2) =

(
cT (A2q1 + b2)

cTA2(A2q1 + b2))

)
=

(
b

b̃

)
.

If Q−1
2 = ( v1 v2 ) then Q2Q

−1
2 =

(
cT

cTA2

)
( v1 v2 ) = I. Observe that it is

possible to normalize c such that ||v2|| = 1. We define v = q2 − q1, then

b̃ = cTA2(A2q1+b2) = cTA2(A2(q2−v)+b2) = cTA2(A2q2+b2)−cTA2
2v = r2−cTA2

2v.

Besides there exist s1, s2 ∈ R such that v = s1v1 + s2v2, but 0 = cT v = s1c
T v1 +

s2c
T v2 = s1, then

(5) v = s2v2.

Therefore cTA2
2v = s2c

TA2
2v2 = s2d2, and cTA2v = s2c

TA2v2 = s2, that is

(6) s2 = cTA2v = cTA2(q2 − q1) + cT b2 − cT b2 = −cT (A2q1 + b2) = −b.

This completes the proof of theorem 1.

Remark 4. From (5) and (6) it follows that ||q2 − q1|| = |b|.

5. Proof of Theorem 2

Consider the unfolding (3), i.e.

ẏ =



(
0 1
c1 c2

)
y +

(
0

γ2r1

)
if y1 < 0,

(
0 1
d1 d2

)
y +

(
b

r2 + d2b

)
if y1 > 0.

We call φt and ψt the flow for y1 < 0 and y1 > 0, respectively. To prove the existence

of a crossing limit cycle we are going to find q̂1 =

(
0
u

)
and q̂2 =

(
0
v

)
, with

u > 0 and v < 0, and times t1, t2, such that the system

S1 = φt1(q̂2)− q̂1 = 0,(7)

S2 = ψt2(q̂1)− q̂2 = 0,(8)

has a unique solution. See Figure 4.

We rename A1 =

(
0 1
c1 c2

)
and A2 =

(
0 1
d1 d2

)
, and consider σ(A1) =

{λ1, λ2 } and σ(A2) = { δ1, δ2 }.

5.1. Fused-focus singularity: r1 > 0 and r2 < 0.
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Figure 4. A crossing limit cycle.

5.1.1. Case λ1λ2 6= 0, λ1 6= λ2, δ1δ2 6= 0, δ1 6= δ2. In this case

S1 = 0 ⇔


eλ1t1 =

γ2r1 + λ1u

γ2r1 + λ1v
=

1 + λ̃1u

1 + λ̃1v
,

eλ2t1 =
γ2r1 + λ2u

γ2r1 + λ2v
=

1 + λ̃2u

1 + λ̃2v
,

where λ̃i =
λi
γ2r1

. Observe that for u > 0, v < 0, and λ̃i ∈ R we have

1 + λ̃iu

1 + λ̃iv
> 0 ⇔ 1 + λ̃iu > 0 and 1 + λ̃iv, for i = 1, 2.

Therefore eλit1 =
1 + λ̃iu

1 + λ̃iv
⇔ et1 =

(
1 + λ̃iu

1 + λ̃iv

) 1

λi
=

(
1 + λ̃iu

) 1

λi

(
1 + λ̃iv

) 1

λi

, then

S1 = 0 ⇔ G1(u, v) =
(1 + λ̃1u)

1

λ1

(1 + λ̃2u)

1

λ2

− (1 + λ̃1v)

1

λ1

(1 + λ̃2v)

1

λ2

= 0.

Similarly

S2 = 0 ⇔


eδ1t2 =

r2 + δ1(v + b)

r2 + δ1(u+ b)
=

1 + δ̃1(−v − b)
1 + δ̃1(−u− b)

,

eδ2t2 =
r2 + δ2(v + b)

r2 + δ2(u+ b)
=

1 + δ̃2(−v − b)
1 + δ̃2(−u− b)

,

⇔ G2(u, v) =
(1 + δ̃1(−v − b))

1

δ1

(1 + δ̃2(−v − b))
1

δ2

− (1 + δ̃1(−u− b))
1

δ1

(1 + δ̃2(−u− b))
1

δ2

= 0,
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v=u

v=-u

Figure 5. Curve solutions for system S1 = S2 = 0.

where δ̃i = − δi
r2

. Observe that G1(0, 0) = 0 and, for b = 0, G2(0, 0) = 0. Moreover

if λi = δi and
1

γ2r1
= − 1

r2
, then λ̃i = δ̃i for i = 1, 2, and

(9) G2(u, v) = G1(−(v + b),−(u+ b)).

That is, the curve G2(u, v) = 0 can be obtained by the reflection of the curve
G1(u, v) = 0, with respect to the straight line v = −u followed by the translation
(−b,−b)T . See Figure 5. Then it is sufficient to solve G1(u, v) = 0.

Lemma 1. There exists a smooth function h : (−ε1, 0]→ [0, ε2) such that G1(h(v), v) =

0 for each v ∈ (−ε1, 0]. Furthermoe h(0) = 0, h′(0) = −1 and h′′(0) =
4c2

3γ2r1
.

Proof. First we observe that

G1(u, v) = 0 ⇔ H(u) = H(v),

where H(z) =
(1 + λ̃1z)

1

λ1

(1 + λ̃2z)

1

λ2

. We are going to distinguish two cases.

Real case: λ1, λ2 ∈ R. In this case H : R → R, and after some calculations

H(0) = 1, H ′(0) = 0, and H ′′(0) =
λ2 − λ1

(γ2r1)2
> 0, then H has a local minimum

at z = 0. Then there exist ε1, ε2 > 0 such that for each v ∈ (−ε1, 0) there
exists a unique u ∈ (0, ε2) with H(u) = H(v). That is, there exists a function
h : (−ε1, 0]→ [0, ε2) such that h(0) = 0 and

H(v) = H(h(v)) ⇔ G1(h(v), u) = 0,
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for each v ∈ (−ε1, 0]. See Figure 6.

Figure 6. u = h(v)

From H ′(v) = H ′(h(v))h′(v) we get

h′(v) =
H ′(v)

H ′(h(v))
< 0,

for each v ∈ (−ε1, 0], because of H ′(v) < 0 and H ′(h(v)) > 0. If we assume that
h′(0) exists, then

h′(0) = lim
v→0−

h′(v) = lim
v→0−

H ′(v)

H ′(h(v))
= lim
v→0−

H ′′(v)

H ′′(h(v))h′(v)
=

1

h′(0)
⇔ h′(0) = −1.

Therefore from H ′′(v) = H ′′(h(v)) (h′(v))
2

+H ′(h(v))h′′(v) we obtain

h′′(v) =
H ′′(v)−H ′′(h(v)) (h′(v))

2

H ′(h(v))
,

and again, if we assume that h′′(0) exists, then

h′′(0) = lim
v→0−

h′′(v) = lim
v→0−

H ′′(v)−H ′′(h(v)) (h′(v))
2

H ′(h(v))

= lim
v→0−

H ′′′(v)−H ′′′(h(v)) (h′(v))
3 − 2H ′′(h(v))h′(v)h′′(v)

H ′′(h(v))h′(v)

= −2H ′′′(0)

H ′′(0)
− 2h′′(0),

but H ′′′(0) =
2(λ2

1 − λ2
2)

(γ2r1)3
, then h′′(0) =

4

3γ2r1
(λ1 + λ2).

Complex case: λ1 = λ = α + βi ∈ C with β > 0. In this case H : R → C. It

is known that for z1, z2 ∈ C we have zz21 = z̄z̄21 . Therefore if w(z) =
(

1 + λ̃z
) 1

λ =

r(z)eiθ(z), then

H(z) =
w(z)

w̄(z)
= e2iθ(z).
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That is

G1(u, v) = 0 ⇔ H(u) = H(v) ⇔ θ(u) = θ(v).

We are going to find the real function θ(z). If λ̃ =
1

γ2r1
(λ) = α̃ + β̃i, then

1 + λ̃z = (1 + α̃z) + i(β̃z) = r0(z)eiθ0(z). Therefore

(
1 + λ̃z

) 1

λ = r(z)eiθ(z) ⇔ Ln(r0e
iθ0) = λLn(reiθ)

⇔ (αLn(r)− Ln(r0)− βθ) + i (αθ + βLn(r)− θ0) = 0.

Then

θ(z) =
1

|λ|2

(
α arctan

(
β̃z

1 + α̃z

)
− β

2
Ln
(

(1 + α̃z)2 + (β̃z)2
))

.

After some calculations, we find that θ(0) = θ′(0) = 0, and θ′′(0) = − β

γ2r1
< 0,

then θ has a local maximum at z = 0. Following the same arguments than in the real
case we prove that there exists a real function u = h(v) such that G1(h(v), v) = 0,

for each v ∈ (−ε1, 0], where h(0) = 0, h′(0) = −1, and h′′(0) =
4

3γ2r1

(
λ+ λ

)
. This

completes the proof of the lemma. �

Existence and stability. From Lemma 1 and (9) it follows that the solutions
of system (7-8), h1(v) and h2(u) are given by

u = h1(v) = −v + λ0v
2 − λ2

0v
3 + · · · ,

v = h2(u) = −2b− u− δ0(b+ u)2 − δ2
0(b+ u)3 + · · · ,

where λ0 =
2c2

3γ2r1
and δ0 = −2d2

3r2
. For ε > 0 we define the Poincaré map P :

(−ε, 0)→ (−ε, 0) given by

P (v, b) = h2(h1(v)) = v − (λ0 + δ0)v2 +O(|v|3) + g0(b) + Σk=1gk(b)vk

= v − 2

3
Λ0v

2 + g0(b) + Σk=1gk(b)vk +O(|v|3),

where g0(b) = −2b+O(|b|2) and gk(b) = O(|b|). Observe that the function

G(v, b) = P (v, b)− v = −2

3
Λ0v

2 + g0(b) + Σk=1gk(b)vk +O(|v|3),

satisfy G(0, 0) = 0 and
∂G

∂b
(0, 0) = −2. Then from the Implicit Function Theorem

there exists a function

b = g(v) = −1

3
Λ0v

2 +O(|v|3),

such that G(v, g(v)) = 0 for each v ∈ (−ε, 0). In other words, for each b sufficiently
small with bΛ0 < 0, there exists v ∈ (−ε, 0) such that P (v, g(v)) = v. That is, the
unfolding (3) has a crossing limit cycle. Finally, to determine the stability of the
limit cycle observe that

∂

∂v
P (v, b) = 1− 4

3
Λ0v + Σk=1kgk(b)vk−1 +O(|v|2),
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and for each b = g(v) with v ∈ (−ε, 0)

∂

∂v
P (v, g(v)) = 1− 4

3
Λ0v +O(|v|2) =

{
< 1 if Λ0 < 0
> 1 if Λ0 > 0.

5.1.2. Improper nodes. Assume λ1 = λ2 and δ1 = δ2. In this case

S1 = 0 ⇔


eλ1t1 =

u

v + t1(γ2r1 + λ1v)
,

eλ1t1 =
γ2r1

γ2r1 − λ1t1(γ2r1 + λ1v)
,

then t1 =
γ2r1(u− v)

(γ2r1 + λ1u)(γ2r1 + λ1v)
. That is

S1 = 0 ⇔ G1(u, v) = (1 + λ̃1u)e

1

1 + λ̃1u − (1 + λ̃1v)e

1

1 + λ̃1v = 0,

where λ̃1 =
λ1

γ2r1
. Similarly

S2 = 0 ⇔


eδ1t2 =

v + b

u+ b+ t2(r2 + δ1(u+ b))
,

eδ1t2 =
r2

r2 − δ1t2(r2 + δ1(u+ b))
,

then t2 =
−r2(u− v)

(r2 + δ1(u+ b))(r2 + δ1(v + b))
. That is

S2 = 0 ⇔ G2(u, v) = (1+δ̃1(−v−b))e

1

1 + δ̃1(−v − b)−(1+δ̃1(−u−b))e

1

1 + δ̃1(−u− b) = 0,

where δ̃1 = −δ1
r2

. As in the previous section

G2(u, v) = G1(−(v + b),−(u+ b)),

and besides Lemma 1 is satisfied by H(z) = (1 + λ̃1z)e

1

1 + λ̃1z .

5.1.3. Assume λ1 6= 0, λ2 = 0, δ1 6= 0, δ2 = 0. Then

S1 = 0 ⇔


eλ1t1 =

1 + λ̃1u

1 + λ̃1v
,

eλ1t1 =
1 + λ̃1v + λ1t1

1 + λ̃1v
,

then t1 =
u− v
γ2r1

. That is

S1 = 0 ⇔ G1(u, v) = (1 + λ̃1u)e−λ̃1u − (1 + λ̃1v)e−λ̃1v = 0,

where λ̃1 =
λ1

γ2r1
. Similarly to the previous cases S2 = 0 ⇔ G2(u, v) = 0, where

G2 satisfy (9), and Lemma 1 is satisfied for H(z) = (1 + λ̃1z)e
−λ̃1z.
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5.1.4. Assume λ1 = λ2 = 0, δ1 = δ2 = 0. Then S1 = 0 ⇔ u = h1(v) = −v, with

t1 = − 2v

γ2r1
, and S2 = 0 ⇔ v = h2(u) = −2b− u, with t2 = −2(u+ b)

r2
.

5.2. Focus-focus singularity: r1 = 0 and r2 = 0. In this case λ1,2 = α1 ± iβ1

and δ1,2 = α2 ± iβ2. Then

S1 = 0 ⇔

 eλ1t1 = eλ2t1 ,

u = eλ1t1v,

that is, t1 =
π

β1
and u = h1(v) = −e

α1π

β1 v. Therefore

S2 = 0 ⇔

 eδ1t2 = eδ2t2 ,

v = eδ1t2u+ b(eδ1t2 − 1).

That is t2 =
π

β2
and v = h2(u) = −e

α2π
β2 u− b(e

α2π
β2 + 1). For each ε > 0 we define

the Poincaré map P : (−ε, 0)→ (−ε, 0) given by

P (v) = h2(h1(v)) = eΛ0πv − b(e
α2π
β2 + 1),

which for each b such that bΛ0 < 0 has the fixed point ṽ =
b(e

α2π
β2 + 1)

eΛ0π − 1
< 0, which

is stable if Λ0 < 0 and unstable if Λ0 > 0.

5.3. Invisible fold-focus singularity.

5.3.1. Assume r1 > 0 and r2 = 0. From the previous cases we know that, S1 =

0 ⇔ h1(v) = −v+λ0v
2−λ2

0v
3+· · · , and S2 = 0 ⇔ h2(u) = −e

α2π
β2 u−b(e

α2π
β2 +1).

Then the Poincaré map is given by

P (v, b) = h2(h1(v)) = e
α2π
β2 (v − λ0v

2 +O(|v|3))− b(e
α2π
β2 + 1).

Again we observe that the function

G(v, b) = P (v, b)− v = (e
α2π
β2 − 1)v +O(|v|2))− b(e

α2π
β2 + 1),

satisfy G(0, 0) = 0, and
∂G

∂b
(0, 0) = −(e

α2π
β2 + 1) 6= 0, then from the Implicit

Function Theorem there is a function

b = g(v) = c1v +O(|v|2) where c1 =
e
α2π
β2 − 1

e
α2π
β2 + 1

=

{
< 0 if α2 < 0,
> 0 if α2 > 0,

such that G(v, g(v)) = 0 for each v < 0 sufficiently small. In other words, for each
b sufficiently small with bΛ0 < 0, there exists v < 0 such that P (v, g(v)) = v. That
is the unfolding (3) has a crossing limit cycle. Finally to determine the stability of
the limit cycle we observe that

∂

∂v
P (v, b) = e

α2π
β2 (1− 2λ0v +O(|v|2)) =

{
< 1 if Λ0 < 0,
> 1 if Λ0 > 0.

In this case the stability of the limit cycle only depends on the stability of the
boundary focus.
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5.3.2. Assume r1 = 0 and r2 < 0. Then S1 = 0 ⇔ h1(v) = −e
α1π
β1 v, and S2 =

0 ⇔ h2(u) = −2b− u− δ0(b+ u)2 − δ2
0(b+ u)3 + · · · . Then, the Poincaré map is

given by

P (v, b) = h2(h1(v)) = e
α1π
β1 (1 +O(|b|))v + e

2α1π
β1 (−δ0 +O(|b|))v2 +O(|v|3) + g0(b),

where g0(b) = −2b+O(|b|2). Again observe that the function

G(v, b) = P (v, b)− v = −v + e
α1π
β1 (1 +O(|b|))v +O(|v|2) + g0(b),

satisfy G(0, 0) = 0, and
∂G

∂b
(0, 0) = −2, then from the Implicit Function Theorem

there is a function

b = g(v) = c1v +O(|v|2), where c1 =
1

2
(e

α1π
β1 − 1) =

{
< 0 if α1 < 0,
> 0 if α1 > 0,

such that G(v, g(v)) = 0 for each v < 0 sufficiently small. In other words, for each
b sufficiently small with bΛ0 < 0, there exists v < 0 such that P (v, g(v)) = v. That
is, the unfolding (3) has a crossing limit cycle. Finally, to determine the stability
of the limit cycle observe that

∂

∂v
P (v, b) = e

α1π
β1 (1 +O(|b|)) +O(|v|)

= e
α1π
β1 (1 +O(|v|)) +O(|v|) =

{
< 1 if Λ0 < 0,
> 1 if Λ0 > 0.

As in the previous case, the stability of the boundary focus determines the stability
of the limit cycle. This completes the proof of Theorem 2.

6. Final remarks

We have established under which conditions a family of DPWL systems with
a discontinuity line, which satisfy the generic condition of having a fold point in
each zone, undergoes the pseudo-Hopf bifurcation. Although this phenomenon has
been studied in several articles, it has always been in the context of searching for
multiple crossing limit cycles, and as far as we know, a similar result had not been
established previously.
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